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Abstract. The fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4) is conducting a diagnostic 10 

intercomparison and evaluation of deposition simulated by regional-scale air quality models over North America and Europe. 

In this study, we analyze annual AQMEII4 simulations performed with the Community Multiscale Air Quality Model (CMAQ) 

version 5.3.1 over North America. These simulations were configured with both the M3Dry and Surface Tiled Aerosol and 

Gas Exchange (STAGE) dry deposition schemes available in CMAQ. A comparison of observed and modeled concentrations 

and wet deposition fluxes shows that the AQMEII4 CMAQ simulations perform similarly to other contemporary regional-15 

scale modeling studies. During summer, M3Dry has higher ozone (O3) deposition velocities (Vd) and lower mixing ratios than 

STAGE for much of the eastern U.S. while the reverse is the case over eastern Canada and along the West Coast. In contrast, 

during winter STAGE has higher O3 Vd and lower mixing ratios than M3Dry over most of the southern half of the modeling 

domain while the reverse is the case for much of the northern U.S. and southern Canada. Analysis of the diagnostic variables 

defined for the AQMEII4 project, i.e. grid-scale and land-use (LU) specific effective conductances and deposition fluxes for 20 

the major dry deposition pathways, reveals generally higher summertime stomatal and wintertime cuticular grid-scale effective 

conductances for M3Dry and generally higher soil grid-scale effective conductances (for both vegetated and bare soil) for 

STAGE in both summer and winter. On a domain-wide basis, the stomatal grid-scale effective conductances account for about 

half of the total O3 Vd during daytime hours in summer for both schemes. Employing LU-specific diagnostics, results show 

that daytime Vd varies by a factor of 2 between LU categories. Furthermore, M3Dry vs. STAGE differences are most 25 

pronounced for the stomatal and vegetated soil pathway for the forest LU categories, with M3Dry estimating larger effective 

conductances for the stomatal pathway and STAGE estimating larger effective conductances for the vegetated soil pathway 

for these LU categories. Annual domain total O3 deposition fluxes differ only slightly between M3Dry (74.4 Tg/year) and 

STAGE (76.2 Tg/yr), but pathway-specific fluxes to individual LU types can vary more substantially on both annual and 

seasonal scales which would affect estimates of O3 damages to sensitive vegetation. A comparison of two simulations differing 30 

only in their LU classification scheme shows that the differences in LU cause seasonal mean O3 mixing ratio differences on 
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the order of 1 ppb across large portions of the domain, with the differences generally largest during summer and in areas 

characterized by the largest differences in the fractional coverages of the forest, planted/cultivated, and grassland LU 

categories. These differences are generally smaller than the M3Dry vs. STAGE differences outside the summer season but 

have a similar magnitude during summer. Results indicate that the deposition impacts of LU differences are caused both by 35 

differences in the fractional coverages and spatial distributions of different LU categories as well as the characterization of 

these categories through variables like surface roughness and vegetation fraction in look-up tables used in the land-surface 

model and deposition schemes. Overall, the analyses and results presented in this study illustrate how the diagnostic grid-scale 

and LU-specific dry deposition variables adopted for AQMEII4 can provide insights into similarities and differences between 

the CMAQ M3Dry and STAGE dry deposition schemes that affect simulated pollutant budgets and ecosystem impacts from 40 

atmospheric pollution. 

1 Introduction 

Over the past four decades, grid-based chemical transport models have been used to study air pollution on urban to global 

scales (McRae and Seinfeld, 1983; Chang et al., 1987; Russell et al., 1988; Harley et al., 1993; Hass et al., 1993; Scheffe and 

Morris, 1993; Kumar et al., 1994; Jacobson et al., 1996; Chang et al., 1997; Kasibhatla and Chameides, 2000; Sistla et al., 45 

2001; Bey et al., 2001; Grell et al., 2005; Byun and Schere, 2006; Gaydos et al., 2007; Mathur et al., 2017 ). In these models, 

the removal of gases and aerosols from the atmosphere through wet and dry deposition is one of the key processes of the 

simulated pollutant budgets. While the representation of gas and aerosol dry deposition in many of these models is derived 

from the resistance framework introduced in Wesely and Hicks (1977) and Wesely (1989), its specific implementation can 

differ between models (Hardacre et al., 2015; Galmarini et al., 2021) and its use to represent aerosol dry deposition is an area 50 

of active model development (Saylor et al., 2019; Emerson et al., 2020; Pleim et al., 2022; Alapaty et al., 2022, Cheng et al., 

2022). Likewise, the calculation of wet deposition fluxes in many models follows similar approaches as those used during 

initial acid deposition modeling (Chang et al., 1987; Irving and Smith, 1991; Hass et al., 1993) but differences exist in how 

models represent microphysics, precipitation, and aerosols.  

Intercomparisons of air quality models can play an important role in assessing how such different process representations can 55 

impact simulated pollutant concentrations, model performance, and the use of models for planning applications. One such 

model intercomparison activity, the Air Quality Model Evaluation International Initiative (AQMEII), was launched in 2009 

(Rao et al., 2011) and since then has organized several activities focused on evaluating regional-scale air quality models used 

for research and regulatory applications over North America and Europe. As discussed in Galmarini et al. (2021), its fourth 

phase (AQMEII4) employs both grid and box modeling techniques for a diagnostic intercomparison and evaluation of 60 

simulated deposition with a specific focus on dry deposition of gaseous species. The grid model component of AQMEII4 is 

based on eight groups performing annual simulations for two years over North America and Europe and collecting detailed 
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dry deposition diagnostics for a range of trace gases. The Community Multiscale Air Quality (CMAQ) model (Byun and 

Schere, 2006) has been a part of all AQMEII activities performed to date and its performance in previous activities has been 

documented in both detailed comparisons of CMAQ simulations to observations (Appel et al., 2012; Hogrefe et al., 2015; 65 

Hogrefe et al., 2018) and comparisons to other modeling systems participating in AQMEII (Solazzo et al., 2012a,b; Im et al., 

2015a,b; Solazzo et al., 2017).  

This present study is conducted in the context of AQMEII4 and has three main objectives. The first objective is to evaluate the 

CMAQ simulations contributed to AQMEII4 by comparing simulated pollutant fields and wet deposition fluxes to observations 

while leveraging results from a recent extensive CMAQ evaluation study (Appel et al., 2021) that used the same model version 70 

as the AQMEII4 simulations but differed in terms of several input fields and configuration options. The focus of this analysis 

is on quantifying the impacts of these setup differences and comparing model performance across both configurations. The 

second objective is to use the AQMEII4 diagnostics introduced in Galmarini et al. (2021) and Clifton et al. (in preparation) to 

diagnostically compare the two dry deposition schemes implemented in CMAQ and used in the AQMEII4 simulations as 

discussed in Section 2, i.e. the M3Dry (Pleim et al., 1984; Pleim and Ran, 2011) and Surface Tiled Aerosol and Gaseous 75 

Exchange (STAGE) (Appel et al., 2021, Galmarini et al., 2021; Bash et al., submitted) schemes. The third objective is to 

quantify the impacts of differences in the representation of land use (LU) in the meteorological and air quality model on 

concentrations and fluxes and compare them to the impacts of different dry deposition schemes. 

Section 2 provides an overview of the modeling system utilized in this study, the sensitivity simulations performed and 

analyzed, details on the configuration of the M3Dry and STAGE dry deposition schemes for these AQMEII4 simulations, and 80 

describes the observational datasets used for model evaluation. Section 3.1 presents results from the model performance 

evaluation, Section 3.2 presents results of a diagnostic gas phase dry deposition comparison between M3Dry and STAGE on 

both the grid scale and for specific LU types, and Section 3.3 analyzes the sensitivity of estimated dry deposition to the 

underlying LU classification scheme. Results are summarized and discussed in Section 4. 

2 Description of model simulations and observational database 85 

2.1 Base case model configuration 

The 2010 and 2016 base case CMAQ simulations analyzed in this study closely follow the configuration of the 

“CMAQ531_WRF411_M3Dry_BiDi” and “CMAQ531_WRF411_STAGE_BiDi” 2016 CMAQv5.3.1 simulations analyzed 

in Appel et al. (2021). Key aspects of that configuration as well as deviations in the current study are summarized below. 

2.1.1. Meteorological modeling 90 

As in the Appel et al. (2021) study, meteorological fields were generated with the Weather Research and Forecast (WRF) 

model version 4.1.1. WRFv4.1.1 configuration options in common with Appel et al. (2021) include the Rapid Radiation 
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Transfer Model Global (RRTMG) for long- and short-wave radiation (Iacono et al., 2008), the Morrison microphysics scheme 

(Morrison et al., 2005), and the Kain-Fritsch (KF) cumulus parametrization scheme (Kain, 2004). Furthermore, both Appel et 

al. (2021) and this study used the Pleim-Xiu land-surface model (PX-LSM; (Pleim and Xiu, 1995; Xiu and Pleim, 2001; Pleim 95 

and Gilliam, 2009) and Asymmetric Convective Mixing 2 planetary boundary layer (PBL) model (Pleim, 2007a,b) with the 

Pleim surface layer scheme (Pleim, 2006). WRF data assimilation followed Appel et al. (2021) and is described in greater 

detail in Gilliam et al. (2021), and soil temperature and moisture nudging followed Pleim and Gilliam (2009) and Pleim and 

Xiu (2003). In contrast to Appel et al. (2021), the WRF simulations used in this study obtained sea surface temperature from 

the North America Model (NAM) reanalysis data set (Mesinger et al., 2006) instead of the Group for High Resolution Sea 100 

Surface Temperature (GHRSST), did not include lightning assimilation (Heath et al., 2016), and classified LU with the 20-

category Moderate Resolution Imaging Spectroradiometer (MODIS) satellite derived LU classification scheme instead of the 

40-category National Land Cover Dataset (NLCD) (Dewitz and U.S. Geological Survey, 2021; Yang et al., 2018) LU data set. 

In a further contrast to Appel et al. (2021), the WRF PX LSM in this study was configured to obtain Leaf Area Index (LAI) 

and areal fraction covered by vegetation (VEGF) from the PX LSM MODIS LU-scheme lookup table values rather than 105 

directly ingesting MODIS satellite-derived inputs interpolated from monthly data as described in Ran et al. (2016). Finally, it 

should be noted that after performing the two 2010 CMAQ simulations analyzed in this study, it was discovered that the WRF 

fields for several time periods in September, October, and November 2010 were affected by inconsistencies in the WRF input 

file preparation that affected simulated precipitation. These time periods were excluded from the model performance 

evaluation.  110 

2.1.2 Emissions 

The anthropogenic emissions for 2010 and 2016 were harmonized for all AQMEII4 modeling groups and are described in 

Galmarini et al. (2021). For 2016, these AQMEII4 emissions were based on an earlier version of emission inventories 

compared to the 2016 emissions described in Appel et al. (2021). For lightning NO emissions, the CMAQ simulations 

performed for this study used the GEIA monthly climatological data (Price et al., 1997) as described in Galmarini et al. (2021) 115 

for consistency with other AQMEII4 modeling groups while Appel et al. (2021) used lightning NO estimated from hourly 

year-specific lightning flash data from the National Lightning Detection Network (NLDN). Both this study and Appel et al. 

(2021) estimated biogenic VOC and soil NO emissions with the CMAQ inline Biogenic Emission Inventory System (BEIS) 

option with the same underlying LU dataset and emission factors.  

