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Abstract. Global models are widely used to simulate biomass burning aerosols (BBA). Exhaustive evaluations on model 

representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we 

conducted a comprehensive comparison of Aerosol Comparisons between Observation project (AeroCom) model simulations 

with satellite observations. A total of 59 runs by 18 models from three AeroCom Phase III experiments (i.e., Biomass Burning 40 

Emissions, CTRL16, and CTRL19) and 14 satellite products of aerosols were used in the study. Aerosol optical depth (AOD) 

at 550 nm was investigated during the fire season over three key fire regions reflecting different fire dynamics (i.e., 

deforestation-dominated Amazon, Southern Hemisphere Africa where savannas are the key source of emissions, and boreal 

forest burning on boreal North America). The 14 satellite products were first evaluated against AErosol RObotic NETwork 

(AERONET) observations, with large uncertainties found. But these uncertainties had small impacts on the model evaluation 45 

that was dominated by modeling bias. Through a comparison with Polarization and Directionality of the Earth’s Reflectances 

(POLDER-GRASP) observations, we found that the modeled AOD values were biased by -93–152%, with most models 

showing significant underestimations even for the state-of-art aerosol modeling techniques (i.e., CTRL19). By scaling up BBA 

emissions, the negative biases in modeled AOD were significantly mitigated, although it yielded only negligible improvements 

in the correlation between models and observations, and the spatial and temporal variations of AOD biases did not change 50 

much. For models in CTRL16 and CTRL19, the large diversity in modeled AOD was in almost equal measures caused by 

diversity in emissions, lifetime, and mass extinction coefficient (MEC). We found that in the AEROCOM ensemble, BBA 

lifetime correlated significantly with particle deposition (as expected) and in turn correlated strongly with precipitation. 

Additional analysis based on Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aerosol profiles suggested that the 

altitude of the aerosol layer in the current models was generally too low, which also contributed to the bias in modeled lifetime. 55 

Modeled MECs exhibited significant correlations with the Ångström Exponent (AE, an indicator of particle size). Comparisons 

with the POLDER-GRASP observed AE suggested that the models tended to overestimate AE (underestimated particle size), 

indicating a possible underestimation of MECs in models. The hygroscopic growth in most models generally agreed with 

observations and might not explain the overall underestimation of modeled AOD. Our results imply that current global models 

contain biases in important aerosol processes for BBA (e.g., emissions, removal, and optical properties) that remain to be 60 

addressed in future research. 
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1 Introduction 

Biomass burning (BB) injects large amounts of aerosols into the atmosphere every year. It is estimated that BB is responsible 

for 26−73% and 27−41% of global organic carbon (OC) and black carbon (BC) emissions, respectively (Bond, 2004; Andrea 65 

and Rosenfeld, 2008; Wiedinmyer et al., 2011; Wang et al., 2014; Huang et al., 2015). As a result, BB aerosol (BBA) has a 

considerable impact on human health and the global climate. For example, numerous studies have shown that exposure to 

BBA can cause cardiovascular diseases and subsequently lead to premature death (Johnston et al., 2012; Lelieveld et al., 2015). 

In addition, BBA can also alter the global and regional energy budgets by interacting with solar radiation directly, and indirectly 

by modifying the lifetime and albedo of cloud through their role as cloud condensation nuclei and ice-nucleating particles 70 

(Engelhart et al., 2012; Jahl et al., 2021). On a global scale, assessments of these health and climate impacts rely directly or 

indirectly on model simulations regarding BBA’s distributions, compositions, and properties (Martins et al., 2009; Lin et al., 

2014; Dong et al., 2019). 

One of the frequently used variables to define model representation for BBA is aerosol optical depth (AOD) which depends 

on both aerosol abundance and optical properties in the atmosphere. Previous studies have reported that global models 75 

produced substantial underestimations of AOD over BB regions with highly varying extent despite using different emission 

inventories (Kaiser et al., 2012; Veira et al., 2015; Johnson et al., 2016; Reddington et al., 2016; Mallet et al., 2021). For 

example, Kaiser et al (2012) showed the global Monitoring Atmospheric Composition and Change (MACC) aerosol model 

driven by emissions from the Global Fire Assimilation System (GFAS) underestimated AOD by a factor of 2–4 for BBA. 

While Johnson et al (2016) found that the AOD was underestimated by a factor of 1.6–2 in the simulations by Hadley Centre 80 

Global Environment Model version 2 and 3 (HadGEM2 and HadGEM3) based on the Global Fire Emission Database version 

3 (GFED3). The systematic underestimation of AOD in global models suggests a potential negative bias in current BB emission 

inventories (Reddington et al., 2016). Several factors could contribute to producing such bias in emission inventories based on 

either satellite-detected burned areas (e.g., van der Werf et al., 2017) or fire radiative power (FRP, e.g., Ichoku and Ellison, 

2014). The burned-area-based emission inventories comprise uncertainties in satellite detection of burned areas and fuel load 85 

(Randerson et al., 2012; Andela et al., 2016), while FRP-based emission datasets are largely affected by the translation of FRP 

into rates of biomass combustion (Kaiser et al., 2012). In addition, both emission datasets rely on uncertain emission factors 

converting burned biomass to trace gas or aerosol emissions (Stockwell et al., 2015). Moreover, when these emission 

inventories are used to run models, the OC emissions will be converted to emissions of organic aerosols (OA) based on the 

assumed OA/OC ratio which differs extensively among models (Gliß et al., 2021). It’s thus expected to see large diversities in 90 

simulated AOD from models driven by varying BBA emission inventories.  

In addition to emissions, model performance for simulating BBA also depends on model configurations. This has been 

reported for individual models. Reddington et al (2019) showed that increasing the aerosol hygroscopicity can reduce AOD 
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errors simulated by Global Model for Aerosol Processes (GLOMAP) over tropical BB regions. A similar impact of 

hygroscopicity was also observed in Johnson et al (2016) by comparing the modeled AOD errors between two aerosol schemes 95 

in HadGEM3 model. Schill et al (2020) found that the large BBA biases in the remote troposphere could be eliminated by 

increasing wet removal strength. Additional configurations that can alter model performance include, for example, model 

resolution (Bian et al., 2009), particle size distribution (Chin et al., 2009), complex refractive index (Brown et al., 2021), 

aerosol lifetime (Bauer et al., 2013), and aerosol mixing state (Cappa et al., 2012; Brown et al., 2021). With different 

assumptions, methodologies, and parameterizations selected for aerosol processes in models, model evaluations can be very 100 

different even when the same emission inventory is used. 

Apart from the issues in emissions and model configurations, the uncertainty in observations is another factor affecting 

model evaluations. AErosol RObotic NETwork (AERONET) is frequently used as a solid observation dataset for aerosols 

(Tombette et al., 2008; Smirnov et al., 2011). However, the AERONET network is not particularly well aligned with BBA 

regions and available observations are limited (e.g., in Africa, Siberia). Over specific BB regions, flight campaign 105 

measurements are applied to be compared with models for certain periods (e.g., Myhre et al., 2003; Johnson et al., 2016). But 

the temporal coverage of these campaigns is limited given the large inter-annual variability of fires (van der Werf et al., 2017), 

and the observations suffers from uncertainties due to sampling instruments (Pistone et al., 2019). In comparison, satellite 

datasets provide more continuous observations in space and time. Unfortunately, satellite remote sensing, conducted by either 

a polar-orbiting or geo-stationary satellite, suffers from a series of uncertainties and noise that can originate from radiance 110 

calibration, cloud screening, the effects of strong surface reflection, and the variation in aerosol particle sizes and components 

(Li et al., 2009; Schutgens et al., 2020; Falah et al., 2021). As a result, the satellite retrieved AOD displays significant 

variations. For example, Schutgens et al (2020) found that the diversities of individual satellite products can reach up to 100% 

on regional scales. It is therefore necessary to understand the uncertainties in the satellite products prior to the model validation.  

