- First, we would like to thank the two anonymous Reviewers for having carefully read the
 manuscript and for providing their helpful and constructive reviews, which improved our
 manuscript. Point-by-point replies to the comments are here below.
- 4

6 7

8

9

10 11

12

- For clarity and easy visualization, the Referee's comments are shown from here on in black.
 - The authors' replies are in blue font with an increased indent below each of the referee's statements. The Line numbers (L.) in our responses refer to the unrevised manuscript.
 - The relevant changes in the revised manuscript are below in green.

Authors' response to anonymous Referee #3 (https://doi.org/10.5194/acp-2022-98 <u>RC1</u>)

15

16 Overall Quality

17 This manuscript utilizes a merged-instrument approach to characterize precipitating ice 18 particle habits at a remote site in inland Finlind. Primarily using 12-hourly soundings and the 19 Multi-Angle Snowflake camera (MASC), the study determines via knowledge of ice particle 20 history and growth regimes that approximately three-quarters of ice particles originate from 21 cloud layers with top temperatures outside of the mixed-phase region (i.e., sub-liquid RH 22 saturation [<99%]), suggesting that the majority of cloud layers are fully glaciated. Using an 23 empirical formulation, they finally determine that the number of ice nucleating particles (INP) 24 were likely sufficient to explain heterogenous ice production, suggesting an inactive ice 25 multiplication mechanism (outside of possible collisions). Overall, the manuscript is of 26 excellent quality in terms of science, documentation, figures, and structure. The authors 27 clearly made a significant effort to explain their data processing in a concise manner. After 28 addressing a few specific comments and technical corrections, I recommend this manuscript 29 pursue publication in ACP. 30 31 We thank the referee for reviewing our manuscript. We appreciate the positive 32 feedback and helpful comments.

33

35

38

34 Specific Comments

Fig 6. & ~Line 183: I would point out to the reader that the color-scales on each panel are different.

- Thank you for commenting on this. We have added the following sentence in the
 caption of Fig. 6. We also added a sentence in captions of Fig. 4 and Fig. A6, which
 are figure that have had similar issues.
- 42 43

44

The color scale ranges from zero to the total number of events for each group, so the color scale for each panel is different.

Line 159 & Fig. 3: What exactly is "visibility"? If it is similar to cloud base height, then these
are an order of magnitude off. It would also be good to mention how cloud base height was
detected within the instrumentation at the site. If it is a nm-wavelength active remote sensor,

49	then I would expect my interpretation of visibility to closely optically correspond with cloud
50	base height.
51	
52	The cloud base height was measured by Vaisala CT25K ceilometer (Ceilometer
53	CT25K User's Guide, Vaisala, available at: <u>https://www.rish.kyoto-</u>
54	u.ac.jp/ear/ceilometer/ct25k.pdf, last access: 11 August 2022). The visibility was
55	measured by Vaisala FD12P with an optical forward-scatter sensor that sees fog and
56	precipitation particles (see
57	https://www.livedata.se/images/Vaisala/Nederbord/FD12P.pdf, last access: 11
58	August 2022). The visibility measurement range is 10 to 50 000 m. This is basically
59	documented in L. 116 with reference to the FMI web page
60	(https://litdb.fmi.fi/luo0015 data.php, last access: 11 August 2022). We replaced the
61	"visibility" with "horizontal visibility" throughout the manuscript. Consistently, we
62	adapted the sentence in L. 159.
63	
64	During snowfall, the horizontal visibility was on average 2020 m, the average base
65	height (or vertical visibility) of the lowest cloud was 213 m []
66	
67	Fig 3: I'm confused about the sea level pressure measurements. If the station is only 179 m
68	ASL, these values are way too low.
69	
70	Thank you very much for this valuable comment. It brought to our attention that we
71	have made a mistake in calculating the ground-based meteorological parameters for
72	the 15 minutes intervals. We have corrected this and updated the Fig. 3. Amongst
73	other variables, the sea level air pressure values are higher than before and now
74	make sense. In addition, the related values mentioned in the text (L. 154 – 160, L.
75	192 – 194) and Fig. A6 were corrected.
76	
77	Fig 2 & Line 134: Why 15 minutes prior to sounding release? Wouldn't 15 minutes aftertward
78	be more representative of the cloud that is producing the precipitation?
79	
80	Since radiosondes were launched from the same ground station at which we
81	observed falling snow crystals, it was only at ground level and at the moment of
82	launch that both kinds of observations coincided in space and in time. Crystals
83	formed at any point in the profile while it was sounded, have reached ground level
84	downwind the station and at a later point in time. By relating the humidity profile to
85	crystals observed 15 minutes prior to launch we assumed that the profile is, when
86	sounded, still representative of what it was up to 15 minutes earlier upwind the
87	station. If we would have related the sounded humidity profile to crystals observed
88	during the 15 minutes following sounding, we would have had to assume the
89	sounding to be representative of the moisture profile still upwind the station, from
90	where crystals would arrive in the following 15 minutes. Neither assumption is
91	secure, but the first seemed to us more reliable than the second. Anyway, the sky
92	was fully cloud covered (8 octas: see L. 162) during snow events and the choice of
93	assumption probably makes no big difference.
94	
95	Line 213: Nice conclusion!