2.1.3 Boundary conditions 120 

Lateral chemical boundary conditions for both 2010 and 2016 for all AQMEII4 model simulations, including the CMAQ 

simulations analyzed in this study, were obtained from the Copernicus Atmospheric Monitoring Service (CAMS) EAC4 

reanalysis product (Inness et al., 2019) as described in Galmarini et al. (2021). This differs from the 2016 CMAQ simulations 
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analyzed in Appel et al. (2021) which used hemispheric CMAQ (Mathur et al., 2017) simulations to generate boundary 

conditions for the regional-scale modeling domain over North America. 125 

2.1.4 Air quality modeling 

The base version of CMAQ used in this study is 5.3.1 (U.S. Environmental Protection Agency, 2019) and matches that used 

for the “CMAQ531_WRF411_M3Dry_BiDi” and “CMAQ531_WRF411_STAGE_BiDi” simulations in Appel et al. (2021). 

All CMAQ simulations were performed on the same 12 km modeling domain with 35 vertical layers covering the conterminous 

U.S, southern Canada, and northern Mexico that was used in Appel et al. (2021). Science configuration options include the 130 

cb6r3 chemical mechanism (Luecken et al., 2019), the aero7 aerosol module (Pye et al., 2017, 2019; Qin et al., 2021; Appel 

et al., 2021), and the bi-directional treatment of NH3 fluxes, all matching the configuration options used in Appel et al. (2021). 

As in Appel et al. (2021), the fertilizer and soil NH3 information required for the bi-directional treatment of NH3 fluxes were 

generated by the Environmental Policy Integrated Climate (EPIC; Williams, 1995) model through the Java-based Fertilization 

Emission Scenario Tool for CMAQ (FEST-C; Ran et al., 2019), though it should be noted that the 2010 EPIC fields used in 135 

this study suffered from an EPIC configuration error that resulted in an unrealistically large allocation of annual fertilizer 

application to the beginning of the year. Dry deposition was simulated with both science options available in CMAQv5.3.1, 

i.e. the M3Dry and STAGE schemes. The application of both schemes to this study and modifications for the STAGE dry 

deposition option relative to the CMAQv5.3.1 base version are described in Section 2.3. 

2.2 CMAQ Sensitivity Simulations 140 

Besides the 2010 and 2016 CMAQ M3Dry and STAGE base case simulations described in Section 2.1, additional CMAQ 

sensitivity simulations were performed for 2016 to quantify the impacts of some of the differences relative to the Appel et al. 

(2021) CMAQ configuration and to gain further diagnostic understanding on the choice of model inputs on modeled deposition. 

Table 1 provides a listing of all base case and sensitivity simulations, their acronyms used in the following analyses and 

discussions, and the input data sets and/or configuration options differentiating them. As discussed further in Section 2.3, 145 

STAGE_REF_2016 is designed to quantify the impact of modifying the CMAQ STAGE code for AQMEII4 relative to the 

unmodified STAGE code in CMAQv5.3.1 used by Appel et al. (2021). M3DRY_NLCD40_2016 is designed to study the 

impact of using a different LU classification scheme in both WRF and CMAQ on simulated concentrations, deposition fields, 

and deposition diagnostics. M3DRY_HCMAQ_2016 can be used to assess the impact of using chemical boundary conditions 

from CAMS compared to using boundary conditions from H-CMAQ as in Appel et al. (2021). Finally, the set of 150 

M3DRY_LTGNO_BASE_2016 and M3DRY_LTGNO_NLDN_2016 simulations can be used to study the impacts of different 

lightning NO emission representations (GEIA vs. NLDN) on simulated concentration and deposition fields. It should be noted 

that these two simulations used the 2021 WRFv4.1.1 fields from Appel et al. (2021) rather than those used for the base case  
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 Year WRF 

Lightning 

Assimilation 

WRF 

Land 

Use 

CMAQ 

Land Use  

CMAQ 

Lightning 

NO 

Emissions 

CMAQ 

Boundary 

Conditions 

Anthropogenic 

Emissions 

Base Case Simulations 

M3DRY_2010 2010 N MODIS MODIS GEIA CAMS Galmarini et al 

(2021) 

STAGE_2010 2010 N MODIS AQMEII4 GEIA CAMS Galmarini et al 

(2021) 

M3DRY_2016 2016 N MODIS MODIS GEIA CAMS Galmarini et al 

(2021) 

STAGE_2016 2016 N MODIS AQMEII4 GEIA CAMS Galmarini et al 

(2021) 

2016 Sensitivity Simulations 

STAGE_REF_2016 2016 N MODIS MODIS GEIA CAMS Galmarini et al 

(2021) 

M3DRY_NLCD40_2016 2016 N NLCD40 NLCD40 GEIA CAMS Galmarini et al 

(2021) 

M3DRY_HCMAQ_2016 2016 N NLCD40 NLCD40 GEIA H-CMAQ Galmarini et al 

(2021) 

M3DRY_APPEL_EMIS_2016 2016 N MODIS MODIS GEIA CAMS Appel et al. 

(2021) 

M3DRY_LTNGNO_BASE_2016 2016 Y NLCD40 NLCD40 GEIA CAMS Galmarini et al 

(2021) 

M3DRY_LTNGNO_NLDN_2016 2016 Y NLCD40 NLCD40 NLDN CAMS Galmarini et al 

(2021) 

 

Table 1. Configurations of the AQMEII4 CMAQ simulations performed for this study. 155 

 

simulations described in Section 2.1.1. Because these sensitivity simulations were performed for 2016, the focus of the analysis 

in Section 3 will be on that year. 

2.3 Application of M3Dry and STAGE for AQMEII4 

A key component of the AQMEII4 activity is to compute and analyze dry deposition pathways and component resistances on 160 

both a grid-scale and LU-specific basis (Galmarini et al., 2021). This section describes how this diagnostic information is 
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generated from the CMAQ simulations contributed to the AQMEII4 activity and analyzed in this study. A schematic 

representation of both M3Dry and STAGE and equations for their computations of the AQMEII4 dry deposition diagnostic 

variables can be found in Appendix B of Galmarini et al. (2021). As described in Appel et al. (2021), both M3Dry and STAGE 

originate from earlier versions of the M3Dry scheme which has a long history in CMAQ and other chemical transport models 165 

(Pleim et al., 1984). However, both algorithms follow different approaches in terms of their consideration of sub-grid scale 

variations in LU and the calculation of some component resistances.  

2.3.1 M3Dry 

The M3Dry dry deposition calculations performed in CMAQ are designed to maintain maximum consistency with the flux 

calculations performed in the WRF PX LSM. Specifically, the M3Dry calculations are performed on a grid scale basis. Sub-170 

grid scale variations in LU are accounted for by computing relevant grid-scale parameters like roughness length (z0), VEGF, 

and leaf area index (LAI) as LU-weighted averages from LU-specific lookup table values. Grid scale aerodynamic resistance 

(Ra), stomatal resistance (Rs), friction velocity (𝑢𝑢∗), VEGF, and LAI computed in the WRF PX LSM are directly used in the 

CMAQ M3Dry deposition calculations. To compute the LU-specific and dry deposition diagnostic variables required for 

AQMEII4 (Galmarini et al., 2021), a post-processing tool was developed to estimate these variables by performing M3Dry 175 

calculations separately for each LU category encountered in a grid cell. While these LU-specific post-processor calculations 

used the same formulations and parameter values as the grid-scale deposition calculations performed in CMAQ M3Dry, the 

fact that WRF PX LSM uses parameter values weighted by LU fraction for the calculation of Ra, Rs, and other relevant variables 

means that the LU-weighted averages of the LU-specific post-processor estimates for deposition velocity (Vd) and effective 

conductance may slightly deviate from the grid-scale CMAQ M3Dry calculations and should therefore be viewed as an 180 

approximation. However, the LU-specific dry deposition fluxes computed by the post-processor were normalized by the grid 

cell values so that the LU-weighted flux sums equal the total grid cell fluxes.  The CMAQ M3Dry calculations and post-

processor estimates of LU-specific and aggregated diagnostic variables were performed using the native 20 category MODIS 

LU scheme (or 40 category NLCD LU scheme for the M3DRY_NLCD40_2016 sensitivity simulation) that was also used in 

the WRF simulations. Aggregation to the 16 category AQMEII4 LU scheme used in our analysis (Galmarini et al., 2021) was 185 

performed through mapping and LU-weighted averaging of equivalent categories (Table S1). 

2.3.2 STAGE 

The STAGE dry deposition option was first introduced in CMAQv5.3 (Appel et al., 2021). It unifies bi-directional and uni-

directional deposition schemes following the resistance model frameworks of Massad et al. (2010) and Nemitz et al. (2001). 

In contrast to M3Dry, STAGE computes individual resistances, Vd, and deposition fluxes for each LU category present in a 190 

grid cell and then aggregates these calculations to the grid scale value for use by the CMAQ surface exchange module. 

Therefore, some of the deposition diagnostics required for AQMEII4 (LU-specific and grid scale Vd and fluxes) were readily 
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available from the standard version of STAGE in CMAQv5.3.1. Code modifications were made to output the desired 

component resistances and conductances that were computed but not output in the standard version of STAGE. Moreover, the 

STAGE code used in this study was also modified to perform all deposition calculations directly on the 16 AQMEII4 LU 195 

categories (Galmarini et al., 2021) rather than the 20 MODIS categories used in the WRF PX LSM calculations. This was 

accomplished by applying the same mapping used in the M3Dry post-processing and shown in Table S1 and also defining LU-

specific lookup table values for required parameters like z0, VEGF, and LAI for each of the 16 AQMEII4 categories in the 

modified STAGE code.  As a result of deriving grid-scale deposition-related variables from LU-specific calculations and using 

a more aggregated LU classification scheme with a separate set of lookup table values, some of these grid-scale variables such 200 

as Ra, Rs, 𝑢𝑢∗, VEGF, and LAI may differ from the corresponding values used in the WRF PX LSM flux calculations, creating 

a potential inconsistency in the treatment of surface-air exchange processes simulated in WRF PX LSM and CMAQ STAGE. 

It should be noted that in the most recent version of CMAQ released in October 2022 (U.S. Environmental Protection Agency, 

2022), STAGE was updated to normalize LU-specific calculations for Ra, Rs, and 𝑢𝑢∗ such that their aggregated grid-scale 

values match the grid scale values obtained from the LSM of the driving meteorological model. 205 

2.4 Observational data 

For the performance evaluation presented in Section 3.1, the base case CMAQ simulations were compared against observations 

obtained from the U.S. Environmental Protection Agency’s Air Quality System (AQS; https://www.epa.gov/aqs) database and 

the National Atmospheric Deposition Program’s National Trend Network (NADP NTN; 

https://nadp.slh.wisc.edu/networks/national-trends-network/). Specifically, model evaluation was performed for hourly 210 

nitrogen oxides (NOx) and sulfur dioxide (SO2), daily maximum 8-hr average O3 (MDA8 O3), and daily PM2.5 sulfate (SO4
2-), 

nitrate (NO3
-), organic carbon (OC), elemental carbon (EC), and total PM2.5 mass from AQS as well as weekly integrated 

precipitation and wet deposition of SO4
2-, NO3

-, and ammonium (NH4
+) from NADP NTN. The number of 2016 (2010) 

monitors with available observations was 425 (374) for NOx, 464 (446) for SO2, 1323 (1278) for MDA8 O3, 1926 (2006) for 

PM2.5 mass, 318 (398) for PM2.5 SO4
2-, 312 (393) for PM2.5 NO3

-, 297 (177) for PM2.5 OC, 297 (177) for PM2.5 EC, and 259 215 

(237) for precipitation and SO4
2-, NO3

-, and NH4
+ wet deposition, though not all monitors had year-round data coverage. All 

model values were matched in time and space against the available 2010 and 2016 observations using the Atmospheric Model 

Evaluation Tool (AMET; Appel et al., 2011) version 1.4. 
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3 Results 

3.1 Model performance evaluation 220 

Comparisons of modeled and observed MDA8 O3, SO2, NOx, PM2.5, SO4
2-, NO3

-, OC, and EC concentrations at AQS monitors 

and precipitation and wet deposition of SO4
2-, NO3

-, and NH4 at NADP monitors are presented in Figures 1 – 2, S1, and Tables 

2 – 3. 