To better quantify and interpret the model bias of BBA, we conducted a comprehensive inter-comparison between various 115 

global models and observations. The aim of this work is to provide a satellite-based assessment of the state-of-the-art global 

models in representing BBA that has long been recognized as an important contributor to the overall aerosol uncertainties 

(Kanakidou et al., 2005; Myhre et al., 2013). This study focusses on AOD at 550 nm−a basic optical property used to measure 

the abundance of aerosols in the atmosphere−during fire seasons. A model ensemble was built from three phase-III experiments 

of the Aerosol Comparisons between Observation (AeroCom) project. Such a comparison between models and satellite 120 

observation ensembles will provide more robust results than individual comparisons, and the spread of individual models 

allows an in-depth interpretation of the modeled diversities. Additional modeled variables and observations (e.g., total 

emissions, aerosol load, precipitation, plume height, Ångström Exponent, hygroscopic growth) were also used to further aid 

in the interpretation. Prior to the model validation, we assessed a total of 14 satellite products to identify the possible 
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uncertainties induced by observations of AOD. The paper is organized as follows. The details of the methodology and data 125 

sources are presented in Section 2. Section 3 evaluates satellite observation uncertainties over the selected fire regions and 

their impacts on model validations. Section 4 quantifies the model bias in AOD. Section 5 presents the diversity in modeled 

AOD which is further interpreted through three aspects of the modeling processes. 

2 Data and Methods 

2.1 Models and variables 130 

This study evaluated the AOD at 550 nm simulated by models from three AeroCom Phase-III experiments: the biomass burning 

emissions experiment (BBE), control experiment 2016 (CTRL16), and control experiment 2019 (CTRL19). A total of 18 

different models were investigated in our study, with parts of the models participating in multiple experiments with different 

versions. Table 1 provides an overview of these models, more details are provided in the Appendix and listed references. The 

general settings of the three experiments were as follows.  135 

The aim of the BBE was to quantify the impact of BBA emissions on AOD simulations. All the participating models 

presented simulations for the year 2008 using the prescribed BB emission input (GFED3). In addition, simulations with scaling 

factors of 0, 0.5, 2, and 5 (referred to as BBE0, BBE0.5, BBE2, BBE5) adapted to GFED3 emissions were also provided. 

These scaling factors were based on a preliminary simulation by the Goddard Chemistry Aerosol Radiation and Transport 

(GOCART) aerosol model, which found that using default GFED3 emissions would lead to AOD underestimations over most 140 

fire regions (Petrenko et al., 2012). The perturbations in emissions would allow a quantitative analysis of the AOD-emission 

response.  

The models in CTRL16 adopted the standard diagnostics and presented simulations for 2006, 2008, and 2010. The modelers 

were advised to nudge the meteorology to (or drive the models by) their preferred datasets (see Table 1). The standard outputs 

mainly included 2-D fields at a monthly frequency, which were extended by several other experiments launched subsequently 145 

(e.g., the remote sensing experiment). High-frequency (3-h) AOD data together with other information (e.g., 3-D fields of the 

AOD) are currently available. In this study, we examined 12 models with an AOD output at a 3-h frequency for 2006, 2008, 

and 2010.  

The state-of-art of aerosol modeling for 1850 (pre-industrial era) and 2010 (present day) was assembled in CTRL19. All 

models were nudged to (or driven by) a fixed sea surface temperature and 2010 meteorology using different data sources (see 150 

Table 1). Emissions from Coupled Model Intercomparison Project Phase 6 (CMIP6) were used when applicable. The model 

AOD was output at a daily or monthly frequency. In this study, we selected 12 models that provided a daily output for 2010. 
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In addition to AOD, additional variables from the models were used to interpret model diversity when available. These 

additional variables included emissions, total deposition (both dry and wet deposition), aerosol column load (with aerosol 

species resolved), the vertical profile of the extinction coefficient (EC), precipitation, and Ångström Exponent (AE, which was 155 

calculated using the AOD at 440 and 550 nm, the AE-based interpolation was adopted if AOD at 440 nm was not available 

for some models).  

We also prepared a questionnaire filled by modelers to acquire information on the model configuration details (see 

Appendix). Information was collected for models in CTRL16 and CTRL19.  

2.2 Fire regions 160 

Based on the models considered, three key BB regions were selected in this study: Amazon (AMAZ), Southern Hemisphere 

Africa (SHAF), and boreal North America (BONA). Figure 1 shows the domains of these three regions and the corresponding 

OC emissions from BB. In terms of their aerosol emission, different fire types could be identified in each region. The BB 

emissions in AMAZ were dominated by tropical forest fires and deforestation, whereas emission from savanna grassland fires 

was the major source in SHAF. In BONA, BB aerosols were mainly emitted from boreal forest fires. Regions with agricultural 165 

waste burning or temperate forest fires were not considered due to their small contribution on a global scale (van der Werf et 

al., 2010). Using the satellite observation of AOD, we defined the fire seasons (dry seasons) over the three regions (see Figure 

1b) that were investigated in this study. 

2.3 Observation data 

A total of 14 satellite AOD datasets were used in this study. Table 2 provides an overview of the datasets. The AOD data at 170 

550 nm wavelength were obtained by either direct retrieval or interpolation/extrapolation from the AOD at nearby 

wavelengths.  

The ground-based remote sensing data were taken from AERONET DirectSun L2 v3 (Dubovik et al., 2000). The locations 

of the AERONET sites within the three fire regions are shown in Figure 1a. Given that the sparse distribution of AERONET 

sites results in poor spatial data coverage, especially in SHAF and BONA, we mainly used the AERONET data to evaluate the 175 

satellite datasets, while model validations relied on satellite data. 

For the vertical profiles, we used the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) L2 Layer 5 km v4.20 

product. The EC data at 532 nm were compared with models (at 550 nm) where the vertical data were available. For CALIOP 

data, we only considered columns that had at least one aerosol retrieval based on the cloud-aerosol discrimination (CAD) 

scores (CAD < -20) (Watson-Parris et al., 2018). Columns with extreme CAD scores (< -100) were also excluded because they 180 

might have been the result of bad shots (Watson-Parris et al., 2018). To ensure data quality, we only used the most reliable 
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retrievals that had extinction quality control (QC) flags of 0, 1, 2, 16, or 18. In addition to the direct comparison of vertical 

extinction profiles, we calculated the weighted mean plume extinction height (PEH) based on the vertical EC and layer height 

(hi) for the aerosol layers below 6 km (Koffi et al., 2016), as shown by Eq. (1): 

PEH =  
∑ 𝐸𝐶𝑖ℎ𝑖

∑ 𝐸𝐶𝑖
                       (1) 185 

In addition, we evaluated the modeled precipitation as it is the cause of a major deposition process. The precipitation data 

were taken from the Global Precipitation Climatology Project (GPCP), which incorporates precipitation from low-orbit 

satellite data, geosynchronous satellite data, and surface raindrop observations (Adler et al., 2003).  

2.4 Data analysis 

To mitigate sampling issues associated with sparsely distributed observations, we conducted strict collocations before the data 190 

were evaluated (Schutgens et al., 2016a; b). Both model and observation data were firstly re-gridded into the 1° × 1° spatial 

grid-boxes. The temporal resolution was aggregated into 3-h or daily intervals according to the model output frequency (see 

Table 1). For the satellite validation against AERONET, we compared satellite data with AERONET at the resolution of 1° × 

1° × 3-h. Specially, the plume height in models was validated against CALIOP on monthly basis since CTRL19 models only 

provided data at such a resolution. Vertically, the CALIOP data were aggregated into 100-m intervals and all the extinction 195 

profiles from models were linearly interpolated into the same resolution for validation. 

