
I thank the two anonymous referees for their careful consideration of the manuscript 
and overall favorable assessment of its clarity and contribution to the literature. Below 
I detail improvements made to the manuscript in response to all review comments. 

Referee 1 Comments: 

In this paper the author uses a series of single model simulations with variations in the 
aerosol emission's geographical location to study the dependence of precipitation on 
aerosol emission location. The manuscript is well written, nicely organized and study 
interesting and important topic. However, I have a strong concern that many of the 
results are not significantly differ from changes one can get just due to internal 
variability. In the global mean, the changes presented here are in the range of ~ 0.002-
0.02 mm/day. I have calculated the pre-industrial (PI) CESM1 global mean precipitation 
to be 3.044 mm/day, i.e., the changes seen here are in the range of 0.07-0.7% of the 
global mean. A question which is central to this paper is whether the changes reported 
here are statistically significant compared to the natural verbality of the system. The 
range of the 40-year running mean global mean precipitation in the CESM1 PI is 3.037 – 
3.051 mm/day, i.e., a range of 0.014 mm/day just due to natural viability. That means 
that at least some of the difference in the global mean precipitation seen here are 
within the range possible only due to natural variability (all thought some of them are 
outside this range). Looking on the significant test in Fig. 1, suggests that the same 
might be true for the local precipitation changes (the changes in the vast majority of 
places aren't significant). In addition, statistically significant local precipitation 
variations between two realizations could also be driven by natural variability and not 
by the external (aerosol) forcing. 

The way to overcome this issue, and to make sure that the differences are driven by 
the aerosol forcing and not by natural variability is to simulate more realizations (i.e., 
conduct initial-condition large-ensemble) (Diao et al., 2021), or run the model for very 
long times (Fiedler & Putrasahan, 2021). I feel bad to ask such a revision as I 
understand the amount of work it might require. However, I hope that, if the author 
will accept my suggestion, the paper could become much more convincing. If 
conducting a large-ensemble is beyond the reach of the author, I believe that 
conducting one or two more simulations for each aerosol location (with slightly 
different initial conditions) will improve the confidence in the results (in case they are 
similar to the initial results) or demonstrate the need in more realizations (in case they 
are not similar, thus suggesting a large role of natural variability). 

I thank the referee for their thoughtful consideration of the results and for their 
favorable review of the overall manuscript structure and content. I agree that 
characterizing the statistically significant precipitation response to aerosol 



perturbations is a difficult process. However, I believe the referee’s concerns regarding 
statistical significance are based on a misapprehension. I detail this below, as well as 
steps that are taken in the revised manuscript to make the reliability of the signals 
clearer. I nevertheless appreciate the interrogation of the statistical significance 
calculation, as this is an important factor to clarify. 

The PI CESM1 variability the referee estimates appears to be from the fully coupled 
CESM1, which will have different variability than the slab-ocean set-up used in this 
study (see Section 2). Measures of statistical significance should be derived from the 
native dataset. I use 60 years of simulations in the slab-ocean configuration to 
characterize the precipitation signal. Standard errors derived from the interannual 
variability in the difference between the slab ocean PI control and each perturbation 
experiment were previously given in Figure 1. The standard error values may be 
roughly doubled to provide an estimate of the 95% confidence range. This 95% 
confidence range is also provided as error bars on the fast and slow precipitation 
responses in Figures 2 and 3 (note that this information has now been added to the 
relevant figure caption). From this significance calculation, it is clear that for all regional 
perturbations aside from Indian and East African emissions the global-mean total 
precipitation response is statistically distinguishable from zero at the 95% confidence 
level after accounting for internal variability and thus is highly unlikely to have arisen 
from internal variability alone. (The global-mean precipitation response to East African 
and Indian emissions are statistically indistinguishable from each other and from zero.) 