Table 2a shows key model performance metrics for several gas phase and aerosol species for the M3DRY_2016 and 

STAGE_2016 base case simulations as well as the corresponding 2016 CMAQ531_WRF411_M3Dry_BiDi and 225 

CMAQ531_WRF411_STAGE_BiDi simulations from Appel et al. (2021). These performance metrics are the observed and 

modeled mean values and standard deviations, the normalized and absolute mean bias (NMB and MB, respectively), the root 

mean square error (RMSE), and the correlation coefficient. The metrics shown in this table were computed across all stations 

and available observation – model pairs. Corresponding time series of monthly mean observed and modeled values and RMSE 

are shown in the left column of Figures 1a and 2a. 230 

For MDA8 O3, a comparison of the AQMEII4 simulations to the Appel et al. (2021) simulations shows a positive instead of a 

negative bias, a larger absolute bias, a similar or lower RMSE, and a higher correlation coefficient. The AQMEII4 simulations 

are closer to the observations for February – July while the Appel et al. (2021) are closer for the remaining months. The 

differences between performance statistics for the M3Dry and STAGE simulations are small but that is partially due to the 

seasonally and spatially varying nature of differences between these schemes that will be discussed in Section 3.2. For NOx, 235 

the AQMEII4 simulations show slightly lower concentrations and hence a slightly more pronounced negative bias and higher 

RMSE compared to the Appel et al (2021) simulations but the time series indicate that all simulations deviate substantially 

from observations, especially during winter. For SO2, model performance is similar for all four simulations.  For PM2.5 mass, 

the AQMEII4 simulations show higher concentrations especially during summer, a positive instead of a negative bias, a larger 

absolute bias, a higher RMSE, and lower correlations than the corresponding Appel et al. (2021) simulations. M3DRY_2016 240 

shows slightly lower concentrations, MB and RMSE than STAGE_2016. For PM2.5 species, the AQMEII4 simulations have a 

lower absolute bias than Appel et al. (2021) for SO4
2- and NO3

- and higher absolute bias for OC and EC. The AQMEII4 

simulations also have a higher RMSE and lower correlation for all species except NO3
-. A comparison of the spatial patterns 

of MDA8 O3 and PM2.5 biases in Figure S1 shows that the overall higher concentrations of both pollutants in the 2016 

AQMEII4 simulations resulted in a higher positive bias in the eastern U.S. compared to Appel et al. (2021) while the general 245 

underestimation in the western U.S. seen in the Appel et al. (2021) results was reduced for PM2.5 and turned into a general 

overestimation for MDA8 O3. 
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Species Simulation Observed 
Mean 

Model 
Mean 

Observed 
σ 

Model 
σ NMB MB RMSE Correlation 

MDA8 O3 (ppb) 
  

M3DRY_BASE_2016 

41.93  

45.42 

12.00  

9.78 8.34 3.50 7.91 0.81 
M3Dry (Appel et al., 2021) 40.22 9.63 -4.06 -1.70 7.93 0.76 
STAGE_BASE_2016 45.24 10.10 7.89 3.31 7.91 0.80 
STAGE (Appel et al., 2021) 39.43 10.10 -5.96 -2.50 8.50 0.74 

NOX (ppb)  

M3DRY_BASE_2016 

13.36  

8.41 

21.20  

10.80 -37.10 -4.95 18.60 0.53 
M3Dry (Appel et al., 2021) 8.96 12.40 -33.00 -4.40 18.50 0.54 
STAGE_BASE_2016 8.42 10.80 -37.00 -4.94 18.60 0.53 
STAGE (Appel et al., 2021) 9.03 12.50 -32.40 -4.33 18.40 0.54 

SO2 (ppb)  

M3DRY_BASE_2016 

0.89  

0.79 

2.82  

1.10 -11.20 -0.10 2.86 0.16 
M3Dry (Appel et al., 2021) 0.81 1.12 -8.72 -0.08 2.86 0.16 
STAGE_BASE_2016 0.80 1.09 -10.10 -0.09 2.86 0.16 
STAGE (Appel et al., 2021) 0.80 1.10 -9.78 -0.09 2.86 0.16 

Total PM2.5 
(µg/m3)  

M3DRY_BASE_2016 

7.57  

7.90 

5.16  

6.87 4.39 0.33 6.64 0.42 
M3Dry (Appel et al., 2021) 6.97 5.04 -7.96 -0.60 5.00 0.53 
STAGE_BASE_2016 8.47 7.16 11.90 0.90 6.86 0.43 
STAGE (Appel et al., 2021) 7.47 5.32 -1.37 -0.10 5.08 0.53 

SO4
2- (µg/m3)  

M3DRY_BASE_2016 

0.78  

0.79 

0.72  

0.61 1.07 0.01 0.55 0.67 
M3Dry (Appel et al., 2021) 0.84 0.55 8.11 0.06 0.53 0.69 
STAGE_BASE_2016 0.83 0.64 6.60 0.05 0.56 0.67 
STAGE (Appel et al., 2021) 0.87 0.56 11.90 0.09 0.53 0.69 

NO3
- (µg/m3)  

M3DRY_BASE_2016 

0.59  

0.46 

1.24  

0.97 -21.30 -0.13 1.00 0.62 
M3Dry (Appel et al., 2021) 0.41 0.87 -31.00 -0.18 1.01 0.60 
STAGE_BASE_2016 0.53 1.07 -8.89 -0.05 1.00 0.63 
STAGE (Appel et al., 2021) 0.51 1.00 -13.30 -0.08 1.00 0.62 

OC (µg/m3)  

M3DRY_BASE_2016 

1.31  

1.83 

1.56  

1.68 39.90 0.52 1.71 0.50 
M3Dry (Appel et al., 2021) 1.43 1.57 9.22 0.12 1.51 0.54 
STAGE_BASE_2016 1.98 1.77 51.90 0.68 1.80 0.51 
STAGE (Appel et al., 2021) 1.54 1.67 18.30 0.24 1.57 0.54 

EC (µg/m3)  

M3DRY_BASE_2016 

0.31 

0.39 

0.40 

0.46 23.50 0.07 0.40 0.61 
M3Dry (Appel et al., 2021) 0.32 0.41 1.20 0.00 0.33 0.68 
STAGE_BASE_2016 0.39 0.47 25.20 0.08 0.40 0.61 
STAGE (Appel et al., 2021) 0.32 0.41 2.83 0.01 0.33 0.68 

 250 

Table 2a. Model performance statistics for all daily maximum 8-hr average O3 (MDA8 O3), hourly NOx and SO2, and 24-hr 

average total and speciated (SO4
2-, NO3

-, organic carbon (OC) and elemental carbon (EC)) PM2.5 mass samples collected at 

AQS monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard deviation over all 

samples is denoted as σ while NMB, MB, and RMSE represent the percentage normalized mean bias, mean bias, and root 

mean square error computed over all samples. 255 
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Species Simulation Observed 
Mean 

Model 
Mean 

Observed 
σ 

Model 
σ NMB MB RMSE Correlation 

Observed 
2016 – 
2010  

Model 
2016 – 
2010  

MDA8 O3 

(ppb) 
 

M3DRY_BASE_2010 
43.87  

48.55 
13.50 

11.50 10.70 4.68 9.41 0.80 -1.95 -3.13 

STAGE_BASE_2010 48.40 11.80 10.30 4.53 9.43 0.79 -1.95 -3.16 

NOX 

(ppb) 

M3DRY_BASE_2010 
13.99  

11.15 
23.40 

15.20 -20.30 -2.85 20.9 0.49 -0.63 -2.74 

STAGE_BASE_2010 11.15 15.20 -20.30 -2.84 20.9 0.49 -0.63 -2.73 

SO2 (ppb) M3DRY_BASE_2010 2.05 2.01 5.23 2.57 -2.14 -0.04 5.22 0.25 -1.16 -1.22 
STAGE_BASE_2010 2.05 2.60 -0.01 0.00 5.23 0.25 -1.16 -1.25 

Total 

PM2.5 

(µg/m3) 

M3DRY_BASE_2010 

9.51  

10.33 

6.38 

7.36 8.66 0.82 5.88 0.65 -1.94 -2.43 

STAGE_BASE_2010 11.10 7.93 16.80 1.60 6.32 0.65 -1.94 -2.63 

SO4
2- 

(µg/m3) 

M3DRY_BASE_2010 
1.52  

1.43 
1.50 

1.28 -6.23 -0.09 0.951 0.78 -0.74 -0.64 

STAGE_BASE_2010 1.52 1.37 -0.58 -0.01 0.974 0.77 -0.74 -0.68 

NO3
- 

(µg/m3) 

M3DRY_BASE_2010 
0.92  

0.81 
1.81 

1.66 -11.20 -0.10 1.32 0.72 -0.33 -0.35 

STAGE_BASE_2010 0.96 1.96 4.83 0.04 1.42 0.72 -0.33 -0.43 

OC 

(µg/m3) 

M3DRY_BASE_2010 
1.49  

2.16 
1.54 

1.89 44.30 0.66 1.77 0.55 -0.19 -0.33 

STAGE_BASE_2010 2.34 2.03 56.30 0.84 1.92 0.56 -0.19 -0.35 

EC 

(µg/m3) 

M3DRY_BASE_2010 
0.42 

0.60 
0.52 

0.66 44.20 0.19 0.537 0.66 -0.11 -0.22 

STAGE_BASE_2010 0.61 0.67 46.20 0.19 0.543 0.66 -0.11 -0.22 

 

Table 2b. Model performance statistics for all daily maximum 8-hr average O3 (MDA8 O3), hourly NOx and SO2, and 24-hr 

average total and speciated (SO4
2-, NO3

-, organic carbon (OC) and elemental carbon (EC)) PM2.5 mass samples collected at 260 

AQS monitors in 2010. The standard deviation over all samples is denoted as σ while NMB, MB, and RMSE represent the 

percentage normalized mean bias, mean bias, and root mean square error computed over all samples. The last two columns 

show differences in average observed and modeled values between 2016 and 2010. 
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 265 

Species Simulation Observed 
Mean 

Model 
Mean Observed σ Model σ NMB MB RMSE Correlation 

Precipitation 
(mm)  

M3DRY_BASE_2016 

19.89  

19.52 

26.40  

25.00 -1.84 -0.37 19.30 0.72 
M3Dry (Appel et al., 
2021) 18.11 23.80 -8.94 -1.78 17.00 0.78 

STAGE_BASE_2016 19.52 25.00 -1.84 -0.37 19.30 0.72 
STAGE (Appel et al., 
2021) 18.11 23.80 -8.94 -1.78 17.00 0.78 