The data aggregation and collocation were processed via a command-line tool called Community Intercomparison Suite 

(CIS, Watson-Parris, et al., 2016). To quantitatively evaluate the model performance and satellite observation uncertainties, 

we utilized Taylor diagrams to present the statistics, including the Pearson correlation coefficient (R), standard deviation (SD) 

and centered root mean square error (CRMSE) (Taylor, 2001). Taylor diagrams are presented in polar coordinates with the 200 

polar axis showing the SD of evaluated data and cosine of the polar angle showing the R-value between evaluated and 

‘reference’ data. The distance between the evaluated and ‘reference’ data shows the CRMSE according to the law of cosines. 

Both evaluated and ‘reference’ data were normalized by the SD of ‘reference’ data so that the ‘reference’ was always located 

at [1, 0] (see Figure 2a for an example). A Taylor diagram is a convenient way to visualize the performance of models or 

observations versus a reference data set. However, bias is not shown by Taylor diagrams, and we accompanied each Taylor 205 

diagram with a plot showing the normalized mean bias (NMB, defined as the mean bias divided by the mean value of 

observation) to provide a comprehensive evaluation.  
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3 Evaluation of satellite products 

3.1 Validating satellite products against AERONET dataset  

A large number of satellite AOD datasets have become available, and it is important to use the dataset that can adequately 210 

serve the specific research goal. In light of the uncertainties in satellite observations, we evaluated individual satellite datasets 

against AERONET observations before model validation in the three fire regions. The evaluation was only conducted for data 

during the fire seasons, and most observations were collected over AMAZ.  

Figure 2 shows the evaluation of 14 satellite datasets against AERONET observations for the three fire regions during the 

fire season. The data points in the Taylor diagram were normalized by AERONET data with a different sampling for each 215 

product (Figure 2a), while NMBs are shown in the scatter diagram (Figure 2b). All the satellite datasets agreed with 

AERONET observations over AMAZ better than the other two regions, with stronger correlations (R = 0.85–0.95) and lower 

normalized CRMSE (< 0.5). For AMAZ, all the datasets had similar correlations and CRMESs but very different biases. The 

POLDER-GRASP dataset and two algorithms adopted to Moderate Resolution Imaging Spectroradiometer (MODIS) data 

(BAR and DarkTarget) tended to overestimate AOD (3–13%), while the others resulted in underestimations (-1–-20%). Unlike 220 

in AMAZ, individual satellite products agreed less well with AERONET and there were strong variations within each of them 

over SHAF and BONA (R = 0.31–0.91, CRMSE = 0.51–1.71). All products except Aqua-MODIS-BAR underestimated AOD 

over SHAF (-7–-73%), whereas most products overestimated AOD over BONA by up to +73%. Both the spatial and temporal 

data coverages in BONA and SHAF were much lower than in AMAZ, probably due to the higher surface reflectance (less 

forested) which made the retrievals more difficult and less accurate (Fraser and Kaufman, 1985). Generally, we found that 225 

MODIS products agreed well with the AERONET data, although details vary by the retrieval algorithm. For example, the 

MODIS-BAR products were the best in AMAZ and SHAF, while the MODIS-MAIAC product was better than the others in 

BONA. From the perspective of bias, we found that the variations among satellite products were affected more by the algorithm 

than the instrument, which was related to the amount of spectral information used in the retrieval. For example, the data spread 

of the four instruments that adopted the DeepBlue algorithm (i.e., Aqua-MODIS-DB, Terra-MODIS-DB, AVHRR-DB, and 230 

SeaWiFS-DB) was smaller than that for the MODIS products that used four different algorithms (i.e., BAR, DB, DT, and 

MAIAC) for all three regions.  

It should be noted that the evaluation was affected by representation issues. As shown by Figure 1, there were more 

AERONET sites located in fire areas in AMAZ. While in SHAF, the AERONET sites were far from the fire emission sites 

and the downwind area and only captured a small part of the BB aerosol signals. In BONA, the temporal coverages of both 235 

AERONET and satellites were poor. Due to the stratocumulus and low broken cumulus cloud contamination, satellite retrievals 
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of AOD were enhanced, which could lead to unexpected overestimations when compared with the ground-based observations 

over BONA (Toth et al., 2013).  

3.2 Impacts of different satellite datasets on model validations 

In this study, we utilized POLDER-GRASP to evaluate all the models. AOD from POLDER-GRASP has been validated in a 240 

previous study which suggests POLDER-GRASP is superior to other products globally (Schutgens et al., 2021). The AE data 

has also been validated before, showing a good agreement with AERONET (Chen et al., 2020). In our study, we also 

investigated how the observation uncertainties mentioned above may affect model validations, which were indicated by the 

interquartile ranges of the R, CRMSE, and NMB based on validations using different satellite products. The interquartile 

values were further compared with the statistics (i.e., R, CRMSE, and NMB) when using POLDER-GRASP to show the 245 

uncertainty range when using the specific dataset. Before calculating the difference in model validation (i.e., R, CRMSE, 

NMB) due to different satellite products, each model was collocated with satellite products either individually (i.e., all the 

models were collocated with the different sampling of each satellite product, see Figure 3a-c) or synchronously (i.e., the model 

data were collocated with the same sampling where all satellite products could provide data, see Figure 3d-f). In the latter 

case, only products that had a similar overpass time with POLDER-GRASP were considered (i.e., with an overpass time in the 250 

afternoon, excluding datasets onboard Terra and ENVISAT). For comparison, the uncertainty ranges of 25%, 50%, and 100% 

for the relative uncertainties to POLDER-GRASP were also shown.  

For the individual collocation case, we found that the uncertainties in R and CRMSE (Figure 3a-c) due to the different 

satellite products were generally lower than 25%, indicating a small impact when using different satellite datasets. The impact 

on CRMSE was slightly stronger than that on R, which suggested that different satellite products tended to have higher 255 

consistency in capturing the spatiotemporal variations than the magnitude of AOD . In the case of NMB, the impacts of 

verifying against different satellite data products were  large only when the modeled NMB was small (<20%).  The majority 

of simulations had an NMB higher than ± 40%, suggesting the uncertainties among the different satellite products were less 

important for NMB and the modeled bias was dominated by the biases in the model instead of the difference in satellite 

products.  260 

For the synchronous collocation which eliminated the sampling differences (Figure 3d-f), similar results were obtained 

with even much smaller satellite uncertainties. In this case, all the satellite products were collocated, which greatly reduced 

the frequency of cloud contamination issues and provided more reliable results. Due to the synchronous collocation, a large 

portion of the original observations was filtered and statistical noise may stand out. We then conducted a 10,000-time bootstrap 

sampling with replacement to examine the potential effects of such noise. In each time, we randomly excluded 20% of the data 265 

to test the robustness of our evaluations. The coefficient of variation for the satellite observation uncertainties from the 10,000-
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time bootstrap sampling was 1–10% for R, 1–12% for CRMSE, and 3–27% for NMB. For the stronger variation in NMB, over 

85% of simulations were subject to an NMB variation of less than 10%, suggesting very robust results for the above analysis. 

All this indicated that although there were different errors in these satellite products, only a small part (accounting for < 25% 

of the modeled errors) could be expected to affect the model validation. Given the small impacts, we decided to validate models 270 

against POLDER-GRASP product for both AOD and AE, which provided a degree of consistency for the whole analysis.  

Though model validations during fire seasons would not be altered much by using different satellite datasets, it is not the 

case for other areas/periods. For example, in the same fire regions outside the fire seasons, we found that the uncertainties due 

to different satellite products could be as high as 50% in most cases (not shown). Therefore, we highly recommend evaluations 

of satellite datasets before using them for model validations. 275 

4. Evaluation of AeroCom models 

We then evaluated AOD in AeroCom models in three experiments using the POLDER-GRASP product. All model data were 

collocated with POLDER-GRASP sampling. The model evaluation is shown in Figure 4 via Taylor diagrams and bias plots. 