Furthermore, the paper does not claim that every global-mean response is statistically 
distinct from the others, nor does its argumentation depend on this. There is clearly 
statistically significant diversity in the global-mean response to identical aerosol 
emissions from different regions (a range of -2.6 to -21.3 µm/day compared to a 
maximum standard error of 1.8 µm/day and a maximum 95% confidence interval of 3.6 
µm/day), which forms one of the motivations for the analysis in the paper.  

Regarding the statistical significance shown on the maps, it is to be expected that 
regional aerosol perturbations will produce spatially heterogeneous precipitation 
changes that will be statistically significant in some regions and not in others. The 
spatial extent of regions with statistical significance is comparable or higher than that 
seen in other modeling studies of regional aerosol effects on precipitation using 
forcings of similar magnitude across several different climate models and a similar 
statistical significance criterion. For examples, see the following: 

• Westervelt et al., 2017, Figure 3 – fully coupled 200-year simulations of removal 
of U.S. sulfate emissions in NCAR CESM, GFDL CM3, and GISS E2 models 



• Westervelt et al., 2018, Figure 1 – fully coupled 200-year simulations of removal 
of U.S., European, and Asian sulfate, bc, or all anthropogenic aerosol emissions 
in NCAR CESM, GFDL CM3, and GISS E2 models 

• Kasoar et al., 20218, Figure S2 – fully coupled 150-year simulations of removal of 
North American, European, East Asian, or South Asian sulfate emissions in 
HadGEM3-GA4 
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The following improvements will be made to the revised manuscript: 

• I now report the 95% confidence interval rather than the standard error on 
Figure 1 and wherever the global-mean total precipitation responses are 
reported in the text. Error ranges given on Figure 5 (fast precipitation response) 
and Figure 3 are now also the 95% confidence interval rather than the standard 
error as well. All error ranges throughout the manuscript thus now provide the 
95% confidence interval, allowing clear depiction of whether all signals are is 
distinguishable from natural variability with high confidence. 

• I summarize the above discussion of statistical distinctness of the global-mean 
precipitation response as follows (L139-145): 
“The global-mean precipitation response to Indian and East African emissions, 
which constitute the weakest of the precipitation responses, are statistically 
indistinguishable from zero and from each other in the presence of internal 
variability. All other global-mean precipitation responses are statistically 
significant at the 95% confidence level, and thus highly unlikely to arise from 
internal variability alone. Although the 95% confidence interval in the global-
mean response to some regional emissions are overlapping, it is clear that there 



is statistically significant diversity in the global-mean response to identical 
aerosol emissions from different regions.” 

• I now explicitly indicate on Fig. 4a whether the regional-mean precipitation 
responses to in-situ aerosol changes are statistically significant at the 95% 
confidence level. 

• I now improve the density and visibility of the statistical significance masking on 
all map figures in the main text (Figures 1, 5, and 6). 

In addition, I believe that presenting Fig. 4 in relative terms will be more appropriate as 
the difference in the background precipitation between these places is very large. 

I now include the precipitation response as a percent of the climatological precipitation 
in each grid box in the supplementary materials (I also include it below). As already 
stated in the manuscript, the distinction between regional emissions producing strong 
versus weak in-situ precipitation responses holds true whether the precipitation 
responses are considered in terms of absolute values or percent values. However, I 
have chosen to keep the absolute precipitation change as the format for the 
precipitation maps in the main manuscript, as this allows a more accurate portrayal of 
the spatial pattern of precipitation change (percent values may amplify the appearance 
of the precipitation response in some regions, if the denominator is small). It is for this 
reason that absolute precipitation changes are the standard mode of depiction of 
spatial patterns of precipitation response across recent papers exploring precipitation 
responses to regional aerosols, e.g. Westervelt et al. (2017), Westervelt et al. (2018), and  
Kasoar et al. (2018) cited previously, as well as Liu et al. (2018) and Samset et al. (2016). 
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Hodnebrog, Ø., Sillmann, J., Aalbergsjø, S. G., Boucher, O., Faluvegi, G., Iversen, T., 
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(2018). A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on 



Global and Regional Precipitation. Journal of Climate, 31(11), 4429–4447. 
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precipitation responses to individual climate forcers: A PDRMIP multimodel study. 
Geophysical Research Letters, 43(6), 2016GL068064. 
https://doi.org/10.1002/2016GL068064 

 

  



Referee 2 comments: 

This paper by Geeta G. Persad shows how precipitation response depends on aerosol 
emission regions. The paper is well written and the topic is relevant for the 
community.  