97	Thank you.
98	
99	Technical Corrections
100	
101	Line 61: "automatically" should be "automatic"
102	
103	Done.
104	
105	Line 63: "summery" should be "summer"
106	
107	Done.
108	
109	Fig A1: "lowlight" should be "highlight"
110	
111	We changed the wording into "The grey areas mark".
112	
113	Line 81: suggest using "length" instead of "height"
114	
115	Done.
116	
117	Line 94: Should "An ice particle classified" be "An ice is particle classified"?
118	
119	We changed this sentence as it was a little confusing.
120	
121	Unrimed ice particles correspond to riming degrees of 0 and 1, and rimed particles to
122	riming degrees of 2 to 5 according to Mosimann et al. (1994).
123	
124	Line 153: Should "weighed" be "weighted"?
125	
126	Yes, thank you. Done.
127	
128	
129	Authors' response to anonymous Referee #2 (https://doi.org/10.5194/acp-2022-98-
130	<u>RC2)</u>
131	
132	
133	The authors use several months of radiosonde soundings and coincident, ground-based
134	hydrometeor imagery at a high-latitude station in northern Finland to infer ice formation
135	pathways during snow events. Relative humidity (RH) profiles (both with respect to water
136	and ice) from radiosonde data are used to develop a simplistic snow event predictor. For
137	snow events, the authors show how imagery-based ice particle habits change as a function
138	of RHw. Using cloud-top temperature the authors conclude that primary ice formation was
139	the main pathway to form snow.
140	
141	The study is well written and contains many useful plots. I recommend publication after
142	resolving a few major issues.