The R-values ranged from 0.1 (INCA over BONA in BBE) to 0.78 (ECMWF-IFS over SHAF in CTRL19) for all models and 

regions, with a median value of 0.63. Over 80% of the model simulations had an R-value higher than 0.5, but only 24% of 280 

simulations had correlations stronger than 0.70, suggesting a generally moderate capability for capturing the spatiotemporal 

variation in aerosol data. For CRMSE, the modeled variation (defined as the inter-quantile range divided by the median value, 

51%) was stronger than that for R (22%), indicating a higher modeled disparity of the AOD magnitude than the spatiotemporal 

trends. Based on an analysis of variance for R and CRMSE (Figure 4a-c), we found that the models showed similar 

performance over the three regions as there was no significant difference found. The median NMB of models (Figure 4d) for 285 

AMAZ, SHAF, and BONA were -28% (-6%–-54% as inter-quartile), -54% (-30%–-63%), and -54% (-46%–-57%), 

respectively. Models produced significantly smaller NMB over AMAZ than over the other two regions, though the inter-model 

variation was also found to be the highest among the three regions. More than half of the simulations showed an 

underestimation of AOD by a factor of > 2, consistent with previous studies (e.g., Kaiser et al., 2012; Veira et al., 2015; 

Johnson et al., 2016). In Figure 5, we compared the daily AOD series for the model ensembles with POLDER-GRASP 290 

observations. For most models, the underestimations of AOD tended to be exacerbated during the peak of observations. 

In addition to the overall model evaluations, we also evaluated the modeled temporal (time series for the whole fire regions) 

and spatial patterns (temporal averages for individual grid-boxes during fire seasons). In Figure 6, we compared the temporal 

and spatial correlations of modeled AOD with observations. Most models showed similar temporal and spatial correlations 

ranging from 0.6 to 0.9 which were slightly higher than the overall correlations shown in Figure 4 due to data averaging. Both 295 
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the spatial and temporal correlations in most models clustered in this range, which partly explained the similarity of the overall 

correlations mentioned above. We found there was no significant difference between the temporal and spatial correlations in 

individual models from the three experiments. Although the AOD errors differed substantially per model, the spatial and 

temporal variation among models tended to be small. For the model ensembles, we found there was no significant difference 

among the three experiments for both spatial and temporal correlations, even though improvements might occur in emission 300 

inventories and/or models following the time sequence from BBE to CTRL16 to CTRL19. We also compared the variations 

of temporal and spatial AOD biases AOD biases, as shown in Figure 7. Here the variations were defined as the ratio of 

interquartile to median values of the time series (temporal variations) or spatial averages (spatial variations) of absolute 

modeled AOD bias. The spatial variations were significantly smaller than temporal variations for all three experiments, 

suggesting the different temporal evolution of AOD biases was the leading cause of the large NMB diversity in Figure 4. It 305 

partly suggested that current emission inventories had a better representation of BBA emissions over space than over time.  

Since the modeled AOD bias is strongly affected by input emissions (Kaiser et al., 2012; Johnson et al, 2016), we also 

investigated the model response to the changes in emissions based on BBE experiment. This scaling-up procedure has been 

used to fix overall AOD errors for BBA in previous studies (e.g., Kaiser et al., 2012; Johnson et al, 2016; Veira et al. 2015). 

Figure 8 shows the evaluation of these models for R, CRMSE, and NMB. As expected, NMB increased monotonously with 310 

the increase of emissions. Most models would produce significant positive bias when the scaling factors to GFED3 reached 5, 

but more than half of models still underestimated AOD when BBA emissions were doubled. Such trends were also found for 

CRMSE with a much weaker sensitivity. Similar phenomena were also found in the other two experiments. For example, we 

found the ECHAM-HAM model agreed well with observation in CTRL16 experiment which used 3.4 × GFAS emissions, 

while it produced large underestimation when the CMIP6 emissions (much lower than 3.4 × GFAS) were used (see Figure 315 

4d). Given the metrics of CRMSE and NMB, the ensemble of models in BBE experiment showed the best agreement with 

observations when the emissions were scaled by a factor of 2. This systematic response of modeled bias also suggested a 

possible underestimation of emissions in the applied inventory (GFED3). However, correlations in most models did not 

improve along with the increased emissions, since there was no further spatiotemporal information added into the emissions.  

The modeled AOD bias during fire seasons could be due to both BBA and background sources (e.g., anthropogenic, 320 

biogenic, dust, and sea salt aerosols). However, it is difficult to isolate BBA errors from the background based on existing 

simulations. Since we found that most models underestimated AOD in the BBE1 simulations, it was not possible to determine 

the real BBA impacts by comparing BBE1 and BBE0 simulations. Instead, we compared the collocated BBE0 AOD 

(background) with POLDER-GRASP observation during fire seasons. The modeled AOD in BBE0 varied substantially by a 

factor of 9 in the three regions. Compared with observations, the background averagely accounted for only 14%, 12%, and 325 

11% of total AOD over AMAZ, SHAF, and BONA, respectively. We also compared the modeled AOD biases during non-fire 
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seasons with those during fire seasons, with the former showing much smaller magnitude compared with the latter (0.04 vs 

0.35, for the absolute mean bias). This analysis supports the notion that AOD bias over the fire regions was dominated by the 

BBA rather than background sources.  

5. Model diversity and its interpretation 330 

As the above model evaluation could not provide sufficient information on the causes of the model biases, we explore the 

diversities of AOD in this section. Our strategy is to first evaluate the diversity in modeled AOD and the possible drivers that 

could lead to such variability, and then compare those drivers with available observations to understand the model variability 

and therefore bias. This practice will also contribute to future model development. Unless stated otherwise, data in this section 

are presented as area averages for the whole fire season based on the raw model outputs without any collocation. The aim is 335 

to determine the general drivers of variation in AOD for model ensembles rather than individual models, although evaluations 

for specific models are also presented where sufficient information is available.  

5.1 Decomposition of modeled AOD diversity  

The diversities of AOD were decomposed into three factors, i.e., total aerosol emissions, aerosol lifetime, and the MEC, as 

described by the following function:  340 

AOD = Emission × Lifetime × MEC                                                                                                                                (2) 

where emission indicates the total emissions of OA (including secondary organic aerosols which were treated as emitted 

aerosols given the fast transformation), BC, sulfur dioxide (SO2), sulfate (SU), mineral dust (DU), and sea salt (SS) within the 

fire regions; lifetime is defined as the average total aerosol load divided by total emissions within the fire regions; and the 

MEC is defined as AOD divided by total aerosol load, which is strongly associated with the modeled aerosol optical properties 345 

(e.g., size distribution, refractive index, hygroscopicity, etc.). Emissions, aerosol load, and AOD were first calculated as 

regional and seasonal averages so that the lifetime and MEC were determined on a seasonal level for the focused regions. Note 

that the definition of lifetime in this study is different from the usual one as we are considering open systems. However, the 

time scale here called lifetime is still determined by the same relevant process (e.g., depositions). This is discussed in detail in 

Sec. 5.1.   350 

Figure 9 shows the diversities of the three factors. The slope of the line between each dot and the origin indicates the 

aerosol lifetime (Figure 9a) and MEC (Figure 9b) for a specific model averaged for the whole fire season, respectively. The 

emissions varied by a factor of 10 among the models. Such large deviations resulted from different emission inventories 

(mainly for CTRL16 models) and the different schemes for estimating non-BB aerosols (e.g., dust, biogenic sources). For 
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CTRL19 experiment with its prescribed emission inventory (CMIP6), the input emissions were altered mainly by the different 355 

OA/OC ratios, and to a lesser extent by the different mechanisms of DU production and biogenic sources. For example, the 

OA/OC ratios were set as 1.4, 1.8, and 2.6 in ECHAM-HAM, GEOS, and SPRINTARS, leading to emissions being 34% and 