Author use CESM2-CAM5 model with slab ocean configuration. Experimental setup 
consists of 8 regions where the author has changed regional emissions to correspond 
to China's emissions from the year 2000. Author clearly shows how the fast and slow 
precipitation responses depend on the emissions regions, and discusses thoroughly on 
the mechanisms behind the changes.  

I thank the reviewer for their careful assessment of the paper and their overall 
favorable review of its clarity and relevance to the community. 

Major comments 

The role of natural variability is not discussed. As the runs are equilibrium runs, the 
year-to-year variability can be used as an estimate for natural variability.  Are the 
results significant compared to year-to-year variability. 

The focus of the paper is on the forced signal, thus extensive discussion of the role of 
natural variability is outside the scope. However, the statistical significance estimates 
provided on all figures assesses the significance of the forced signal compared to year-
to-year variability. I have now enhanced the presentation of the statistical significance 
estimates and added explicit discussion of their relation to year-to-year variability. 

I use 60 years of simulations in the slab-ocean configuration to characterize the 
equilibrium precipitation response to aerosol perturbations and use the year-to-year 
variability as an estimate of natural variability. Standard errors derived from the 
interannual variability in the difference between the slab ocean PI control and each 
perturbation experiment were previously given in Figure 1 and have now been updated 
to provide the 95% confidence range. This 95% confidence range is also provided as 
error bars on the fast and slow precipitation responses in Figure 2. From this 
significance calculation, it is clear that for all regional perturbations aside from Indian 
and East African emissions the global-mean total precipitation response is statistically 
distinguishable from zero at the 95% confidence level after accounting for internal 
variability and thus is highly unlikely to have arisen from internal variability alone. 
Similar statistical significance estimates have been provided for all other figures. 



The following improvements will be made to the revised manuscript, including explicit 
discussion of how the statistical significance calculations reflect the role of year-to-year 
variability: 

• I now more explicitly discuss the interpretation of the statistical significance 
calculation in the context of internal year-to-year variability as follows: 

o L120-122 (Methods): “The 95% confidence level (i.e. 1.96s) based on year-
to-year variability in the difference between the control simulation and 
each perturbation experiment is provided for all global-mean values.” 

o L139-145 (Results): “The global-mean precipitation response to Indian and 
East African emissions, which constitute the weakest of the precipitation 
responses, are statistically indistinguishable from zero and from each 
other in the presence of internal variability. All other global-mean 
precipitation responses are statistically significant at the 95% confidence 
level, and thus highly unlikely to arise from internal variability alone. 
Although the 95% confidence interval in the global-mean response to 
some regional emissions are overlapping, it is clear that there is 
statistically significant diversity in the global-mean response to identical 
aerosol emissions from different regions.” 

• The above information on statistical significance was previously omitted 
accidentally from the figure captions, as the reviewer has noted in the minor 
comments. I have now updated the figure captions in Figures 2, 3, and 4 to make 
clearer that the 95% confidence interval is indicated.  

• All error ranges or statistical significance markings shown on all figures now use 
the 95% confidence interval (instead of the standard error) to provide explicit 
indication of whether the signal can be confidently distinguished from year-to-
year variability.  