144 145	Thank you very much for reviewing our manuscript, the general assessment and the
145 146	constructive comments.
147	Maior points
148	
149 150	The "Results" section includes a few elements of a discussion. However, I feel the study would benefit from a broader discussion that is also placed into its own section
151	
152	Thank you for the suggestion. We have carefully weighed benefits and drawbacks of
153	separating "Results" from a broadened "Discussion". In the end, we decided to keep
154	both combined for better readability and also to avoid stretching interpretation. We
155	hope to have done justice to the valuable specific issues below in the revised
156	"Results and discussion" section.
157	
158	Following points should be relevant to the reader:
159	
160 161	• The authors start their study by mentioning the Arctic surface budget. Do the authors think the site in Finland is representative of the Artic? Or could the continental character
162	and the influence from borear forests (e.g., Schneider et al., 2021) mislead?
167	Indeed, the opening sentence may raise expectations that cannot be fully met
165	Therefore we changed some sentences of our manuscript in the Abstract (I 1 I 2
166	(1, 2, 2, 3) 9) as well as the Introduction $(1, 12 - 14, 1, 20)$ Nevertheless, we still find the
167	more nuance relation to Arctic studies appropriate in L, 40 onward.
168	
169	Would other (frequently used) INP parameterization lead to the same conclusions?
170	
1/1	I o our knowledge, no aerosol properties were measured continuously at the site over
172	the period of our study, except aerosol optical depth. However, most commonly used
174	INP parameterizations are based on aerosol particle properties such as
175	parameterizations and thus do not know whether the use of other INP
176	parameterizations would lead to the same conclusion. We added the following
177	sentence in L 242
178	
179	Since the necessary aerosol properties were not measured at the site at the time
180	period of interest, it was not possible to use other existing INP parameterisations
181	(e.g. DeMott et al., 2015, Ullrich et al. 2017) to qualitatively evaluate the associated
182	uncertainty. However, the here predicted INP concentrations are similar to
183	
184	• Could the high-RHw group (Fig. 8) be useful as a proxy of snow events in a warmer
185	climate?
186	
187	Conceptually yes. Therefore, we added the following sentence to the conclusion.
188	
189	This could lead to snowfall events with a greater proportion of larger snowflakes,
190	rimed ice particles, and such crystal habits that grow above water saturation

- compared to today. Rime-splintering and other secondary ice formation processes
 requiring liquid droplets could become more frequent, which would likely increase the
 ice multiplication factor.
- Is a 15 min window appropriate? How long would it take for a particle to fall from ~2.7 km?
- 197 A compactly growing ice particle falls about 800 m during the first 30 minutes of its 198 growth (Fukuta and Takahashi, 1999). Assuming thereafter a fall velocity of 1 m s⁻¹, 199 200 the time it will take to reach ground from an initial height of 2.7 km is around 1 hour. Ideally, we would have used slowly descending drop sondes, dropped so far upwind 201 202 that they would have arrived at the ground station together with the snow crystals 203 they had accompanied during their growth. However, radiosondes launched from 204 ground level travel vertically in the opposite direction of falling crystals. Therefore, temporal and spatial lags between the trajectories of radiosonde and observed 205 206 crystals are unavoidable. Minimising these lags can only be achieved by choosing a short interval for crystal observation. Still, the interval has to be long enough to detect 207 low precipitation rates. We settled for 15 minutes, which was enough to detect 208 209 precipitation rates $\geq 0.01 \text{ mm h}^{-1}$ (see L. 140 – 144).

Please review the order of the figures. Figure 7 is mentioned earlier (I. 89) than Figure 2 (I.
150). The same review should be applied for supplementary figures.

213

210

194

214 215

216 217 Thank you. We separated Fig. 7a from Fig. 7b and moved Fig. 7a. Furthermore, Fig. A7 and Fig. A3 are now arranged in a way that it follows the narrative. Consequently, most Figure numbers have changed in the revised manuscript.

218 Minor points

219

222

224

227

229

l. 1 This sentence sticks out. Either specify "properties" and their "role" or write it moregeneral as "clouds" (instead of "cloud properties").

- 223 We generalized.
- Clouds and precipitation play a critical role in the Earth's water cycle and energybudget.
- 228 II. 198-199 Perhaps show examples of unclassifiable particles.
- We added some examples of invalid and undefinable particles to Fig. A7 and refer to
 it in the text. Also, we show some examples of broken-off branches of dendrites (see
 Figure here below).
- 233
- 234