SO4
2- (kg/ha)  

M3DRY_BASE_2016 

0.088  

0.078 

0.130  

0.130 -11.600 -0.010 0.115 0.61 
M3Dry (Appel et al., 
2021) 0.071 0.101 -18.900 -0.017 0.097 0.68 

STAGE_BASE_2016 0.080 0.131 -9.050 -0.008 0.115 0.61 
STAGE (Appel et al., 
2021) 0.070 0.096 -20.700 -0.018 0.096 0.69 

NO3
- (kg/ha)  

M3DRY_BASE_2016 

0.118  

0.101 

0.150  

0.125 -14.200 -0.017 0.126 0.6 
M3Dry (Appel et al., 
2021) 0.109 0.143 -7.580 -0.009 0.115 0.69 

STAGE_BASE_2016 0.103 0.127 -12.700 -0.015 0.127 0.6 
STAGE (Appel et al., 
2021) 0.110 0.144 -6.490 -0.008 0.115 0.7 

NH4
+ (kg/ha) 

M3DRY_BASE_2016 

0.055  

0.027 

0.085  

0.046 -50.200 -0.027 0.079 0.49 
M3Dry (Appel et al., 
2021) 0.029 0.047 -47.700 -0.026 0.074 0.58 

STAGE_BASE_2016 0.031 0.051 -43.000 -0.024 0.076 0.52 
STAGE (Appel et al., 
2021) 0.033 0.051 -39.800 -0.022 0.070 0.62 

 

Table 3a. Model performance statistics for all weekly total precipitation and SO4
2-, NO3

-, and NH4
+ wet deposition samples 

collected at NADP monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard 

deviation over all samples is denoted as σ while NMB, MB, and RMSE represent the percentage normalized mean bias, mean 

bias, and root mean square error computed over all samples. 270 

 
 

Species Simulation Observed 
Mean 

Model 
Mean Observed σ Model σ NMB MB RMSE Correlation 

Observed 
2016 – 
2010  

Model 
2016 – 
2010  

Precipitation 
(mm) 

M3DRY_BASE_2010 19.47 17.45 26.50 24.00 -10.40 -2.02 19.70 0.71 0.42 2.07 
STAGE_BASE_2010 17.45 24.00 -10.40 -2.02 19.70 0.71 0.42 2.07 

SO4
2- (kg/ha) M3DRY_BASE_2010 0.128 0.107 0.201 0.162 -16.300 -0.021 0.171 0.58 -0.040 -0.030 

STAGE_BASE_2010 0.112 0.168 -12.900 -0.017 0.172 0.58 -0.04 -0.03 

NO3
- (kg/ha) M3DRY_BASE_2010 0.121 0.108 0.153 0.144 -10.300 -0.012 0.133 0.60 0.00 -0.01 

STAGE_BASE_2010 0.111 0.147 -8.240 -0.010 0.135 0.60 -0.003 -0.008 

NH4
+ (kg/ha) M3DRY_BASE_2010 0.043 0.032 0.072 0.056 -25.700 -0.011 0.064 0.53 0.01 0.00 

STAGE_BASE_2010 0.034 0.058 -20.800 -0.009 0.063 0.55 0.01 0.00 
 

Table 3b. Model performance statistics for all weekly total precipitation and SO4
2-, NO3

-, and NH4
+ wet deposition samples 

collected at NADP monitors in 2010. The standard deviation over all samples is denoted as σ while NMB, MB, and RMSE 275 

represent the percentage normalized mean bias, mean bias, and root mean square error computed over all samples. The last 

two columns show differences in average observed and modeled weekly total values between 2016 and 2010.  
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Figure 1a: Monthly mean observed and modeled concentrations at AQS sites for MDA O3, SO2, NOx, and total and speciated 280 

PM2.5. Appel_M3DRY and Appel_STAGE refers to the “CMAQ531_WRF411_M3Dry_BiDi” and 

“CMAQ531_WRF411_STAGE_BiDi” 2016 CMAQv5.3.1 simulations analyzed in Appel et al. (2021). 
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Figure 1b: Monthly mean observed and modeled precipitation and wet deposition at NADP sites. Appel_M3DRY and 285 

Appel_STAGE refers to the “CMAQ531_WRF411_M3Dry_BiDi” and “CMAQ531_WRF411_STAGE_BiDi” 2016 

CMAQv5.3.1 simulations analyzed in Appel et al. (2021). 
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Figure 2a: RMSE of monthly mean observed and modeled concentrations at AQS sites for MDA O3, SO2, NOx, and total and 290 

speciated PM2.. Appel_M3DRY and Appel_STAGE refers to the “CMAQ531_WRF411_M3Dry_BiDi” and 

“CMAQ531_WRF411_STAGE_BiDi” 2016 CMAQv5.3.1 simulations analyzed in Appel et al. (2021). 
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Figure 2b: RMSE of monthly mean observed and modeled precipitation and wet deposition at NADP sites. Appel_M3DRY 295 

and Appel_STAGE refers to the “CMAQ531_WRF411_M3Dry_BiDi” and “CMAQ531_WRF411_STAGE_BiDi” 2016 

CMAQv5.3.1 simulations analyzed in Appel et al. (2021). 
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Table 2b and the right columns of Figures 1a and 2a show the corresponding results for the 2010 AQMEII4 simulations 

M3DRY_2010 and STAGE_2010 but do not include a comparison against results from Appel et al. (2021) because no 2010 300 

simulations were performed in that study. The results show that the sign of the NMB and MB for 2010 is the same as that for 

the 2016 results for MDA8 O3, NOx, SO2, PM2.5 mass, OC and EC. Bias results for SO4
2- and NO3

- show greater differences 

between the years, suggesting that the effects of the substantial reductions in SO2 and NOx emissions (Foley et al., 2022) 

between 2010 and 2016 on these aerosol species may not be captured perfectly. The observed decrease in concentrations 

between 2010 and 2016 is captured by both simulations for all pollutants and is likely caused in large parts by substantial 305 

decreases in emissions (Foley et al., 2022) although differences in meteorological conditions between these years may also 

have played a role. The magnitude of the decrease is overestimated for O3, NOx, and PM2.5 mass, though it is important to note 

that the monitors at which the statistics are calculated differ both between pollutants and between years. The differences in 

model performance between M3DRY_2010 and STAGE_2010 are similar to those between M3DRY_2016 and STAGE_2016. 

Tables 3a-3b and Figures 1b and 2b show model performance results for weekly precipitation and wet deposition at NADP 310 

NTN monitors in 2016 and 2010. 2016 Precipitation has a smaller dry bias than Appel et al. (2021) but also lower correlation 

coefficients and higher RMSE. This suggests that the benefit of using lightning assimilation in the WRF meteorological model 

predominantly is an improved representation of the temporal and spatial variability in precipitation (Heath et al., 2016). The 

statistics for the AQMEII4 SO4
2- and NO3

-, and NH4
+ deposition fluxes also show lower correlations and higher RMSE 

compared to the Appel et al. (2021) simulations. Consistent with the negative precipitation bias, simulated wet deposition flux 315 

biases also are negative for all pollutants, though the difference between the AQMEII4 and Appel et al. (2021) simulations 

varies between SO4
2- and NO3

-, likely also influenced by other differences in model setup, particularly boundary conditions 

and lightning NO emissions. Overall, these results confirm that model performance for precipitation is a key driver for wet 

deposition model performance. However, despite the noticeable degradation in precipitation model performance relative to the 

WRF simulations described in Appel et al. (2021) that used lightning assimilation, the NMB results presented here fall within 320 

the range of retrospective long-term simulations over North America (Zhang et al., 2019). The results for 2010 are similar as 

those for 2016, again with negative biases for all variables. A comparison between 2010 and 2016 shows that the model 

captured the sign of the observed changes for precipitation and wet deposition fluxes, with wetter conditions in 2016 but mostly 

similar or slightly lower wet deposition fluxes, likely due to significant reductions in NOx and SO2 emissions. 

To quantify the impacts of several differences in model inputs compared to Appel et al. (2021) on these evaluation results, 325 

Figures S2 – S5 present maps of annual mean differences between the M3DRY_2016 base case and several of the sensitivity 

simulations listed in Table 1.  Figure S2 shows the results of a comparison of M3DRY_2016 against 

M3DRY_LTNGNO_BASE_2016. The only difference between these two CMAQ simulations is the input meteorology, with 

M3DRY_LTNGNO_BASE_2016 using the WRFv4.1.1 fields from Appel et al. summarized in Section 2.1.1. For the 

meteorological variables, the M3DRY_2016 simulations show a tendency for generally lower temperatures and higher 330 

precipitation while wind speed and solar radiation show both positive and negative differences. Concentrations over land either 
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showed small changes or decreases. Therefore, the overall higher ozone (O3) and PM2.5 concentrations in M3DRY_2016 

compared to Appel et al. (2021) cannot be explained by the differences in meteorological fields. Figure S3 shows the difference 

in annual mean concentrations between the M3DRY_2016 and M3DRY_HCMAQ_2016 simulations that differ only in their 

boundary conditions. Results show substantially higher MDA8 O3 concentrations when using CAMS rather than H-CMAQ 335 

to generate lateral boundary conditions, with annual mean differences ranging from more than 10 ppb near the boundaries to 

3-5 ppb for most of the eastern U.S. The CAMS-derived boundary conditions used in the current study also yield higher annual 

average PM2.5 concentrations, with most of the increase caused by organic aerosols and crustal components associated with 

long-range transport of dust. Figure S4 shows the difference in annual mean concentrations between the M3DRY_2010 and 

M3DRY_APPEL_EMIS_2016 simulations that differ in their anthropogenic and wildland fire emission inputs. Use of the 340 

AQMEII4 emissions resulted in localized higher concentrations of total PM2.5 compared to using the Appel et al. (2016) 

emissions, with partially compensating effects for different PM2.5 components. Figure S5 shows the percentage difference in 

May - September mean surface O3 and NO2 concentrations, total dry and wet N deposition, and column NO2 between 

M3DRY_LTNGNO_BASE_2016 and M3DRY_LTNGNO_NLDN_2016 to quantify the impact of using lightning NO 

emissions based on GEIA climatology in AQMEII4 rather than NLDN lighting flash data in Appel et al. (2021). The results 345 

indicate that this choice of input data has only a relatively minor impact on the surface concentrations considered in the model 

performance analysis but has a significant impact on modeled NO2 columns which in turn impacts total nitrogen deposition, 

mostly through wet deposition. The noticeable impact of different datasets to represent lightning NO emissions on wet 

deposition of nitrogen is consistent with a recent study by Kang et al. (2022). The analysis of these sensitivity simulations 

indicates that the choice of lateral boundary conditions was the largest driver of differences in mean model concentrations and 350 

biases compared to the corresponding CMAQv5.3.1 simulations analyzed in Appel et al. (2021). Overall, the results presented 

in this section demonstrate that the AQMEII4 CMAQ simulations perform similarly to other comparable regional-scale 

modeling studies (Emery et al., 2017; Kelly et al., 2019; Simon et al. 2012; Appel et al., 2021). The overall sensitivity to 

M3Dry vs. STAGE is smaller than the sensitivity to model input data sets and boundary conditions that represent the large-

scale chemical environment. However, the following sections demonstrate how the choice of deposition scheme is an important 355 

consideration depending on the ecological region and the season that the model is applied. 