How do these results compare to other similar experiments with other models? 
Example PDRMIP regional experiments 

Much of the Discussion section is devoted to comparing the results of this paper to 
similar experiments in other models, including the PDRMIP regional experiments 
analyzed in Liu et al., 2018. In general, the fundamental physical behavior exhibited by 
these simulations is well-aligned with the results of other similar experiments. I now 
more explicitly indicate the experimental design and models used in the studies that 
are compared with throughout the discussion section as follows: 

L286-294: “The dependence of the atmospheric absorption and fast precipitation 
response strength on aerosol location seen here aligns with results from highly 
idealized studies. Dagan et al. (2019) forced an aquaplanet atmospheric general 



circulation model (ICON) with equivalent, radially symmetric absorbing aerosol optical 
depth plumes in the deep tropics versus mid latitudes and found higher resulting 
atmospheric absorption in the deep tropics due to stronger cloud feedbacks. However, 
the aquaplanet formulation reduces the comparability of the resulting fast 
precipitation responses with those seen in this study. A follow-on study in the same 
atmosphere-only model with a realistic land surface found a stronger local fast 
precipitation reduction over land in response to a tropical scattering AOD plume than 
to a comparable higher latitude plume, though the use of a purely scattering plume as 
opposed to the mixed scattering and absorbing aerosols used in this study again limits 
direct comparison (Dagan et al., 2021).” 

L303-316: “The regions that manifest local fast versus slow precipitation responses in 
the simulations analyzed here also overlap with regions identified in existing studies, 
including those utilizing Precipitation Driver and Response Model Intercomparison 
Project simulations (PDRMIP, Myhre et al., 2016). Samset et al. (2018) evaluated the 
regions for which fast precipitation responses dominate slow precipitation responses 
for PDRMIP multi-model simulations of idealized global forcings, including 10 times 
present-day global black carbon emissions and 5 times present-day global sulphate 
emissions. Although the spatial pattern of imposed perturbation differs from this study 
(i.e. globally distributed vs. regionally confined perturbations), they also find that the 
total precipitation response to both global BC and global sulphate are dominated by 
the fast response over parts of South Asia and most of the African continent. High 
latitude precipitation responses to these two forcers, meanwhile, are dominated by the 
slow precipitation response in the multi-model simulations (Samset et al., 2016), 
though individual models show conflicting results (Zhang et al., 2021). Similar PDRMIP 
multi-model simulations with regional idealized aerosol emissions over Asia and 
Europe (Liu et al., 2018), however, also showed a strong local fast precipitation 
response to Asian aerosols and almost no fast precipitation response to European 
aerosols. The appearance of a fast precipitation response in low latitude continental 
regions in response to both localized and global-scale aerosol forcing and the absence 
of one at high latitudes thus appears to be a robust feature across models and aerosol 
perturbation set-ups. “ 
 
L346-353: “The greater capability of higher latitude emission sources at generating total 
global-mean precipitation change also appears to be a robust feature of the response 
to aerosols. Studies analysing the global-mean precipitation response to removal of 
present-day aerosols from individual regions find that removal of European or North 
American emissions generates stronger global-mean precipitation per unit of radiative 
forcing than removal of South or East Asian emissions (via fully coupled HadGEM3-GA4 
simulations in Kasoar et al., 2018; via fully coupled GISS E2, GFDL CM3, and NCAR 
CESM1 simulations in Westervelt et al., 2018), in line with the findings here. This 



reinforces the latitudinal dependence in the climate response to heterogeneous 
regional forcing found in earlier studies (Shindell & Faluvegi, 2009; Shindell et al., 2012) 
and indicates that it continues to apply as the forcings become more regionalized.” 

 

minor comments: 

Figure 2. Lack of explanation for the black lines 

Thank you for catching this omission. All black lines are the error bars associated with 
the 95% confidence interval. The caption for the figure has been updated to describe 
this as follows: 

“Error bars provide the 95% confidence interval (±1.96s).” 

Figure 1,figure 6,figure 5. It is somewhat hard to read where the precipitation change is 
significant when the statistical significance is indicated via gridlines. Meaby change to 
dots? 

The density of gridlines has been increased to make the regions of statistical 
significance more clearly distinguishable. A different output format has also been used 
to reduce issues with rendering when saving to PDF, which altered the visibility of the 
gridlines.  