235 236	2 mm
237	Figure A2. Similar to Fig. 2, but with further examples of images captured by the
238	MASC. Aggregates of specifiable ice particle shapes are arranged in the top row.
239	Invalid and undefinable particle shapes as well as broken-off branches of dendrites
240	are shown in the bottom row.
241	
242	I. 208 This sentence is redundant as the information was provided in I. 206.
243	
244	Thank you for spotting the redundancy. We have changed the sentence in L. 206.
245	
246	I. 225 How is cloud-top temperature obtained?
247 249	Since this question and the following one are related, we will answer them together
240 279	below
245	below.
251	II. 226-228 This description needs improvement and perhaps an illustration of the concept.
252	What is meant by "gaps" and how do you determine them?
253	
254	Thank you very much for these questions. First, we have marked the 100 m thick
255	atmospheric layers of the radiosonde profiles with increasing height where the
256	running mean of RH _{ice} is \geq 100%. Such atmospheric layers are regions where ice
257	crystals are not sublimating and defined here as "clouds". For each cloud, we
258	determined the cloud bottom height, the cloud top height and cloud top temperature.
259	I he cloud top temperature is the minimum temperature between cloud bottom and
260	cloud top height measured by the temperature sensor of the radiosonde. If two
201	bottom beight of the upper level cloud and the cloud top beight of the lower level
202	cloud. In case this distance was below a certain threshold (0.2, 0.5 or 1 km), we
264	considered these two clouds as being potential seeder-feeder clouds. If there were
265	more than two clouds on top of each other, we determined the highest seeder cloud
266	for which the distance threshold with increasing height holds. We assume that ice
200	for which the distance the should with increasing height holds. We assume that ice

unsaturated layer without completely sublimating and therefore "seeding" the lowerlevel cloud (feeder). Finally, we determined the cloud top temperature of the highest possible seeder cloud for each case. Note that we do not distinguish between cases with a single cloud and those with feeder-seeder clouds.

 We added this information to the manuscript and show an example of a case which has had three clouds (see Figure 2 here below).

Fig. 2. (a) Running mean of five consecutive 100 m averaged RH_{ice} with increasing height up to 15 km on the 9th of March 2019 at 23:30. Vertical line indicates 100% running mean RH_{ice}. The dots colored in blue show the values ≥ 100%. (b) Similar to a) except that the temperature (°C) is plotted on the x-axis. Dashed green line shows the cloud top temperature of the highest possible seeder cloud, if we consider a threshold of 0.2 and 0.5 km between potential seeder-feeder clouds. The dotted red line shows the cloud top temperature of the highest possible seeder cloud, if we consider a threshold of 1.0 km between potential seeder-feeder clouds.

While working on the revisions and re-running some code, we noticed that several cases with multiple clouds on top of each other were not handled correctly. We corrected this and updated Fig. 10, which also resulted in changes in the text. The legend of Fig. 10 has been adjusted. Note that in the revised version we don't use the word "gaps" anymore, but replaced it with "distance between clouds". Thank you for this very useful comment.

Here we define successive values of the running mean from five consecutive 100 m averaged RH_{ice} with increasing height \geq 100% as a cloud. For each cloud, we determined the cloud base height, cloud top height, and cloud top temperature. The cloud top temperature is the minimum temperature between the cloud base and cloud top measured by the radiosonde temperature sensor. When two clouds were on top of each other, we further determined the distance between the cloud top height of the lower-level cloud and the cloud base height of the upper-level cloud. If this distance was below a certain threshold (0.2, 0.5, or 1 km), we considered the two clouds as potential seeder-feeder clouds. If there were more than two clouds on top

303 of each other, we determined the highest seeder cloud for which the distance 304 threshold with increasing height holds. Finally, we determined the cloud top 305 temperature of the highest seeder cloud for each case (also described as cloud top 306 temperature from here on). Hence, we take into account that up to a certain (vertical) 307 distance between clouds, ice crystals from the upper cloud (seeder) could fall through the unsaturated layer without fully sublimating, thus seeding the lower cloud 308 (feeder). It is noteworthy that our threshold for seeder-feeder consideration is based 309 310 only on the distance between clouds. However, whether an ice crystal fully 311 sublimates between two clouds depends on several factors such as the crystal's size and habit when entering unsaturated conditions or by how much conditions are 312 unsaturated. In the absence of in-cloud crystal information, we cannot make detailed 313 314 calculations. To compensate for this uncertainty, we show cloud top temperature estimates for three different distance thresholds. Note that we do not distinguish 315 316 between cases with a single cloud and those with seeder-feeder clouds. 317