3.2 Diagnostic gas phase dry deposition comparison M3Dry vs. STAGE 

The following sections use the diagnostic variables generated for AQMEII4 to gain insights into the processes causing 

differences between the M3Dry and STAGE CMAQ simulations. This analysis starts with a comparison of grid-scale 

quantities, then proceeds to comparisons performed for the specific LU types defined for AQMEII4 (Galmarini et al., 2021), 360 

and finally compares and discusses different approaches for handling sub-grid LU variations and LU aggregation in M3Dry 

and STAGE. All analyses in these sections focus on the CMAQ AQMEII4 simulations performed for 2016. 
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3.2.1 Grid Scale Dry Deposition Diagnostics and Fluxes 

Figure 3 shows differences in seasonal mean O3 Vd and mixing ratios M3DRY_2016 minus STAGE_2016. It can be seen that 

the spatial patterns of differences in Vd and O3 mixing ratios are closely linked, with areas of positive (negative) Vd differences 365 

between M3Dry and STAGE generally corresponding to areas of negative (positive) mixing ratio differences. During summer, 

M3Dry has higher Vd and lower mixing ratios than STAGE for much of the eastern U.S. while the reverse is the case over 

eastern Canada and along the West Coast. In contrast, during winter STAGE has higher Vd and lower mixing ratios than 

M3Dry over most of the southern half of the modeling domain while the reverse is the case for much of the northern U.S. and 

southern Canada. The differences in seasonal mean mixing ratios reach 2-3 ppb in a number of locations, indicating that the 370 

effects of different dry deposition schemes can be more pronounced locally than in the spatially aggregated metrics presented 

in Section 3.1 

To diagnose reasons for the differences in Vd between M3Dry and STAGE, we apply the concept of effective conductances 

(Paulot et al., 2018; Clifton et al., 2020b) as adapted for AQMEII4 (Galmarini et al., 2021). Given that the sum of the effective 

conductances equals Vd, this allows an attribution of Vd to distinct pathways controlled by different processes. The four 375 

pathways defined in Galmarini et al. (2021) and based on the original Wesely (1989) scheme are stomatal, cuticular, lower 

canopy, and soil. Neither M3Dry nor STAGE include a deposition pathway to the lower canopy (see Figures B2 and B3 in 

Galmarini et al., 2021) but both distinguish between deposition to bare vs. vegetated soil with the latter including an additional 

in-canopy convective resistance term. Therefore, we analyzed effective conductances for the stomatal, cuticular, vegetated 

soil, and bare soil pathways. We also note that the effective conductances analyzed here represent grid-scale values calculated 380 

from LU-weighted averages of the corresponding LU-specific diagnostic variables requested for AQMEII4. 

Seasonal average effective conductance maps for each pathway for M3Dry and STAGE as well as their differences are shown 

in Figure 4a for summer and in Figure 4b for winter. Average diurnal cycles for summer and winter computed over all non-

water grid cells are shown in Figure 5a (absolute effective conductances) and Figure 5b (percentage contribution to Vd). Figures 

4a-b show that the absolute and relative magnitude of the different pathways varies both spatially and seasonally for both 385 

M3Dry and STAGE, with a generally greater importance of the stomatal and cuticular pathways in the more vegetated eastern 

and northern portions of the modeling domain especially during summer and a greater importance of the deposition to soil, 

especially bare soil, in the southwestern portion of the modeling domain and during winter. The comparison between M3Dry 

and STAGE shows generally higher summertime stomatal and wintertime cuticular effective conductances for M3Dry and 

generally higher soil effective conductances (both vegetated and bare) for STAGE in both summer and winter. The diurnal 390 

cycles in Figures 5a-b confirm the seasonal variations and differences between M3Dry and STAGE shown in Figures 4a-b and 

also illustrate the strong diurnal variation of several pathways, especially the stomatal pathway. In a relative sense, the stomatal 

effective conductance accounts for about half of the total Vd during daytime hours in summer, though these diurnal cycles 
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represent an average over the entire domain so the contribution would be expected to be higher over the eastern portion of the 

modeling domain and lower over the southwestern portion of the modeling domain. 395 

 
Figure 3: Differences in seasonal mean O3 deposition velocities and mixing ratios M3DRY_2016 minus STAGE_2016. 
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Figure 4a. Grid-scale O3 summer mean effective conductance maps for the stomatal, cuticular, vegetated soil, and bare soil 400 

pathways for M3DRY_2016, STAGE_2016, and M3DRY_2016 minus STAGE_2016. 

 

Comparing the effective conductance difference maps in the right columns of Figures 4a-b to the summer and winter Vd 

difference maps in Figure 3 shows that the higher summer M3Dry Vd over the eastern U.S. are largely due to a larger stomatal 

conductance. While the M3Dry stomatal conductance is also moderately larger than for STAGE over eastern Canada, this is 405 

counteracted by a substantially larger STAGE soil effective conductance, leading to a net negative difference between M3Dry 

and STAGE Vd values over that region. Similarly, the split between larger winter STAGE Vd over the southern portion of the 

domain and larger M3Dry Vd over much of the Canadian portion of the modeling domain is the result of substantially larger 

STAGE soil effective conductances with only small differences in stomatal and cuticular effective conductances over the 

southern portion of the domain and substantially larger cuticular effective conductances in M3Dry with only small differences 410 

in soil effective conductances over the Canadian portion of the modeling domain.  
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Figure 4b. As in Figure 4a but for winter mean effective conductances. 

 

In addition to the effective conductances, AQMEII4 also requests participating models to save and submit key component 415 

resistances common to all schemes (see Galmarini et al., 2021 Table 4 for a listing of all requested component resistances and 

Tables B2 and B3 for their definition in the M3Dry and STAGE deposition diagrams in Figures B2 and B3). Like for the 

effective conductances, these diagnostic variables are calculated for each LU category and grid scale values are calculated as 

LU-weighted averages from LU-specific values. Figure 6 shows average summer and winter diurnal cycles of six inverse 

component resistances averaged over all non-water grid cells for both M3Dry and STAGE. These component resistances are 420 

the stomatal (Rs), cuticular (Rcut), in-canopy convective (Rdc), quasi-laminar sublayer (Rb for M3Dry and Rcan,qlsb and Rgnd,qlsb 

for STAGE), and aerodynamic (Ra) resistances and they are plotted as inverse resistances for easier comparison to Vd and 

effective conductances. As seen in Galmarini et al. (2021) Figures B2 and B3, Rs, Rcut, and Rdc are pathway specific and parallel 

to each other, while they are also serial with Ra and the quasi-laminar sublayer resistance. In M3Dry, the quasi-laminar sublayer 

resistance is pathway independent while in STAGE it differs between the canopy (cuticular and stomatal) and ground 425 

(vegetated and bare soil) pathways. Note that the y-axis range differs across different resistances to better highlight seasonal 

variations and differences between M3Dry and STAGE for a given resistance.   
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Figure 5a: Summer and winter domain average diurnal cycles of grid-scale O3 effective conductances for the stomatal, 

cuticular, vegetated soil, and bare soil pathways for M3DRY_2016 and STAGE_2016. 430 
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Figure 5b: As in Figure 5a, but showing the percentage contribution of the effective conductance for each pathway to the total 

deposition velocity.  

  435 
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Figure 6: Summer and winter domain average diurnal cycles of grid-scale O3 component resistances for M3DRY_2016 and 

STAGE_2016. Note the different y-axis ranges for different inverted resistances. The panel showing results for the inverted 

aerodynamic resistance 1/Ra also includes the values computed in the WRF PX LSM. 

 440 
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Consistent with the effective conductances shown above, values for summertime 1/Rs and wintertime 1/Rcut differ between 

M3Dry and STAGE, with the higher values of these inverted resistances in M3Dry causing higher effective conductances for 

these pathways. Inverted Rdc is substantially higher in STAGE than M3Dry. While soil resistance was not requested and saved 

as a separate term in AQMEII4 as its definition differs across schemes, the higher inverted STAGE Rdc values likely had an 445 

effect on the higher STAGE effective conductance values for the vegetated soil pathway. For the quasi-laminar sublayer 

resistances, inverted Rcan,qlsb for STAGE is higher than the pathway-independent inverted Rb for M3Dry which in turn is higher 

than the inverted Rgnd,qlsb for STAGE. However, these resistances are typically small compared to the other resistances (i.e. 

their inverted values are larger) so that they generally only have a small impact on effective conductances and overall Vd. The 

inverted aerodynamic resistance Ra is very similar between M3Dry and STAGE for both summer and winter. As discussed in 450 

Section 2.3.1, all LU-specific diagnostic deposition variables for M3Dry are estimated through a post-processor while the 

M3Dry deposition calculations within CMAQ used grid-scale Ra calculated by the WRF PX LSM to maintain maximum 

consistency between the representation of land-surface exchange processes in WRF and CMAQ. Therefore, the panel for 

inverted Ra also shows the WRF-based grid-scale value used in the M3Dry CMAQ deposition calculations. This value is very 

similar to the post-processor based estimate for M3Dry. The different approaches taken by M3Dry and STAGE to handle sub-455 

grid variability in LU and their impacts on deposition calculations is discussed further in Section 3.2.3. 

While this section so far has focused on applying the AQMEII4 diagnostics to analyze M3Dry vs. STAGE differences in O3 

deposition, these diagnostics are also being calculated for SO2, NO2, NO, HNO3, NH3, PAN, HNO4, N2O5, organic nitrates, 

H2O2, and HCHO (Galmarini et al., 2021). Moreover, the effective conductances and total Vd can also be used to calculate 

effective fluxes, i.e., apportion total dry deposition fluxes to specific pathways (Galmarini et al., 2021). Figure 7a shows annual 460 

domain-average (excl. water cells) Vd for M3Dry and STAGE for O3, H2O2, HCHO, SO2, and oxidized nitrogen species as 

sum of the effective conductances for the four pathways while Figure 7b shows the corresponding annual total domain-wide 

(excl. water cells) dry deposition fluxes as sum of the effective fluxes. The Vd and deposition flux results for O3 reflect the 

larger contributions from the vegetated and bare soil pathways for STAGE and the larger contributions for the stomatal and 

cuticular pathways for M3Dry. Annual domain total O3 deposition fluxes differ only slightly between M3Dry and STAGE due 465 

to the seasonal and spatial variation of the Vd differences shown in Figure 3. In contrast to O3, most other pollutants show 

larger effective conductances and effective fluxes for the bare soil and sum of bare and vegetated soil pathways for M3Dry 

than STAGE. The cuticular effective flux is larger for M3Dry than STAGE for HCHO, SO2, HNO4, and organic nitrates, 

smaller for M3Dry than STAGE for H2O2 and HNO3, and similar between M3Dry and STAGE for other species. Stomatal 

effective fluxes are small for all species except O3, HCHO, and NO2 for both M3Dry and STAGE. Total dry deposition fluxes 470 

differ the most between M3Dry and STAGE for HCHO and organic nitrate, though again it should be noted that these fluxes 

represent annual domain totals and larger differences likely exist at sub-seasonal scales for different regions. 
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Figure 7a. Grid-scale annual average domain-wide (excl. water cells) effective conductances for O3, H2O2, HCHO, SO2, and 

oxidized nitrogen species. 475 
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Figure 7b. Grid-scale annual total domain-wide (excl. water cells) pathway-specific dry deposition fluxes (“effective fluxes”) 

for O3, H2O2, HCHO, SO2, and oxidized nitrogen species. Ozone dry deposition values are divided by a factor 10 to use the 

same y-axis as for the other pollutants. 