88% higher in the latter two models, respectively. The difference in these ratios is a consequence of the different assumptions 

regarding the oxidation of freshly emitted OC. The widely used ratio of 1.4 was established based on field measurements over 

urban regions (Turpin and Lim, 2001) and was therefore more representative for anthropogenic OC emissions. More recent 360 

investigations of the BB plume have suggested that the oxidation levels are higher for both fresh and aged BB OC particles 

(Aiken et al., 2008; Brito et al., 2014; Tiitta et al., 2014). Increasing the OA/OC ratio can directly lead to an elevated AOD in 

models and a higher ratio than 1.4 has been suggested for BB aerosols in some previous studies (e.g., Reid et al., 2005; Aiken, 

et al., 2008; Johnson et al., 2016). Omitting GISS-MATRIX and GISS-OMA which produced an unexpected positive AOD 

bias (see Figure 4), we found that the modeled NMB generally decreased with an increase in the OA/OC ratio for CTRL19 365 

models. For example, the average NMB of AOD for the model group that used the ratio of 1.4 (i.e., CAM5-ATRAS, ECHAM-

HAM, and ECHAM-SALSA) was -61%, whereas the value was only -22% for the group using a ratio of 2.6 (i.e., CAM-Oslo, 

NorESM, OsloCTM, and SPRINTARS). The NMB of the models using a ratio of 1.6–1.8 was within an intermediate range (-

43% to -46%). This shows the importance of determining realistic values of the OA/OC ratio. However, it does not necessarily 

mean that higher OA/OC ratios can address the underestimated AOD. For example, both SPRINTARS and OsloCTM produced 370 

significant overestimations in AMAZ using an OA/OC ratio of 2.6 that was higher than many in-situ observations (e.g., Brito 

et al., 2014; Zheng et al., 2017).  

When all three fire regions were considered simultaneously, there was a general linear response of the aerosol load to 

aerosol emissions, and of AOD to aerosol loads. Nevertheless, significant diversities in lifetime and MEC were found. For the 

three regions, the relative variation (i.e., interquartile value divided by the median value) was found to be the lowest for the 375 

MEC (49%, 41%, and 40% for AMAZ, SHAF, and BONA, respectively), moderate for aerosol lifetime (62%, 49%, and 26%, 

respectively), and highest for emissions (62%, 95%, and 64%, respectively). For the aerosol lifetime and MEC which were 

mainly affected by other model aspects than emissions, we found the ensemble median values for these two factors were 

similar among the three fire regions. HadGEM3 over BONA presents an outlier case for lifetime which is probably related to 

high local DU emissions. We also noticed that the DU emission in HadGEM3 covered a much wider area than in the other 380 

models due to the use of different mechanisms (Woodward, 2001; Mulcahy et al., 2020).  

The contributions of aerosol emissions, aerosol lifetime, and the MEC (which were found to be statistically independent 

on each other) to the overall variation in AOD were evaluated. We used Eq. 2 to investigate such contributions. In the case of 

the AOD variation induced by emissions, we calculated the AOD variation (i.e., the standard deviation) over all modeled 

emissions and a random combination of aerosol lifetime and MEC values from the model ensemble. This calculation was 385 
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repeated for all the combinations of aerosol lifetime and the MEC, and the variation in AOD attributable to emissions was then 

quantified as the average value of all the standard deviations. Similar calculations were also applied to aerosol lifetime and 

MEC values. It was estimated that aerosol emissions, aerosol lifetime, and the MEC accounted for 38%, 33%, and 29% of the 

variation in AOD, respectively, suggesting only small differences in determining the overall variation, although emissions 

might be slightly more important than aerosol lifetime and the MEC. We also applied this evaluation to individual fire regions 390 

and similar conclusions were obtained. This suggests that reducing the uncertainties associated with emissions uncertainties 

might have only a moderate impact on the accuracy of the BBA simulations, and uncertainties in lifetime and MEC should 

also be considered.  

5.2 Diversity of aerosol lifetime  

In this section, we discuss the potential factors that contribute to the diversity of aerosol lifetime. Because we focused on three 395 

separate open systems, we described the aerosol budget of each region as a simple box model, as shown by Eq. (3): 

  
𝑑𝐵

𝑑𝑡
= 𝐸 − 𝐷 + 𝐼 − 𝑂 + 𝑃 − 𝐿 →  

𝐸

𝐵
=

𝐷

𝐵
−

𝐼−𝑂+𝑃−𝐿

𝐵
                                                                                                           (3) 

where B, E, D, I, O, P, and L indicate the average of total aerosol burden, emission, deposition, inflow, outflow, chemical 

production, and chemical loss of a focused region. For a closed system and a steady state without chemistry I = O = P = L =0 

and a lifetime can be defined as E/B = D/B. For an open system, steady-state and with on-going chemistry, E/B does not equal 400 

to D/B but both still are time-scales defining the system. Here we show that for these fire regions, E/B correlates with D/B. 

Figure 10 displays the linear dependence of the modeled aerosol lifetime on the time scale of total deposition and all other 

processes. For most models, the reciprocal of aerosol lifetime (E/B) responded linearly to the time scale of deposition (D/B), 

except for INCA from CTRL16. This suggests that the difference in deposition is a leading contributor to the variation in 

aerosol lifetime. HadGEM3 simulations in BONA (the outliers of the aerosol lifetime trend in Figure 9) still followed the 405 

same linear trend, confirming that the short aerosol lifetime is a direct result of the strong deposition of coarse mineral dust. 

For INCA, the simulated aerosol load was much lower than other models, and the modeled aerosol composition was very 

different with OA contributing less than 20% of the total aerosol load. As a result, the coarse mode aerosols dominated the 

total aerosol composition, resulting in a relatively short aerosol lifetime. When the INCA model was omitted, the correlation 

between the reciprocal of aerosol lifetime and the deposition timescale (i.e., deposition/load) was 0.95, suggesting that 90% of 410 

the modeled variation in aerosol lifetime could be explained by deposition. The variation in regional transport and the chemical 

budget together only contributed around 10% of the variation in aerosol lifetime and was therefore much less important to the 

overall difference in AOD. The timescale of the total deposition had a variation of 72% (i.e., the interquartile value divided by 

the median) which was slightly higher than the aerosol lifetime (62%). 
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The modeled deposition was primarily a consequence of wet deposition (61% of the total deposition on average) even 415 

during the dry fire season. The modeled wet deposition, which occurred mainly due to below-cloud scavenging (Andronache 

2003; Zhang et al., 2004), was related to the size distribution of aerosols and raindrops as well as the precipitation intensity 

(Seinfeld and Pandis, 2006). Figure 11 compares the modeled timescale of total deposition and precipitation strength. Note 

that not all models provided both deposition and precipitation outputs, the conclusion of the evaluation may need to be re-

examined when more data becomes available in the future. The modeled precipitation differed among the models by factors 420 

of 3.8, 13.6, and 2.2 for AMAZ, SHAF, and BONA, indicating a substantial model discrepancy. When all regions were 

considered, there is a significant positive correlation between the modeled precipitation and the timescale of total deposition. 

For comparison, we also compared models with GPCP data. GEOS, SPRINTARS, and TM5 were among the models with an 

overestimated precipitation in all three fire regions, which suggested systematic errors in the modeled lifetime. On a regional 

basis, models exhibited large regional variations. Almost all models tended to overestimate the precipitation over BONA by 425 

up to 69% (ECHAM-HAM from CTRL19), which might partly explain the underestimated AOD in this region. There were 

large disparities in precipitation simulation over AMAZ, ranging from -21% to 130%. In contrast, we found that most models 

underestimated both AOD and precipitation in SHAF, suggesting other important sources of AOD bias in addition to 

precipitation. However, we did not observe a clear dependence of AOD biases on precipitation biases. For example, a bias of 

6% and -9% were found for precipitation and AOD, respectively, over AMAZ in CAM5-ATRAS from CTRL19, whereas the 430 

corresponding AOD biases were 14% and -86% over BONA. This suggests that other factors than precipitation affect AOD 

biases significantly.  