> Cloud threshold (km) 0.2 0.5 1.0 Number of events 8 Het. freezing 6 54% 4 42% 2 П 0 -40 -50 -70 0 -10 -20 -30 -60 Cloud top temperature (°C) b 0.25 0.20 Density 0.15 0.10 0.05 0.00 10³ 10⁰ 10⁶ Predicted INP concentration (std m⁻³)

318 319 а

320 Figure 11. (a) The cloud top temperatures of the highest possible seeder-feeder cloud in 4 °C intervals of the 52 events coinciding with running mean $RH_{ice} \ge 97\%$ 321 322 throughout the lower 2.7 km. The cloud top temperature was derived using the 323 radiosonde measurements which is described in detail in Sect. 3.5. We used the following thresholds for the distance between clouds to be considered as seeder-324 feeder clouds: ≤ 0.2 km (orange), ≤ 0.5 km (pink), and ≤ 1.0 km (purple). The fraction 325 326 of events with cloud top temperatures above -38 °C is given in percent next to the 327 dashed line. This is an estimation of the fraction of events for which the first ice 328 crystals were likely formed via heterogeneous freezing. (b) Density of the INP 329 concentration for the fraction of events with cloud top temperatures above -38 °C,

- using the different thresholds to account for seeder-feeder clouds cloud top height
 criteria (in color) as shown in panel a. The respective median concentrations are
 shown by the dashed lines.
- 334 II. 244-247 This seems highly relevant and should be shown as its own plot.

335 336

337

338

339 340

341 342 343

344

345 346

347 348

349

350

351

- Thank you. We agree with the reviewer and made a new plot, which is shown here below. We discuss the related results in more detail in the last paragraph of Section 3.5 of the revised manuscript.
 - b ce multiplication factor (-) С а 0.2 km 0.5 km 1.0 km 10³ Max rm RHwater (%) 10⁰ • <98 >=98 and <99 10⁻³ >=99 0 -10 -20 -30 -40 0 -10 -20 -30 -40 0 -10 -20 -30 -40

- Figure 12. The ice multiplication factor versus cloud top temperature (°C) for each of the 52 snowfall event (coinciding with running mean RH_{ice} ≥ 97% throughout the lower 2.7 km) that were associated with cloud top temperatures warmer than −38 °C determining the highest possible seeder-feeder cloud using a distance threshold of (a) 0.2 km, (b) 0.5 km, and (c) 1.0 km. The colors are indicative of the associated maximum running mean RH_{water} (< 98%, blue; ≥ 98% and < 99%, green; ≥ 99%, yellow). The median ice multiplication factor is shown by the dashed line. The solid line is drawn at an ice multiplication factor of 1.
- 352 Finally, for cases with cloud top temperatures warmer than -38 °C, we estimate the 353 likely ice multiplication factor, which is the observed snowflake concentration divided 354 by the estimated INP concentration (Fig. 12). For a distance between potential 355 seeder and feeder clouds of 1 km the median ice multiplication factor was less than 1, indicating that the median number of estimated INPs would have been sufficient to 356 357 generate the median number of observed ice particles. For smaller thresholds (0.2 358 and 0.5 km), a median ice multiplication factors of 1.8 and 3 would need to be 359 invoked to explain the median observations. Also, we find higher median ice 360 multiplication factors for cases that are mixed-phase clouds compared to those that are likely ice clouds. A closer look at the individual events shows that in 36% to 66% 361 of the cases the ice multiplication factor was higher than 1, depending on the 362 threshold to determine the highest seeder cloud. Therefore, secondary ice formation 363 364 processes were probably active in one to two third of the cases (where ice formation was initiated through heterogeneous freezing). Highest ice multiplication factors were 365 366 found for cloud top temperatures between -3 °C and -10 °C, ranging from 10 to 1000. This could be indicative of rime-splintering (Hallett and Mossop, 1974). For 367 temperatures between -10 °C and -20 °C, the multiplication factors reached values 368