 480 

3.2.2 LU-Specific Dry Deposition Diagnostics and Fluxes 

In this section, we utilize the LU-specific dry deposition diagnostics generated during AQMEII4 to provide further insights 

into the grid-scale comparisons presented above. These LU-specific diagnostics were generated for the 16 common LU types 

defined in Galmarini et al. (2021). Figure S6 depicts spatial maps of the fractional coverage for each of these 16 categories, 

aggregated through post-processing from the native 20 MODIS LU categories used in the M3DRY_2016 simulations (see 485 

https://doi.org/10.5194/acp-2023-10
Preprint. Discussion started: 16 January 2023
c© Author(s) 2023. CC BY 4.0 License.



29 

 

Section 2.3.1). The aggregation of the MODIS LU categories to the AQMEII4 LU categories (performed during post-

processing for M3Dry and prior to the deposition calculations in STAGE as discussed in Section 2.3.2) is documented in Table 

S1. Note that none of the 20 MODIS LU categories correspond to the AQMEII4 herbaceous category. Figure S6 shows the 

prevalence of evergreen needleleaf, mixed, and deciduous forest in the northern, northeastern, and southeastern portions of the 

modeling domain, planted/cultivated LU in the north-central portion of the modeling domain, grassland in a belt stretching 490 

from Texas to Montana, and shrubland in the southwestern portion of the modeling domain. Figure S7 shows bar charts of the 

fraction of the modeling domain covered by each LU category. Separate bar charts are shown for M3DRY_2016 and 

STAGE_2016. While both started with the fractional coverages of the MODIS LU categories in the 12 km modeling domain, 

they differ in their treatment of grid cell with partial water coverage. Consistent with the approach taken in the WRF PX LSM, 

M3DRY_2016 treats cells with more than 10% water coverage as either all land or all water, depending on whether the 495 

fractional water coverage is below or above 50%. This is accomplished by resetting water fractions between 10% and 50% to 

zero and renormalizing the non-water categories to 100%, and resetting water fractions above 50% to 100% and setting non-

water categories to zero. The rationale for this approach is that meteorological flux calculations are distinctly different between 

land and water and both WRF PX LSM and M3Dry are designed to retain that distinctiveness imposed by the underlying 

spatial discretization of the modeling domain. On the other hand, STAGE does not apply any special treatment to grid cells 500 

with partial water coverage. As a result of these different approaches, Figure S7 shows that a slightly larger fraction of the 

modeling domain is covered by water for STAGE_2016 compared to M3DRY_2016, with correspondingly slightly smaller 

coverages for non-water categories. 

First, we investigate summer and winter average diurnal cycles of LU-specific component resistances in the context of the 

grid-scale resistance shown in Figure 6 and discussed in Section 3.2.1. Figure S8 shows that Rs conductances are higher for 505 

M3Dry than STAGE during summer for all forest types, agricultural land, savanna, and tundra, i.e. common LU types within 

the modeling domain (Figures S6 and S7). Only wetlands have higher Rs conductance for STAGE than M3dry, with the 

remaining LU categories having similar Rs conductances for both schemes. This is consistent with the grid scale domain-

average summer Rs conductance being higher for M3Dry than STAGE (Figure 6). Only small differences are seen in winter 

for both the grid-scale (Figure 6) and LU-specific (Figure S8) stomatal conductances. The higher domain-average grid-scale 510 

1/Rcut conductance for M3Dry during winter (Figure 6) is driven by the higher cuticular conductance values for evergreen 

needleleaf forest, mixed forest, and agricultural land Figure S9), particularly since these LU types cover a substantial portion 

of the domain (Figures S6-S7). Figure S10 shows that the higher domain-average grid-scale in-canopy convective conductance 

(1/Rdc) for STAGE during both summer and winter (Figure 6) is present for almost all LU categories with the exception of 

snow and ice which (along with barren) uses a placeholder value to represent the non-existent canopy and which is present in 515 

very few grid cells in the domain (Figure S7). LU-specific Rcan,qlsb conductances (1/Rcan, qlsb) are higher for STAGE than M3Dry 

for almost all LU categories in both summer and winter (Figure S11) while the opposite is the case for Rgnd,qlsb (Figure S12). 

This demonstrates that the same behavior noted for the grid-scale Rcan,qlsb and Rgnd,qlsb conductances (Figure 6) was not driven 
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by differences in their representation by M3Dry vs. STAGE for select LU categories only but rather resulted from consistent 

differences in representation across all LU categories. LU-specific Ra conductances (1/Ra) are generally very similar between 520 

STAGE and M3Dry with the exception of urban and tundra for which M3Dry is higher than STAGE and wetlands for which 

STAGE is higher than M3Dry (Figure S13). This general similarity between M3Dry and STAGE is consistent with the net 

grid scale domain-average Ra conductances shown in Figure 6. Differences between grid-scale and LU-weighted aggregated 

LU-specific Ra are investigated further in the next section. 

 525 
Figure 8. Summer domain average diurnal cycles of LU-specific O3 effective conductances and total deposition velocities for 

M3DRY_2016 and STAGE_2016.Next, we investigate the effects of the differences in the LU-specific component resistances 

discussed above on LU-specific effective conductances and effective fluxes, i.e. pathway-specific Vd and dry deposition fluxes. 
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Figure 8 depicts summer average diurnals of LU-specific effective conductances and total Vd for O3 for both M3Dry and 

STAGE, averaged over all grid cells with a non-zero fractional coverage for a given LU category. As expected, these diurnal 530 

cycles illustrate that both total Vd and the relative importance of the different effective conductance pathways varies between 

LU categories for both M3Dry and STAGE as a result of different underlying surface characteristics like VEGF, vegetation 

type, etc. for the different LU categories. Total Vd during daytime varies by a factor of 2 between the LU categories with the 

lowest values (urban, barren, and snow and ice) and those with the highest values (evergreen needleleaf and broadleaf forest, 

deciduous forest). Effective conductances for the bare soil pathway dominate for the urban, barren, and shrubland LU 535 

categories while conductances for the cuticular and stomatal pathways dominate for the forest LU categories, especially during 

daytime. Results also show that the M3Dry vs. STAGE differences are most pronounced for the stomatal and vegetated soil 

pathway for the forest LU categories, with M3Dry estimating larger effective conductances for the stomatal pathway and 

STAGE estimating larger effective conductances for the vegetated soil pathway for these LU categories. Higher effective 

conductances for the bare soil pathway in STAGE are particularly noticeable for the urban, shrubland, and tundra LU 540 

categories.  When considering how these differences in LU-specific effective conductances impact the grid-scale summertime 

effective conductances shown in Figures 4a and 5a, the abundance and spatial distribution of each LU category (Figures S6 

and S7) needs to be taken into account. For example, given the abundance of the evergreen needleleaf forest, deciduous 

broadleaf forest, and mixed forest categories over the eastern and northern portions of the modeling domain, the higher M3Dry 

stomatal conductances and lower M3Dry vegetated soil conductances for these LU categories shown in Figure 8 can explain 545 

the spatial pattern of the corresponding M3Dry vs. STAGE grid-scale differences for these two pathways shown in Figure 4a.  

The analysis above provided diagnostic insights into the M3Dry vs. STAGE differences in grid-scale effective conductances 

shown in Figures 4 – 5 and discussed in Section 3.2.1. Analogously, Figures 9a-b shows annual and summer domain-total LU-

specific effective fluxes for O3 to provide further insights into the corresponding grid-scale effective fluxes shown in the left 

two bars of Figure 7b and also discussed in Section 3.2.1. For annual total deposition, the overall slightly larger grid-scale O3 550 

deposition flux for STAGE (Figure 7b) is present for almost all LU categories, with only a few categories (e.g. evergreen 

needleleaf and broadleaf forest) showing no discernible differences between M3Dry and STAGE. Likewise, the generally 

larger contribution of the stomatal and cuticular deposition pathways in M3Dry and bare and vegetated soil in STAGE are 

present for most LU categories, but the differences in the magnitude of the individual deposition pathways are especially 

pronounced for the evergreen needleleaf forest, mixed forest, and agricultural LU categories. Considering effective fluxes for 555 

summertime only, the greater importance of the cuticular and stomatal pathways during this season for LU categories most 

strongly affected by seasonal variations in LAI (deciduous broadleaf forest and planted/cultivated, see Table 4), along with the 

greater importance of these pathways in M3Dry compared to STAGE, yield greater overall estimated deposition to these LU 

categories for M3Dry compared to STAGE. In contrast, for several other LU categories (e.g. evergreen needleleaf and mixed 

forest, shrubland, and grassland), STAGE still estimates higher deposition even during summertime, largely due to its higher 560 

estimated deposition to vegetated and bare soil and the dominance of these pathways for several of these LU categories 
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(shrubland and grassland). Overall, Figure 9 demonstrates that even though overall annual total O3 deposition fluxes estimated 

by M3Dry and STAGE are fairly similar (Figure 7b), pathway-specific fluxes to individual LU types can vary more 

substantially on both annual and seasonal scales which might affect estimates of O3 damages to sensitive vegetation. 

 565 

 
Figure 9. Land-use specific domain-wide (excl. water cells) pathway-specific O3 dry deposition fluxes (“effective fluxes”), a) 

annual and b) summer 
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3.2.3 Impact of different approaches for handling subgrid LU variations and LU aggregation in M3Dry and STAGE 570 

Both WRF PX LSM (M3Dry) and STAGE rely on LU-specific parameters prescribed in look-up tables to account for subgrid-

scale LU variations when performing grid-scale calculations. As discussed in Sections 2.3.1 and 2.3.2, the WRF PX LSM 

bases grid-scale calculations on LU-weighted aggregated parameters from such LU-specific look-up table values and CMAQ 

M3Dry then directly uses these calculations in its grid-scale deposition calculations, maintaining consistency with WRF PX 

LSM. On the other hand, CMAQ STAGE and the M3Dry post-processor developed for AQMEII4 perform LU-specific 575 

deposition calculations using the look-up table values for each LU type, and in the case of CMAQ STAGE then use these LU-

specific deposition calculations to calculate grid-scale deposition, maintaining consistency between LU-specific and grid-scale 

deposition but potentially differing from WRF PX LSM for variables like Ra, Rs, and 𝑢𝑢∗ (note that starting with CMAQv5.4 

released in October 2022, STAGE normalizes Ra, Rs, and 𝑢𝑢∗ to match the aggregated grid-scale values to the grid-scale values 

calculated in the LSM of the driving meteorological model). To provide further context for these differences, Table 4 580 

documents several of these LU-specific look-up table parameters used in deposition calculations, i.e. LAI, VEGF, and z0. 

Values are shown for the 20 LU category MODIS configuration of WRF PX LSM and M3Dry, the 16 LU category AQMEII4 

configuration of STAGE used in this study, and the 20 LU category MODIS configuration in the unmodified version of STAGE 

used for sensitivity simulation STAGE_REF_2016 discussed below. The boldfaced table entries indicate instances where 

parameter values differed from WRF PX LSM (and M3Dry) for the STAGE AQMEII4 and/or STAGE MODIS configuration. 585 

For example, STAGE prescribes lower z0 for the urban and tundra categories for both the AQMEII4 and MODIS configurations 

and higher z0 for wetlands for the AQMEII4 configuration. These differences in z0 are consistent with the 1./Ra differences for 

these three LU categories shown in Figure S13. The higher wetlands z0 specified in STAGE results in lower Ra and higher 

1./Ra compared to M3Dry while the reverse is true for the tundra and urban categories.  