In addition to precipitation, we also examined the impacts of aerosol plume height on the aerosol lifetime. Figure 12a 

compares the modeled plume height (as represented by PEH) and aerosol lifetime. Based on the limited number of models 

with data available, there was a generally increasing trend in the aerosol lifetime as the plume height increased (r = 0.65) 435 

except for one outlier (IMPACT over BONA), suggesting that plume height could also affect the modeled aerosol lifetime. 

Generally, the modeled PEH varied by a factor of 4, partly due to the model assumption in the fire injection height for BB 

emissions. For example, ECHAM-HAM and ECHAM-SALSA, which allowed 25% of BB aerosol emissions to be emitted 

above the planetary boundary layer (PBL), generally had a higher plume height than models that distributed emissions within 

the PBL (e.g., GEOS, GISS-MATRIX). For validation, we further compared the aerosol vertical profiles between models and 440 

CALIOP observations (see Figure 12b1-3). To highlight the aerosol layer, we normalized each vertical profile based on the 

maximum (EC_max) and minimum extinction coefficients (EC_min) to remove the magnitude difference. The normalized EC 

was calculated as (EC_model – EC_min)/(EC_max-EC_min). Over AMAZ and SHAF, only a few models (ECHAM-HAM, 

ECHAM-SALSA, CAM5-ATRAS, GISS-OMA, and GISS-MATRIX) could capture the peak aerosol extinction at 2–4 km, 

whereas other models tended to show the strongest extinction at lower altitudes or the surface. Over BONA, the observed 445 
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extinction peaked at ~ 4 km, but no models were found with a similar profile. Compared with PEH from CALIOP, the simulated 

BBA plume tended to be too low for all the models. A similar underestimation was also reported elsewhere for AeroCom 

models with the bias being attributed to wet deposition being too strong in the models (Koffi et al., 2016).  

5.3 Diversity of MEC 

Modeled MECs are affected by several factors (e.g., particle size, complex refractive index, and hygroscopicity). As BBA is 450 

dominated by OA and very similar refractive indices are used in models (see Appendix), the choice of refractive indices is not 

discussed. Here we mainly examined the impacts of particle size and hygroscopicity.  

Because particle size information was missing for the AeroCom models, we used modeled AE as it is an indicator of 

particle size (Shuster et al., 2006). Figure 13a shows the dependence of modeled MECs on AEs. The modeled AE varied from 

0.21 to 2.2. Ambient particle size is the result of emitted particle sizes and particle processing after emission (see Appendix). 455 

Among all models, the lowest AE was found in INCA from CTRL16 due to the large contribution from coarse-mode SS, which 

also led to lower extinctions because of the lower MECs for SS than OA. When omitting INCA, a significant negative 

correlation was found between MECs and AEs (r = -0.58), although there were large variations between models. The 

correlation for CTRL19 models that were driven by the same emission inventory was even stronger (r = -0.73). The negative 

correlation suggested that a larger size (smaller AE) resulted in a stronger extinction per mass unit for typical BB aerosols, 460 

which agreed well with the observations (Laing et al., 2016; Kleinman et al., 2020). This can also be explained by the Mie-

scattering theory. In Figure 13a, we show the relation between MECs and AEs for pure OA aerosol based on the Mie-scattering 

theory. We assumed that the radius of dry OA particle ranged from 0.02 to 0.5 μm. The lower edge of the radius corresponded 

to the smallest emitted particle assumed in all the models examined (see Appendix) and the latter indicated the upper edge of 

accumulation mode (Tegen et al., 2019). Hygroscopic growth was considered to occur based on the Kappa-Köhler theory 465 

under an RH of 50% and the kappa value for OA was set as 0.06 referring to Zhang et al (2012). A series of sensitive tests 

suggested that hygroscopic growth did not affect the calculation much. The refractive index was set to 1.53-0.0055i as assumed 

in most models. The extinction cross-section was retrieved from the look-up table from ECHAM-HAM, based on which MECs 

and AEs were calculated. The calculated MEC increased with increasing particle size (decreasing AE), which agreed with the 

modeled relations. Note that many models deviate from our Mie calculation though the Mie theory was applied in those models. 470 

Possible causes for such deviations might include, e.g., the aerosol composition (i.e., non-OA components), mixing state for 

multiple species (e.g., BC), assumptions on the size distribution (e.g., bins, distribution width), and treatment for the mixing 

of particles with different size distributions. 

The negative correlation between AEs and MECs suggested the possibility of evaluating and subsequently constraining 

MEC by AE. In Figure 13b we validated modeled AEs against observations from POLDER-GRASP for the fire season. 475 
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Because most of the AE data for CTRL19 models had a monthly resolution, we collocated all the model data with observations 

on monthly basis. Compared with POLDER-GRASP observations, the majority of models tended to overestimate AEs by up 

to 0.85. BONA had the highest overestimation on average (0.27), followed by AMAZ and SHAF. Given the previous analysis 

of the MEC dependence on AE, the underestimation of particle size may have led to a considerable underestimation of MECs 

and thereby AOD. Similar to the impacts of precipitation, no strong correlation was found for AOD biases with AE biases, 480 

which was largely due to the interaction of multiple factors and non-linear model response. 

The hygroscopicity was quantified as the extinction enhancement factor (EEF) which was defined as the ratio of AOD at 

the ambient relative humidity (RH) to AOD at zero RH (dry AOD). Figure 14 illustrates the relation between MECs and EEFs 

in models. For most models, a small EEF (< 2) was observed, and we did not observe clear patterns between EEFs and MECs, 

probably because the hygroscopic growth was not significant given the low hydrophilicity of OA and the dry air condition 485 

during fire seasons. Such a narrow range agreed well with observations from in-situ measurements (see Table 3), though the 

‘dry’ condition in measurements (RH = 20%−30%) usually differed from models. Except for these models, there were a few 

models that showed strong hygroscopic growth, accompanied by a positive correlation with MECs for each model. Such 

anomalies are related to the assumed BBA properties including, e.g., particle size, mixing state, and hygroscopicity 

parameterizations for OA given its dominance (Takemura, 2005; Burgos et al., 2020). In addition, we also found the modeled 490 

relations between MEC and EEF were closely related to the treatment of ‘clear-sky/all-sky’ assumptions. For example, the 

clear-sky data from GISS-OMA model showed similar EEFs to other models, whereas the all-sky data exhibited much higher 

EEFs. For those models with higher hygroscopicity (i.e., GEOS-Chem, GISS-OMA, IMPACT, and SPRINTARS), the 

predicted MECs under the same EEF varied substantially by a factor of 5 per model, suggesting that the modeled MEC diversity 

was controlled by other factors. When all models were considered together, there was no clear pattern between EEFs and 495 

MECs found. 

