Preprints
https://doi.org/10.5194/acp-2023-18
https://doi.org/10.5194/acp-2023-18
07 Feb 2023
 | 07 Feb 2023
Status: this preprint is currently under review for the journal ACP.

Physicochemical Characterization and Source Apportionment of Arctic Ice Nucleating Particles Observed in Ny-Ålesund in Autumn 2019

Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji

Abstract. Ice nucleating particles (INPs) initiate primary ice formation in Arctic mixed-phase clouds, altering cloud radiative properties and modulating precipitation. For atmospheric INPs, the complexity of their spatiotemporal variations, heterogeneous sources and evolution via intricate atmospheric interactions challenge the understanding of their impact on microphysical processes in Arctic mixed-phase clouds and induce an uncertain representation in climate models. In this work, we performed a comprehensive analysis of atmospheric aerosols at the Arctic coastal site in Ny-Ålesund (Svalbard, Norway) from October to November 2019, including their ice nucleation ability, physicochemical properties and potential sources. Overall, INP concentrations during the observation season were approximately up to three orders of magnitude lower compared to the global average, with several samples showing degradation of INP concentrations after heat treatment, implying the presence of proteinaceous INPs. Particle fluorescence was substantially associated with INP concentrations at warmer ice nucleation temperatures, indicating that in the far-reaching Arctic, aerosols of biogenic origin throughout the snow- and ice-free season may serve as important INP sources. In addition, case studies revealed the links between elevated INP concentrations to heat-lability, fluorescence, high wind speeds originating from the ocean, augmented concentration of coarse-mode particles and abundant organics. Backward trajectory analysis demonstrated a potential connection between high-latitude dust sources and high INP concentrations, while prolonged air mass history over the ice pack was identified for most scant INP cases. The combination of the above analyses demonstrates the abundance, physicochemical properties and potential sources of INPs in the Arctic are highly variable despite its remote location.

Guangyu Li et al.

Status: open (extended)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Guangyu Li et al.

Guangyu Li et al.

Viewed

Total article views: 368 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
254 110 4 368 3 3
  • HTML: 254
  • PDF: 110
  • XML: 4
  • Total: 368
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 07 Feb 2023)
Cumulative views and downloads (calculated since 07 Feb 2023)

Viewed (geographical distribution)

Total article views: 356 (including HTML, PDF, and XML) Thereof 356 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 27 Mar 2023
Download
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties and potential sources of ice-nucleating particles relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Altmetrics