- 369 up to 10, which could be indicative of ice multiplication from ice-ice collision of 370 dendrites followed by breakup (Vardiman, 1978; Mignani et al., 2019). This secondary ice mechanism was shown to be linked to the collision force and the 371 riming degree, with a number of observed fragments per collision below 1 for 372 373 unrimed dendrites and below 8 for lightly rimed dendrites (Vardiman, 1978; Phillips et 374 al., 2017). Note that, we saw some broken-off branches of dendrites (Fig. A2), suggesting at least occasional ice-ice collision followed by breakup was active. Other 375 376 ice multiplication processes exist (Korolev and Leisner, 2020) and could be active. 377 For cloud top temperatures below -20 °C, sufficient INPs were likely active to explain the observed number of snowflakes. In general, the ice multiplication factors in 378 relation to temperature observed here are consistent with previous observations (see 379 Fig. 14 in Wieder et al., 2022) and show that ice multiplication played a role in the 380 381 vast majority of the cases associated with cloud top temperatures ≥ -15 °C.
- 382
- 383

384 **References**

385
386 DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y.,
387 Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating
388 laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral
389 dustparticles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015,
390 2015.

391

Fukuta, N. and Takahashi, T.: The growth of atmospheric ice crystals: A summary of findings
in vertical supercooled cloud tunnel studies, J. Atmos. Sci., 56, 1963–1979, 1999.

- Hallett, J. and Mossop, S. C.: Production of secondary ice particles during the riming
 process, Nature, 249, 26–28, 1974.
- 397

Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production,
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020.

401 Mignani, C., Creamean, J. M., Zimmermann, L., Alewell, C., and Conen, F.: New type of 402 evidence for secondary ice formation at around $-15 \circ C$ in mixed-phase clouds, Atmos.

- 403 Chem. Phys., 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, 2019.
- 403 Chem. Phys., 19, 877–800, https://doi.org/10.5194/acp-19-877-20 404
- Mosimann, L., Weingartner, E., and Waldvogel, A.: An Analysis of Accreted Drop Sizes and
 Mass on Rimed Snow Crystals, J. Atmos. Sci., 51, 1548 1558,
- 407 https://doi.org/10.1175/1520-0469(1994)051<1548:AAOADS>2.0.CO;2, 1994.
- 408
- Phillips, V. T. J., Yano, J.-I., and Khain, A.: Ice multiplication by breakup in ice-ice collisions.
 Part I: Theoretical formulation, J. Atmos. Sci., 74, 1705–1719, https://doi.org/10.1175/JAS-D16-0224.1, 2017.
- 412
- Ullrich, R., Hoose, C., Möhler, O., Niemand, M., Wagner, R., Höhler, K., Hiranuma, N.,
- 414 Saathoff, H., and Leisner, T.: A new ice nucleation active site parameterization for desert
- 415 dust and soot, J. Atmos. Sci., 74, 699–717, https://doi.org/10.1175/JAS-D-16-0074.1, 2017.
- 416

- 417 Vardiman, L.: The generation of secondary ice particles in clouds by crystal-crystal
- 418 collisions, J. Atmos. Sci., 35, 2168–2180, https://doi.org/10.1175/1520-
- 419 0469(1978)035<2168:TGOSIP>2.0.CO;2, 1978.
- 420
- 421 Wieder, J., Ihn, N., Mignani, C., Haarig, M., Bühl, J., Seifert, P., Engelmann, R., Ramelli, F.,
- 422 Kanji, Z. A., Lohmann, U., and Henneberger, J.: Retrieving ice-nucleating particle
- 423 concentration and ice multiplication factors using active remote sensing validated by in situ
- 424 observations, Atmos. Chem. Phys., 22, 9767-9797, https://doi.org/10.5194/acp-22-9767-
- 425 2022, 2022.