6. Conclusions  

In this paper, we conducted a comprehensive evaluation and interpretation of AOD errors in AeroCom models over three key 

BB regions. We first evaluated 14 satellite AOD datasets against AERONET and identified their errors. These errors in satellite 

observations were then compared with model errors, with a much larger magnitude for the latter found in most models. We 500 

noticed that such a small impact from different satellite products only applied for our validations over BB regions during fire 

seasons. Specially, we found that the errors due to different satellite observations were comparable to the model errors for the 

non-fire seasons over the three BB regions.  
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Detailed model validations against POLDER-GRASP observations suggested that most of the models still largely 

underestimated AOD, especially when using the standard emission inventories (e.g., GFED3, CMIP6). We did not observe 505 

significant improvements of modeled AOD in the latest experiment (CTRL19) compared with previous ones. The model 

ensembles from the three AeroCom experiments exhibited a smaller inter-model spread of AOD correlation with observations 

than AOD errors (e.g., CRMSE, NMB). Models seem to have a similar capability to model the spatiotemporal variation of 

BBA, probably due to the similarity of input emissions as we found pretty strong correlations (~ 0.7) among the emission 

inventories used by these models (see Appendix). Most of the diversity in model errors is due to a season-wide bias. That said, 510 

temporal biases seem larger than spatial biases. We also provided evidence that AOD errors during the fire season were 

dominated by BBA errors, with only a small contribution from the background. Based on BBE simulations, we found negative 

biases could be reduced by scaling up BBA emissions. However, we showed that scaling up emissions was not a perfect 

solution to address model bias as the correlations did not improve significantly, suggesting that the spatial and/or temporal 

bias still existed..  515 

We further analyzed the large diversity in fire AOD as resulting from emissions, lifetimes, and MECs which all exhibited 

large diversities too. When all models were considered, we showed that the contributions of these three factors to the overall 

AOD diversities were similar, though emissions exhibited slightly higher importance. In spite of the large inter-model 

diversities, the model ensembles show very similar lifetime and MEC over different BB regions, suggesting that basic model 

assumptions underlie lifetime and MEC for the current model ensemble. We suspect that relatively simple changes in these 520 

assumptions may produce significant improvement in BBA simulations.  

Modeled lifetime was correlated with modeled precipitation strength. Comparisons with observations suggested diverse 

and region-specific precipitation errors. Modeled lifetime was also related to plume height which was found to be strongly 

underestimated by models. We found MECs depended on how models simulate AE (or particle size). We further compared 

modeled AE with POLDER-GRASP observations where general AE overestimations were found in most models. Most models 525 

produced acceptable hygroscopicity compared with observations. These findings can provide useful information for future 

model improvement and development. 

There are several uncertainties in our evaluation and analysis. One is the uncertainties in POLDER-GRASP satellite 

observation. Although we showed that satellite errors did not affect our evaluations very much, we still found that POLDER-

GRASP had un-ignorable retrieval errors over the focused regions (13%). However, the retrieval error was difficult to be 530 

precisely defined due to the lack of sufficient samplings in SHAF and BONA by AERONET. On a global scale, POLDER-

GRASP was found to be superior to other satellite products used in this study.  The other uncertainty stems from the assumption 

of clear-sky conditions. As we evaluate model AOD against satellite data which are always clear-sky observations, clear-sky 

model AOD should be used for comparison. However, models have very different treatments of the ‘clear-sky’ assumption. 
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For example, SPRINTARS considers 20% cloud fraction as ‘clear sky’, while GISS-OMA assumes cloud free only for 0% 535 

cloudiness. Although strict collocation can partly address this issue, uncertainties may still exist. Such an issue should be 

investigated more in further model validations. 
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Table 1. The details of the AeroCom Phase-III models evaluated in this study. 

Model Experimenta   Model version Lat./Lon./Lev. Meteorology  Reference  

CAM-Oslo 
CTRL16 CAM5.3-Oslo 192×288×30 

ERA-Interim 
Kirkevåg et al, 2018; 

Seland et al., 2020 CTRL19 NorESM2 (CAM6-Nor) 192×288×32 

CAM5 
BBE CAM5.3_f19 

96×144×30 ERA-Interim Liu et al., 2012 
CTRL16 CAM5.3_f19 

CAM5-

ATRAS 
CTRL19 CAM5-ATRAS-v2.0 96×144×30 MERRA2  

Matsui, 2017; Matsui 

and Mahowald, 2017 

ECHAM-HAM 

BBE ECHAM6.1-HAM2.2 

96×192×47 ERA-Interim Tegen et al., 2019 CTRL16 ECHAM6.3-HAM2.3 

CTRL19 ECHAM6.3-HAM2.3 

ECHAM-

SALSA 

BBE ECHAM6-SALSA 

96×192×47 ERA-Interim Kokkola et al., 2018 CTRL16 ECHAM6-SALSA 

CTRL19 ECHAM6.3-SALSA2.0 

ECMWF-IFS 

BBE ECMWF-IFS-CY45R1-CAMS 

256×512×60 ECMWF-IFS Rémy et al., 2019 CTRL16 ECMWF-IFS-CY42R1-CAMS 

CTRL19 ECMWF-IFS-CY46R1-CAMS 

EMEP CTRL19 EMEP_rv4_33 360×720×20 ECMWF-IFS  EMEP, 2012 

GEOS CTRL19 GEOS-i33p2 181×360×72 MERRA-2  Colarco et al., 2010 

GEOS-Chem 
BBE GEOS-Chem-v9-02 46×72×47  

MERRA-2  Bey et al., 2001 
CTRL16 GEOS-Chem-v11-01 91×144×47  

GFDL BBE GFDL-AM4p0 180×360×33 NCEP/NCAR  Donner et al., 2011 

GISS-

MATRIX 

BBE GISS-ModelE2-MATRIX 
90×144×40 NCEP/NCAR  Bauer et al., 2008 

CTRL19 GISS-ModelE2p1p1-MATRIX 

GISS-OMA 
BBE GISS-ModelE2-OMA 

90×144×40 NCEP/NCAR  Bauer et al., 2020 
CTRL19 GISS-ModelE2p1p1-OMA 

HadGEM3 CTRL16 HadGEM3-GA7.1 144×192×38 ERA-Interim 
Bellouin et al., 2013; 

Mulcahy et al., 2020 

IMPACT CTRL16 IMPACT 96×144×30  Liu et al., 2005 

INCA 
BBE INCA 

143×144×79 ECMWF 
Balkanski et al., 2004; 

Schulz et al., 2009 CTRL16 INCA-BCext 

OsloCTM 

BBE OsloCTM2 64×128×60 

ECMWF 
Myhre et al., 2007; 

2009 
CTRL16 OsloCTM3 80×160×60  

CTRL19 OsloCTM3v1.02 80×160×60 

SPRINTARS 
BBE MIROC5.2-SPRINTARS 

320×640×40 ERA-Interim  Takemura et al., 2005 
CTRL16 MIROC5.9.0-SPRINTARS 
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CTRL19 MIROC6-SPRINTARS  ERA5 

TM5 
CTRL16 TM5-mp 

90×120×34 ERA-Interim 
van Noije et al., 2014; 

2021 CTRL19 TM5-mp-r1058 

a. Models participated in one or multiple experiments with either the same or different model versions. The experiments include biomass burning emission 

(BBE) for 2008, CTRL 2016 (CTRL16) for 2006/2008/2010, and CTRL 2019 (CTRL2019) experiments for 2010. 
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Table 2. Details of the satellite datasets used in this study.  920 

Platform  Instrument Algorithms/products Dataset name Reference 

Aqua MODIS BAR v1.0 Aqua-MODIS-BAR Lipponen et al., 2018 

  Deep Blue C6.1 Aqua-MODIS-DB 
Hsu et al., 2013; 2019; 

Sayer et al., 2019 

  Dark Target C6.1 Aqua-MODIS-DT Remer et al., 2005 

  MAIAC v2.0 Aqua-MODIS-MAIAC Lyapustin et al., 2018 

Terra MODIS BAR v1.0 Terra-MODIS-BAR Lipponen et al., 2018 

  Deep Blue C6.1 Terra-MODIS-DB 
Hsu et al., 2013; 2019; 

Sayer et al., 2019 

  Dark Target C6.1 Terra-MODIS-DT Remer et al., 2005 

  MAIAC v2.0 Terra-MODIS-MAIAC Lyapustin et al., 2018 

ENVISAT AATSR ADV/ASV v2.30 AATSR-ADV Sogacheva et al., 2017 

  ORAC v3.20 AATSR-ORAC Thomas et al., 2009 

  SU v4.21 AATSR-SU 
North et al., 1999; North, 

2002; Bevan et al., 2012 

noaa18 AVHRR Deep Blue AVHRR-DB Sayer et al., 2017 

SeaSTAR SeaWiFS Deep Blue SeaWiFS-DB Hus et al., 2013 

PARASOL POLDER GRASP v2.1 POLDER-GRASP Dubovik et al., 2011 
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Table 3. The extinction enhancement factor (EEF) for BBA at 550 nm wavelength from in-situ measurements. 