Figure 3. Lack of explanation for the black lines 

Thank you for catching this omission. These black lines are the error bars associated 
with the 95% confidence interval. Note that this has been updated from the previous 
version of this figure, which used standard error rather than 95% confidence interval 
(see response to Major Comments above). The caption for the figure has been updated 
to describe this as follows: 

“Error bars provide the 95% confidence interval (±1.96s).” 

Lines 150-155. Here author list different feedbacks due to sea surface changes. I would 
like to see also how this is limited by the slab ocean configuration 

I do expect that some aspects of the responses seen here would be modified by use of 
a fully dynamical rather than slab ocean, as is discussed in detail at L355-365. In the 
context of the slow precipitation scaling and associated driving processes discussed at 
L150-155, however, it is important to note that one of the seminal papers to identify 



this 2-3%/K precipitation increase per degree K and the associated driving moist 
convective feedbacks and dynamical constraints was conducted in a slab ocean 
configuration like the one use here (Held and Soden, 2006). Although that analysis was 
done on the total rather than slow precipitation response, it was done in the context of 
the response to CO2 forcing for which the fast precipitation response is expected to be 
overwhelmed by the slow precipitation response. This behavior has since been 
confirmed in response to a broader range of forcings and using dynamical ocean set-
ups in Samset et al., 2016 and Sillman et al., 2017. Notably, the slab ocean simulations 
used here also exhibit this 2-3%/K scaling in the slow precipitation response to regional 
aerosol emissions (identifiable from Figure 2b). Unfortunately, explicit assessment of 
whether the same tropical mass flux constraint identified by Held and Soden (2006) is 
operating here would require analysis of the convective mass flux, which was not saved 
out in these simulations. 

I have added the below language at L165-167 to summarize the above discussion: 

“Indeed, the slow precipitation response to regional aerosol perturbations seen here 
follows the 2-3%/K scaling previously identified in both fully dynamical ocean and slab 
ocean coupled set-ups (Held & Soden, 2006; Samset et al., 2016; Sillmann et al., 2017).” 

line 115-120,145-146: Change word couple to slab ocean, to indicate that runs are not 
done with fully coupled ocean. 

These modifications have been made. Note that I have replaced “coupled” with “slab 
ocean coupled” at L152 and 153 to distinguish from the atmosphere-only results, as 
these responses do involve atmosphere-ocean coupling (just to a slab rather than fully 
dynamical ocean). 

Figure 4a. should show also if the change is significant or not, example by hatching the 
squares. 
 
Thank you for this suggestion. I have now updated Figure 4a to indicate the regional-
mean responses that are statistically significant at the 95% confidence level (black 
asterisks). However, it should be noted that many of the regions that do not exhibit a 
statistically significant regional-mean precipitation response do exhibit statistically 
significant precipitation responses in some grid cells. I have therefore also 
distinguished the regional-mean responses that do not have any statistically significant 
within-region precipitation responses (grey asterisks) from those that do (no asterisk). 
 



 
Figure 4. (a) Regional-mean changes in precipitation rate (mm/day) in each of the 8 regions (columns) due to emissions from each 
of the 8 regions (rows) are shown. (b) Shifts in the location of the intertropical convergence zone, quantified as the change in the 
meridional centroid of zonally averaged precipitation between 20° S and 20° N (° latitude, y-axis), correlate with the change in 
interhemispheric temperature gradient, quantified as the differences between Northern Hemisphere and Southern Hemisphere mean 
surface temperature (K, x-axis). Error bars on panel (b) provide the 95% confidence interval (±1.96s). Black asterisks on panel (a) 
indicate regional-mean precipitation changes that are significantly different than zero with 95% confidence. Grey asterisks on panel 
(a) indicate regions with no statistically significant precipitation response in any grid cell; All others show statistically significant 
precipitation responses in some grid boxes within the region (see Figure 1), although the regional-mean change is not statistically 
significant. 

 
 