 590 
MODIS LU AQMEII4 

LU LAI (Seasonal Minimum) LAI (Seasonal Maximum) VEGF (Seasonal 
Minimum) 

VEGF (Seasonal 
Maximum) Z0 

  PX LSM / 
M3DRY STAGE STAGE 

REF 
PX LSM / 
M3DRY STAGE STAGE 

REF 
PX LSM / 
M3DRY STAGE STAGE 

REF 
PX LSM / 
M3DRY STAGE STAGE 

REF 
PX LSM / 
M3DRY STAGE STAGE 

REF 
Evergreen 
Needleleaf 
Forest 

Evergreen 
Needleleaf 
Forest 

3.5 3.5 3.5 5.5 5.5 5.5 93 93 93 93 93 93 100 100 100 

Evergreen 
Broadleaf 
Forest 

Evergreen 
Broadleaf 
Forest 

3.5 3.5 3.5 6 6 6 92 92 92 92 92 92 90 90 90 

Deciduous 
Needleleaf 
Forest 

Deciduous 
Needleleaf 
Forest 

1.5 1.5 1.5 3 3 3 60 60 60 60 60 60 100 100 100 

Deciduous 
Broadleaf 
Forest 

Deciduous 
Broadleaf 
Forest 

1.5 2 2 6 6 6 91 91 91 91 91 91 100 100 100 

Mixed Forest Mixed 
Forest 2.2 2.5 2.5 5.5 5.5 5.5 92 92 92 92 92 92 100 100 100 
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Closed 
Shrublands Shrublands 

 

1 1.3 
 

1 1.5 
1.5 

1.5 20 
10 

20 40 
20 

40 15 
15 

15 

Open 
Shrublands 1.3 1.3 1.5 1.5 17 10 40 20 15 15 

Woody 
Savanna Savanna 

 
2 1.5 2 2.3 1.5 2.3 60 40 60 70 70 70 25 15 25 

Savanna 0.5 1.5 1.5 1.5 40 40 70 70 15 15 
Grasslands Grassland 0.5 1.5 1.5 1.5 2 1.5 20 20 20 50 50 50 7 7 7 
Permanent 
Wetlands Wetlands 1 2.2 2 2.5 5.5 2.5 35 50 35 65 92 65 20 55 20 

Croplands Planted / 
Cultivated 

0.7 
1.5 

1.5 3.5 
4 

3.5 20 
10 

20 90 
90 

90 10 
10 

10 
Crop/Natural 
Mosaic 1 1.5 3.5 3.5 40 40 80 80 30 30 

Urban and 
Built-up 

Developed/
Urban 0.5 1.7 2 2 2.5 2 5 5 5 5 5 5 80 60 80 

Snow and Ice Snow/Ice 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.2 1.2 1.2 
Sparsely 
Vegetated Barren 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 5 5 5 

IGBP water Water 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 
Wooded 
Tundra 

Tundra 
 

2 

1 
 

2 3.4 

1 
 

3.4 50 

10 
 

50 70 

15 
 

70 30 

10 
 

30 

Mixed 
Tundra 1 1 2.4 2.4 20 20 40 40 15 15 

Barren 
Tundra 0.1 0.1 1.4 1.4 5 5 20 20 10 10 

 

Table 4. LU-specific look-up table parameter values for seasonal minimum and maximum Leaf Area Index (LAI), seasonal 

minimum and maximum vegetation fraction (VEGF), and surface roughness (z0) used in the dry deposition calculations. See 

the beginning of Section 3.2.2 for details on the differences between the “PX LSM / M3DRY”, “STAGE”, and “STAGE REF” 

columns for each variable. The boldfaced table entries indicate instances where parameter values differed between the WRF 595 

PX LSM (also used in M3DRY) and the STAGE AQMEII4 and/or STAGE reference configuration. 

 

Figures S14 and S15 compare grid-scale vs LU-weighted aggregates of LU-specific values for 𝑢𝑢∗ and Ra for both M3Dry and 

STAGE. For M3Dry, the sum of the LU-weighted aggregated 𝑢𝑢∗ estimates matches the grid-scale values within 10%, with 

generally larger values for the aggregated estimates. For STAGE_2016 and STAGE_REF_2016, the aggregated values also 600 

typically fall within 10% of the grid-scale values, but differences can be both positive and negative. For Ra, differences between 

the LU-weighted aggregated and grid-scale values can reach 25% for all cases examined here, with generally higher values 

for the LU-weighted aggregated Ra values which is consistent with Figure 6. 

Figure 10 compares seasonal mean O3 Vd and mixing ratio differences between STAGE_2016 and STAGE_REF_2016 to 

assess the impact of performing STAGE deposition calculations on the more aggregated 16 category AQMEII4 LU 605 

classification scheme (see section 2.3.2) rather than the 20 category MODIS LU classification scheme used in the WRF PX 

LSM. Results show that the use of the AQMEII4 LU classification scheme can cause seasonal mean O3 Vd increases of 0.02 

– 0.06 cm/s and corresponding season mean O3 mixing ratio decreases of 0.5 – 1 ppb mostly over the eastern and northern 

portions of the modeling domain. The location of these changes suggests that they are likely at least partially due to the 
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collapsing of two MODIS agricultural LU categories (croplands and crop/natural mosaic) with different look-up table values 610 

to a single AQMEII4 agricultural LU category (see Table 4 and Figure S6).   

 
Figure 10. Differences in seasonal mean O3 deposition velocities and mixing ratios STAGE_2016 minus STAGE_2016_REF. 
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The results presented in this section showed that differences in LU-specific look-up table values between different deposition 615 

schemes and/or between the WRF PX LSM calculations and the deposition scheme calculations within CMAQ as well as the 

aggregation of the MODIS LU categories to the AQMEII4 LU categories in the STAGE deposition calculations can introduce 

differences in the estimated Vd and resulting mixing ratios. In the next section, we investigate the effects of using a different 

underlying LU classification scheme in both the WRF PX LSM calculations and the CMAQ M3Dry calculations.  

3.3 Impacts of Land-Use Classification Scheme 620 

In this section, we compare the effects of replacing the MODIS dataset to represent LU in both WRFv4.1.1 and CMAQ M3Dry 

with the National Land Cover Dataset (NLCD) (Dewitz and U.S. Geological Survey, 2021; Yang et al., 2018). Similar 

comparisons between the U.S. Geological Survey (USGS) and NLCD LU datasets in WRF have previously been presented by 

Mallard et al. (2018). In contrast to the changes discussed in the previous section, the differences between MODIS and NLCD 

are due to different underlying remote sensing data, their spatial resolution, and different approaches for their classification 625 

into distinct LU categories. Specifically, the MODIS LU categorization scheme as implemented in WRFv4.1.1 uses 20 

categories following the IGBP land cover classification scheme (Loveland et al. 1999), has a native underlying spatial 

resolution of 500m, is based on a 2001 – 2010 climatology of MODIS satellite data, and features no geophysical boundaries 

in LU classification categories between the U.S., Canada, and Mexico. In contrast, the NLCD LU characterization scheme as 

implemented in WRFv4.1.1 uses 40 categories and is hereafter referred to as NLCD40. The first 20 of these categories mirror 630 

those of the MODIS scheme and are used for areas outside of the U.S. where NLCD data is not available. The remaining 

categories are used over the U.S. and follow a modified Anderson land cover classification scheme (Homer et al., 2015, Yang 

et al., 2021), are based on a native underlying spatial resolution of 30m, and are derived from NLCD satellite data for the year 

2011 (Homer et al., 2015). The combination of the NLCD and MODIS satellite data for use in WRF across North America is 

described by Ran et al. (2010).  635 

Table S1 contains a listing of the 20 MODIS and 40 NLCD40 LU categories used in WRFv4.1.1 and CMAQ M3Dry and their 

mapping to the aggregated 16 AQMEII4 LU categories (Galmarini et al., 2021) used for analysis purposes. As noted in Section 

2.3.1, the CMAQ M3Dry calculations and post-processor estimates of LU-specific and aggregated diagnostic variables were 

performed using native LU categories from the MODIS and NLCD40 schemes. Aggregation to the 16 category AQMEII4 LU 

scheme was then performed through LU-weighted averaging of equivalent categories using the mappings from Table S1. None 640 

of the MODIS or NLCD40 LU categories correspond to the AQMEII4 herbaceous category. Figure 11 shows the domain-wide 

fractional coverage of the AQMEII4 LU categories aggregated from the MODIS and NLCD40 categories while Figure S16 

shows maps of differences for each of these 16 LU categories between the MODIS and NLCD40 configurations. The barchart 

in Figure 11 shows that MODIS has overall higher fractional coverage than NLCD40 for the evergreen needleleaf forest, mixed 

forest, planted/cultivated, and grassland categories and lower fractional coverage for the urban, shrubland, savanna, and 645 

wetlands categories. However, the maps in Figure S16 show a more nuanced picture, with both positive and negative 
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differences in the forest categories. For example, MODIS generally has higher evergreen needleleaf forest fractions than 

NLCD40 over Canada and lower fractions over the U.S. with the exception of the West Coast. The higher planted/cultivated 

fractions in MODIS are most pronounced over the central and northern U.S. while the higher grassland fractions are most 

pronounced over the Western U.S. MODIS urban and wetland fractions are lower than NLCD40 at most grid cells although 650 

the magnitude of the difference varies. For shrublands and savanna, MODIS fractions are generally lower than NLCD40 

fractions but exceptions exist in the Southeastern U.S. and portions of Canada. 

 
Figure 11: Domainwide fractional coverage of the 16 AQMEII4 land-use categories (Galmarini et al., 2021) in the 

M3DRY_2016 (using MODIS LU in WRF PX LSM) and M3DRY_NLCD40_2016 (using NLCD40 LU in WRF PX LSM) 655 

simulations. None of the 20 MODIS land-use categories correspond to the AQMEII4 herbaceous category. 
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Figure 12 shows differences in seasonal mean O3 Vd and mixing ratios between M3DRY_2016 and M3DRY_NLCD40_2016 

in columns 1 and 3 to quantify the effects of using different LU schemes on these variables. Results show that the 

M3DRY_2016 simulation using MODIS LU tends to have higher O3 Vd (and correspondingly lower mixing ratios) than the 

M3DRY_NLCD40_2016 simulation using NLCD40 LU for most seasons and regions. The differences in LU cause seasonal 660 

mean O3 mixing ratio differences on the order of 1 ppb across large portions of the domain, with the differences generally 

largest during summer and in areas characterized by the largest differences in the fractional coverages of the forest, 

planted/cultivated, and grassland LU categories. Columns 2 and 4 of Figure 12 also show corresponding differences in seasonal 

mean O3 Vd and mixing ratios between M3DRY_2016 and STAGE_2016 (the same data already depicted in Figure 3) to 

provide a side-by-side contrast of the LU effect on these variables with the dry deposition scheme effect. While the M3Dry vs. 665 

STAGE differences generally are larger than the MODIS vs. NLCD40 differences outside the summer season, the magnitude 

of both effects is comparable during summer. 