Region  Dry RH, % Reference RH, % EEF Reference 

Brazil 30 80 1.01−1.51 Kotchenruther and Hobbs, 1998 

Australia 20 80 1.1−1.7 Gras et al., 1999 

Indonesia 20 80 1.2−2.1 Gras et al., 1999 

Southern Africa 30 80 
1.66 ± 0.08 (fresh) 

1.42 ± 0.05 (aged) 
Magi and Hobbs, 2003 

India 40 85 1.58 ± 0.21 Sheridan et al., 2002 

China 30 80 1.64 Jung and Kim, 2011 

India ≤40 85 1.32 ± 0.14 Dumka et al., 2017 
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Figure 1. Three focused fire regions in this study. a) Global maps of BB OC emissions averaged for 2006, 2008, and 2010 

based on GFED4.1s (https://www.globalfiredata.org/). The domains of the three fire regions are shown by the red boxes 

together with the AERONET sites (purple dots). b) The monthly evolutions of BB OC emissions from six fire types in AMAZ 

(b1), SHAF (b2), and BONA (b3), respectively. The un-collocated regional mean AOD observations from 14 satellite datasets 930 

are shown by the light-red shaded areas as inter-quartile ranges (only the grid-boxes with more than 20 data available in a 

month are included). Emissions for BB were considered in terms of the biome/fire type: tropical forest and deforestation 

(DEFO), savanna (SAVA), temperate forest (TEMF), boreal forest (BORF), peat (PEAT), and agricultural waste (AGRI). 

  

https://www.globalfiredata.org/
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 935 
Figure 2. Comparison of the 14 satellite AOD products against AERONET observations as shown by a Taylor diagram 

(a) and scattering diagram of NMB (b). The colors and shapes of dots indicate different satellite datasets and fire regions. 

All the satellite data were individually collocated with AERONET data during the fire seasons. POLDER-GRASP and 

SeaWiFS products over BONA are not shown because the available sample size was too small (< 5) after collocation. 
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Figure 3. Variation of model AOD evaluation due to different choices of satellite products in terms of the correlation 

coefficient (a, d), centered root mean square error (b, e), and normalized mean bias (c, f). The results are shown as 

comparisons between the values using POLDER-GRASP (horizontal axis) and interquartile ranges (vertical axis) when 

validating each model with different satellite products. The top (a-c) and bottom panels (d-f) show the results for individual 945 

and synchronous collocation, respectively. The color, shape, and size of dots indicate different models, three fire regions, and 

three AeroCom experiments respectively. The dashed lines show the 25%, 50%, and 100% slopes (interquartile/median). The 

GISS-OMA data for BBE over BONA is not shown in (b) due to the very high CRMSE. 
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Figure 4. Validation of AeroCom models against POLDER-GRASP observations for AOD during fire seasons. The 

validations of models from the three AeroCom experiments are shown as Taylor diagrams for BBE (a), CTRL16 (b), and 

CTRL19 (c). The NMB for all the models is shown in panel d. The colors and shapes of dots indicate different models and fire 

regions. All the model data are collocated with POLDER-GRASP data. The evaluation is for 2008 in BBE, for 2006, 2008, 955 

and 2010 in CTRL16, and for 2010 in CTRL19. The GISS-OMA data for BBE over BONA is not shown in (a) due to the very 

large normalized CRMSE. 
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Figure 5 Daily time-series for the AOD mean bias for AMAZ (left panels), SHAF (middle panels), and BONA (right 960 

panels) in BBE (a), CTRL16 (b), and CTRL19 (c) experiments. All the model data are collocated with POLDER-GRASP 

during fire seasons. All the model data are collocated with POLDER-GRASP during fire seasons. Data are shown for 2008 in 

BBE, 2006/2008/2010 for CTRL16, and 2010 for CTRL2019, respectively.   
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 965 

 
Figure 6. Comparison of the temporal and spatial correlations between modeled AOD and POLDER-GRASP 

observations. Results were shown for the three experiments individually (a-BBE, b-CTRL16, c-CTRL19). All the model data 

are collocated with POLDER-GRASP during fire seasons. The correlations are then calculated using either the time-series of 

the regional averages (horizontal axis) or the spatial averages for the whole fire seasons (vertical axis). The red dashed lines 970 

show the 1:1 range.  
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Figure 7. Comparison of the temporal and spatial variations of modeled AOD errors. Results are shown for the three 

experiments individually (a-BBE, b-CTRL16, c-CTRL19). All the model data were collocated with POLDER-GRASP. The 975 

variation is calculated as the ratio of interquartile to median values of the absolute bias for time series (temporal variations) 

and spatial averages (spatial variations). The red dashed lines show the 1:1 range.  
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Figure 8. Changes of correlation (a), centered root mean square error (b), and normalized mean bias (c) in the BBE 

experiment in responding to different scaling factors adopted to BBA emissions (0, 0.5, 2, 5). The colors and shapes of 

dots indicate different models and fire regions. All data are collocated with POLDER-GRASP for 2008 fire seasons. The BBE5 

CRMSE and NMB for several models are not shown given the extremely large values.   
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Figure 9. The dependence of total aerosol load on total aerosol emissions (a) and dependence of AOD on aerosol load 

(b), indicating the aerosol lifetime and MECs, respectively. The data are average values for the whole fire seasons based 

on the raw model output without collocation, and the light-colored error bars indicate the corresponding temporal variations 

(as standard deviation). The color, shape, and size of dots indicate different models, three fire regions, and two AeroCom 

control experiments, respectively. The red dashed lines show the linear trends, with a regression function and correlation 990 

coefficients (r) also shown. Note that some CTRL16 models provide data for different years (2006, 2008, and 2010) which are 

illustrated separately. 
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Figure 10. Dependence of the modeled aerosol lifetime on the time scale of total deposition. The color, shape, and size of 995 

dots indicate different models, three fire regions, and two AeroCom control experiments, respectively. The embedded diagram 

shows the same results zooming to a smaller scale (excluding INCA and HadGEM3 in BONA). The Person correlation (r) and 

p-value (p) are shown. 
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Figure 11. Dependence of the modeled timescale of total deposition on precipitation strength during fire season in 2010. 

The color, shape, and size of dots indicate different models, three fire regions, and two AeroCom control experiments, 

respectively. The three dashed lines indicate the GPCP data averaged for each region.  
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Figure 12. Variation in modeled plume height (a) and validation of modeled aerosol vertical profile against CALIOP 

for AMAZ (b-1), SHAF (b-2), BONA (b-3). The color scheme in Fig. 12b1-3 is the same as in Fig. 12a, with the solid and 

dashed lines showing the model data from CTRL16 and CTRL19 experiments (if both are available for the same model), 

respectively. The gray shaded areas in Fig. 12b show the ±σ ranges for the CALIOP observation.   
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Figure 13. Dependence of modeled MECs on AE (a) and the validation of modeled AE against POLDER-GRASP data 

(b). Data in Fig. 13a are model original output without collocation. The dashed line in Fig. 13a shows the relation calculated 

based on Mie-scattering theory and ECHAM-HAM lookup table. Modeled AE in Fig. 13b are collocated with POLDER-

GRASP (shown as red lines) on monthly basis during fire seasons.   
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Figure 14. Dependence of modeled MECs on extinction enhancement factor (EEF) in models for 2010. The grey shaded 

area shows the EEF range from in-situ observations according to previous studies (see Table 3). Both clear-sky and all-sky 

results are shown for GISS-OMA data.  


