Reviewer 1

	Comments	Reply
1.1.	Aerosol Fe solubility is a key parameter for impacts of aerosol Fe on marine	We sincerely thank the reviewer for the time and effort put into this review. We have
	biogeochemistry, is still not well constrained. Several sources and processes may	carefully revised the manuscript with full consideration of the comments and suggestions
	contribute to dissolved aerosol Fe, but quantitative explanations are still difficult.	provided. We also reply to your comments posted as community comments in this sheet.
	Sakata et al. explored the possibility to use the ratio of dissolved Al to dissolved Fe to	Please find the point-to-point replies listed below. We apologize for the inconvenience for
	understand factors which control aerosol Fe solubility in fine and coarse particles, and	your peer-preview processes due to our poor English. English editing was conducted by a
	then discussed sources of dissolved aerosol Fe. This idea is novel, and the results are	native English speaker prior to submission.
	very interesting. This manuscript can still be substantially improved to increase its	"Revised text as it appears in the text (in quotes, blue font)"
	readability, clarity and impacts. I also posted a community comment 28 March, and	
	the authors may also need to take it into account.	
	Overall, I urge the authors to check this manuscript carefully and thoroughly, as there	
	are a lot of language issues. Professional editing is also recommended. In the	
	community comment I posted on 28 March, I provided a few examples.	
1.2.	Line 15-17: The second sentence in the abstract largely repeats the first sentence. In	Thank you for pointing out. We have removed the first sentence in abstract.
	addition, there are some typos elsewhere in this manuscript (for example, line 305-	
	306; line 29: should there be "for fine particles" after "from 0.386 to 4.67"?). The	
	authors may want to check the language thoroughly.	
1.3.	Line 155-159: It would be nice to provide values used for [X]/[Na+] for seawater and	The molar ratios of target ions relative to Na+ have been added in the manuscript.
	references.	The molar ratios of $[K^+]/[Na^+]$, $[Mg^{2+}]/[Na^+]$, $[Ca^{2+}]/[Na^+]$, and $[SO_4^{2-}]/[Na^+]$
		were 0.0213, 0.113, 0.0213, and 0.0596, respectively (Nozaki, 2001).
1.4.	Line 267-268: Although these numbers can be found in the SI, could the author provide	Thank you for the suggestions. We provided EF values in TSP derived from the
	average EF values of Fe in TSP for different seasons?	Japanese atmosphere (in summer and fall) and East Asia.
		The average EF of Fe in the TSP samples collected from summer to fall (June
		to October) was 2.84 ± 0.83 when air masses mainly originated from Japan (Fig.
		S6a). By contrast, the average EF of Fe in the TSP derived from East Asia in
		winter and spring was 1.57 ± 0.35 (Fig. S6a). Thus, the influences of

		anthropogenic emission on the total Fe in TSP are more significant in the air
		mass derived from Japan than that from East Asia (Figs. S1, S2, and S6a).
1.5.	Line 305-306: This sentence "The d-Fe and d-Al of fine aerosol particles were 72.0 \pm	Thank you for pointing out. The sentence has been improved as below.
	8.87 % and 53.1 \pm 9.90 %, respectively" may need revision.	The average d-Fe and d-Al concentrations of fine aerosol particles were 27.3 \pm
		17.4 and 14.3 \pm 10.9 ng m-3, which accounted for 72.0 \pm 8.9 % and 53.1 \pm 9.9 %
		of d-Fe and d-Al in the TSP, respectively.
1.6.	Line 311-318: Our previous work (Zhang et al., 2022; Zhang et al., 2023) also found	These three comments are similar and have been combined into one. Thank you for
	and try to explain enrichment of dissolved Fe in fine particles, when compared to total	bringing our attention to the two papers. We briefly compared the result between our
	Fe.	study and your previous studies, and the following sentence was added to the
		manuscript.
	Recently we published two papers (Zhang et al., 2022; Zhang et al., 2023), which	These results are reasonable and supported by previous studies reporting that
	discussed sources of dissolved Fe and Fe solubility for fine and coarse particles and	mineral dust and anthropogenic Fe in fine aerosol particles were covered by
	are highly relevant to the work presented by Sakata et al. Our two papers reported	sulfate, and internal mixing of these particles with sulfate promoted the
	many similar results as Sakata et al., including what Sakata et al. presented in Sections	dissolution of Fe (Sullivan et al., 2007; Fitzgerald et al., 2015; Li et al., 2017,
	3.3-3.4. There are also some differences between our work and the work by Sakata et	Zhu, Y. et al., 2020, 2022). However, compared with the correlation factor of
	al. (2023). Therefore, I would like to bring the authors' attention to our recent work	Fesol% with [nss-SO42-]/[total Fe], coarse aerosol particles yielded a higher
	(Zhang et al., 2022; Zhang et al., 2023).	correlation factor than fine aerosol particles (Figs. 4a and 4c). Similar results
		have been reported by previous studies on Fesol% in China, which indicated the
	Section 3.4.2: Our previous studies (Zhang et al., 2022; Zhang et al., 2023) also	presence of anthropogenic Fe with high Fesol% as one of the reasons for the
	suggested that chemical aging played a more important role in regulating Fe solubility	low value of the correlation factor (Zhang et al., 2022, 2023). Therefore, the low
	in coarse particles than fine particles.	correlation between Fesol% and [nss-SO42-]/[total Fe] of fine aerosol particles
		implied that acidification of mineral dust was not the sole factor controlling
		Fesol%.
		There are several different points in the results between this and your studies, but we
		did not discuss the reasons. This is because (i) it is not easy to compare results between
		this and your studies due to many differences in the sampling methods (e.g., stage
		numbers of impactors, sampling periods, and date), and (ii) detailed comparisons
		between these studies would make this paper longer and consequently conflict with
		your other comment (No. 1.7).

		The difference between our and your studies would be whether Fe _{sol} % is correlated
		with [NO ₃ ⁻]/[total-Fe] or not. In the case of coarse aerosol particles, we believed that
		HNO ₃ mainly reacted with CaCO ₃ in mineral dust as described in Supplemental Note.
		In the case of fine aerosol particles, no relationship between the Fesol% and
		$[NO_3^-]/[total-Fe]$ seems to be found because NO_3^- in aerosols prefers the vapor phase
		due to its low solubility in water under high temperature and acidic conditions. Indeed,
		Zhang et al. (2023) have reported that the correlation between Fesol% and
		[NO ₃ ⁻]/[total-Fe] in summer was worse. Therefore, the nitrate evaporation associated
		with pH cycling during aerosol transport is likely the reason for no correlation between
		[NO ₃ ⁻]/[total-Fe], but further research is needed.
1.7.	It may increase the readability to group Sections 3.5-3.7 into a new section. The current	Sections 3.5-3.7 of the first version were rearranged into a new section, Section 4 (title:
	Section 3 is very long, and contents in Sections 3.5-3.7 are different from Section 3.1-	Establishing the source estimation method for d-Fe using [d-Fe]/[d-Al]) in the revised
	3.4?	version. This section has been improved to increase the readability.
	In addition, I feel the current manuscript is very long, and the quality of some figures	Regarding the paper length, the section on the ion concentration and several figures
	is not good (they contain many panels and are very busy). Sections 3.5-3.7 contain key	were moved to Supplemental Information. We hope you could understand our decision
	information in this manuscript, but are not easy to follow. Perhaps the authors could	that we did not reduce the text length for the other sections to avoid ambiguity in the
	improve them during the revision, but I cannot provide specific suggestions.	significance of the newly established indicators for source apportionment of d-Fe.