 
 

Figure 12. Differences in seasonal mean O3 deposition velocities (columns 1 and 2) and mixing ratios (columns 3 and 4) 670 

M3DRY_2016 minus M3DRY_NLCD40_2016 (columns 1 and 3) and M3DRY_2016 minus STAGE_2016 (columns 2 and 

4) 

To assess the impacts of the LU-induced differences in Vd and mixing concentrations on effective fluxes and total dry 

deposition not only for O3 but also other species, Figure 13 shows annual total domain-wide pathway-specific dry deposition 

effective fluxes over all non-water grid cells for O3, H2O2, HCHO, SO2, and oxidized nitrogen species for M3DRY_2016 and 675 
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M3DRY_NLCD40_2016. Note that like in equivalent Figure 7b comparing M3DRY_2016 and STAGE_2016, O3 dry 

deposition values are divided by a factor 10 to use the same y-axis as for the other pollutants. Overall, the use of MODIS vs. 

NLCD40 results in only very minor differences in domain-total dry deposition for all species analyzed here. However, the 

small domain total annual differences of these grid-scale deposition fluxes likely mask larger differences existing in different 

regions and seasons such as those shown for O3 Vd and mixing ratios in Figure 12 as well as differences existing for LU-680 

specific fluxes examined below. Moreover, there is a tendency for slightly larger effective fluxes through the bare soil pathway 

and slightly lower effective fluxes through the cuticular and stomatal for the M3DRY_NLCD40_2016 simulation, indicating 

that the choice of LU datasets can result in different estimates of dry deposition fluxes through specific pathways. 

 

 685 
Figure 13: Grid-scale annual total domain-wide (excl. water cells) pathway-specific dry deposition fluxes (“effective fluxes”) 

for O3, H2O2, HCHO, SO2, and oxidized nitrogen species for M3DRY_2016 and M3DRY_NLCD40_2016. O3 dry deposition 

values are divided by a factor 10 to use the same y-axis as for the other pollutants. (compare to Figure 7b) 
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Figure 14 further disaggregates the grid-scale effective fluxes shown in Figure 13 by LU category using O3 as an example. 

Consistent with the differences in fractional coverage for the different LU categories between MODIS and NLCD40 shown in 690 

Figure 11, domain-total O3 deposition fluxes to the evergreen needleleaf forest, mixed forest, planted/cultivated, and grassland 

 
Figure 14. Land-use specific annual total domain-wide (excl. water cells) pathway-specific O3 dry deposition fluxes (“effective 

fluxes”) for M3DRY_2016 and M3DRY_NLCD40_2016. (compare to Figure 9) 
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categories are higher for M3DRY_2016 than M3DRY_NLCD40_2016 while the opposite is the case for the urban, shrubland, 695 

savanna, and wetlands categories. For example, the fraction of the modeling domain classified as urban is 1% for MODIS and 

2.4% for NLCD40, resulting in higher deposition estimates for this category in the M3DRY_NLCD40_2016 simulations. 

Moreover, because of the higher underlying spatial resolution of the NLCD satellite data and the inclusion of lower density 

developed areas characterized by more vegetation in the urban LU category, this category has higher estimated effective fluxes 

through the stomatal and cuticular pathways in the M3DRY_NLCD40_2016 simulated compared to the M3DRY_2016 700 

simulations. Overall, this demonstrates that the deposition impacts of LU differences are caused both by differences in the 

fractional coverages and spatial distributions of different LU categories as well as their characterization in terms of variables 

like VEGF, z0, etc. in WRF PX LSM look-up tables which are partially tied to the spatial resolution of the underlying satellite 

datasets.  

4 Summary and Discussion 705 

The model evaluation results presented in Section 3.1 demonstrate that the AQMEII4 CMAQ simulations perform similarly 

to other comparable regional-scale modeling studies (Emery et al., 2017; Kelly et al., 2019; Simon et al., 2012; Appel et al., 

2021). The analysis of several sensitivity simulations indicates that the choice of lateral boundary conditions was the largest 

driver of differences in mean model concentrations and biases compared to the corresponding CMAQv5.3.1 simulations 

analyzed in Appel et al. (2021). Moreover, the results also indicate that while the choice of the M3Dry vs. STAGE dry 710 

deposition option can impact CMAQ performance, these impacts tend to be smaller than those caused by choices of model 

input data sets and particularly boundary conditions to represent the large-scale chemical environment. 

The analysis of O3 Vd and mixing ratios showed that during summer, M3Dry has higher Vd and lower mixing ratios than 

STAGE for much of the eastern U.S. while the reverse is the case over eastern Canada and along the West Coast. In contrast, 

during winter STAGE has higher Vd and lower mixing ratios than M3Dry over most of the southern half of the modeling 715 

domain while the reverse is the case for much of the northern U.S. and southern Canada. The differences in seasonal mean 

mixing ratios reach 2-3 ppb in a number of locations, indicating that the effects of different dry deposition schemes can be 

more pronounced locally than in the spatially aggregated model evaluation metrics presented in Section 3.1. When using grid-

scale effective conductances to further analyze the differences in O3 Vd, the comparison between M3Dry and STAGE showed 

generally higher summertime stomatal and wintertime cuticular effective conductances for M3Dry and generally higher soil 720 

effective conductances (both vegetated and bare) for STAGE in both summer and winter. On a domain-wide basis, the stomatal 

effective conductance accounted for about half of the total O3 Vd during daytime hours in summer for both schemes, though 

regional variations in these contributions exist due to variations in vegetation coverage. Examining grid-scale component 

resistances for O3 shows that values for summertime 1/Rs and wintertime 1/Rcut differ between M3Dry and STAGE, with the 

higher values of these inverted resistances in M3Dry causing higher effective conductances for these pathways compared to 725 
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STAGE. Extending the concept of effective conductances to effective fluxes, annual domain total O3 dry deposition flux results 

show the larger contributions from the vegetated and bare soil pathways for STAGE and the larger contributions from the 

stomatal and cuticular pathways for M3Dry. 

In contrast to O3, most other pollutants show larger effective conductances and effective fluxes for the bare soil and sum of 

bare and vegetated soil pathways for M3Dry than STAGE. The cuticular effective flux is larger for M3Dry than STAGE for 730 

HCHO, SO2, HNO4, and organic nitrates, smaller for M3Dry than STAGE for H2O2 and HNO3, and similar between M3Dry 

and STAGE for other species. Stomatal effective fluxes are small for all species except O3, HCHO, and SO2 for both M3Dry 

and STAGE. Domain-wide annual total dry deposition fluxes differ the most between M3Dry and STAGE for HCHO and 

organic nitrate. 

Extending the analysis of grid-scale dry deposition diagnostics further to specific LU categories, results show that total Vd 735 

during daytime varies by a factor of 2 between the LU categories with the lowest values (urban, barren, and snow and ice) and 

those with the highest values (evergreen needleleaf and broadleaf forest, deciduous forest). Effective conductances for the bare 

soil pathway dominate for the urban, barren, and shrubland LU categories while conductances for the cuticular and stomatal 

pathways dominate for the forest LU categories, especially during daytime. Results also show that the M3Dry vs. STAGE 

differences are most pronounced for the stomatal and vegetated soil pathway for the forest LU categories, with M3Dry 740 

estimating larger effective conductances for the stomatal pathway and STAGE estimating larger effective conductances for 

the vegetated soil pathway for these LU categories. Higher effective conductances for the bare soil pathway in STAGE are 

particularly noticeable for the urban, shrubland, and tundra LU categories. For annual total deposition, the overall slightly 

larger grid-scale O3 deposition flux for STAGE is present for almost all LU categories. Considering effective fluxes for 

summertime only, the greater importance of the cuticular and stomatal pathways during this season for LU categories most 745 

strongly affected by seasonal variations in LAI, along with the greater importance of these pathways in M3Dry compared to 

STAGE, yield greater overall estimated deposition to these LU categories for M3Dry compared to STAGE. Additional analysis 

showed that minor differences in LU-specific look-up table values between different deposition schemes as well as the 

aggregation of the MODIS LU categories to the AQMEII4 LU categories in the STAGE deposition calculations can also 

contribute to differences in the estimated Vd and resulting mixing ratios. Overall, the analysis of LU-specific diagnostic 750 

variables for both the entire year and summer only revealed that even though annual total O3 deposition fluxes estimated by 

M3Dry and STAGE are fairly similar, pathway-specific fluxes to individual LU types can vary more substantially on both 

annual and seasonal scales which is likely to affect estimates of O3 damages to sensitive vegetation.  

A comparison of two simulations differing only in their LU classification scheme (MODIS vs. NLCD40) showed that the 

differences in LU cause seasonal mean O3 mixing ratio differences on the order of 1 ppb across large portions of the domain, 755 

with the differences generally largest during summer and in areas characterized by the largest differences in the fractional 

coverages of the forest, planted/cultivated, and grassland LU categories. These differences are generally smaller than the 
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M3Dry vs. STAGE differences outside the summer season but have a similar magnitude during summer. When considering 

LU-specific effective fluxes for both simulations, results show that domain-total O3 deposition fluxes to the evergreen 

needleleaf forest, mixed forest, planted/cultivated, and grassland categories are higher for the simulation using MODIS LU 760 

than the simulation using NLCD40 LU while the opposite is the case for the urban, shrubland, savanna, and wetlands 

categories. Moreover, because of the higher underlying spatial resolution of the NLCD satellite data and the inclusion of lower 

density developed areas characterized by more vegetation in the urban LU category, this category has higher estimated 

effective fluxes through the stomatal and cuticular pathways in the M3DRY_NLCD40_2016 simulated compared to the 

M3DRY_2016 simulations. Results indicate that the deposition impacts of LU differences are caused both by differences in 765 

the fractional coverages and spatial distributions of different LU categories as well as their characterization in terms of 

variables like VEGF, z0, etc. in look-up tables used in the LSM and deposition scheme. 

Refining the representation of dry deposition in regional modeling systems is an area of ongoing research, leveraging new 

insights from observational datasets, field scale modeling, and model intercomparisons such as those performed in AQMEII4 

(Galmarini et al., 2021; Clifton et al., in preparation). For example, both the M3Dry and STAGE deposition schemes in CMAQ 770 

have updated the representation of aerosol dry deposition in the recent release of CMAQv5.4 in October 2022 (U.S. EPA, 

2022; Pleim et al., 2022) while STAGE has also been revised to normalize Ra, Rs, and 𝑢𝑢∗ to grid-scale values from the LSM 

used in the driving meteorological model. The analyses and results presented in this study serve as an example of how the 

diagnostic grid-scale and LU-specific dry deposition variables adopted for AQMEII4 can provide insights into a key model 

process affecting simulated pollutant budgets and ecosystem impacts of atmospheric pollution. It is expected that the 775 

forthcoming diagnostic analyses of results from all AQMEII4 grid models as well as a potentially more wide-spread adoption 

of such diagnostic variables in other modeling studies will serve the modeling community in their future development efforts. 

Additionally, it is hoped that the ongoing point intercomparison of the M3Dry and STAGE schemes implemented in CMAQ 

with schemes implemented in other models (Clifton et al., in preparation), along with planned point model simulations to 

quantify the sensitivity of specific resistances and conductances in different schemes towards individual meteorological, soil, 780 

and biophysical forcing variables can help guide future model development efforts.   

Code availability 

The CMAQ version 5.3.1 (https://doi.org/10.5281/zenodo.3585898) code is available from the CMAQ GitHub site 

(https://github.com/USEPA/CMAQ). The AMET code is available from the AMET GitHub site 

(https://github.com/USEPA/AMET) 785 
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