
Automated detection and monitoring of methane super-emitters using 
satellite data 

Berend J. Schuit1,2, Joannes D. Maasakkers1, Pieter Bijl1, Gourav Mahapatra1, Anne-Wil van den 

Berg1,†, Sudhanshu Pandey1,‡, Alba Lorente1, Tobias Borsdorff1, Sander Houweling1,3, Daniel 
J. Varon2,4, Jason McKeever2, Dylan Jervis2, Marianne Girard2, Itziar Irakulis-Loitxate5,6, 
Javier Gorroño5, Luis Guanter5,7, Daniel H. Cusworth8,9, and Ilse Aben1,3 
1SRON Netherlands Institute for Space Research, Leiden, The Netherlands 
2GHGSat Inc, Montréal, Canada 
3Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 
4Harvard University, Cambridge, MA, US 
5Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València (UPV), Valencia, 
Spain 
6International Methane Emission Observatory, United Nations Environment Program, Paris, France 
7Environmental Defense Fund, Amsterdam, The Netherlands 
8Carbon Mapper, Pasadena, CA, US 
9University of Arizona, Tucson, AZ, US 
†Now at: Department of Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands 
‡Now at: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, US  
Correspondence: Berend J. Schuit (B.J.Schuit@sron.nl) 

Abstract. 

A reduction in anthropogenic methane emissions is vital to limit near-term global warming. A small number of so-called 

superemitters is responsible for a disproportionally large fraction of total methane emissions. Since late 2017, the 

TROPOspheric Monitoring Instrument (TROPOMI) has been in orbit providing daily global coverage of methane mixing ratios 

at a resolution of up to 7x5.5 km2, enabling the detection of these super-emitters. However, TROPOMI produces millions of 

observations each day, which together with the complexity of the methane data, makes manual inspection infeasible. We 

have therefore designed a two-step machine learning approach using a Convolutional Neural Network to detect plume-like 

structures in the methane data and subsequently apply a Support Vector Classifier to distinguish emission plumes from 

retrieval artefacts. The models are trained on pre-2021 data, and subsequently applied to all 2021 observations. We detect 

2974 plumes in 2021 with a mean estimated source rate of 44 t h-1 and 5-95th percentile range of 8-122 t h-1. These emissions 

originate from 94 persistent emission clusters and hundreds of transient sources. Based on bottom-up emission inventories, 

we find that most detected plumes are related to urban areas / landfills (35%), followed by plumes from gas infrastructure 

(24%), oil infrastructure (21%) and coal mines (20%). For twelve (clusters of) TROPOMI detections, we "tip-and-cue" targeted 

observations and analysis of highresolution satellite instruments to identify the exact sources responsible for these plumes. 

Using high-resolution observations from GHGSat, PRISMA and Sentinel-2, we detect and analyze both persistent and 

transient facility-level emissions underlying the TROPOMI detections. We find emissions from landfills and fossil fuel 

exploitation facilities, for the latter we find up to ten facilities contributing to one TROPOMI detection. Our automated 

TROPOMI-based monitoring system in combination with high-resolution satellite data allows for the detection, precise 

identification and monitoring of these methane super-emitters, which is essential for mitigating their emissions.  
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1 Introduction 

Anthropogenic methane emissions have caused at least 25% of human-induced global warming (Ocko et al., 2018; IPCC, 

2021). Methane’s atmospheric concentration has increased by a factor of 2.5 since the pre-industrialized era (Szopa et al., 

2021) and the rate of increase has accelerated in recent years (NOAA, 2022). Due to its relatively short atmospheric lifetime 

and large global warming potential (81 times that of CO2 over a timespan of 20 years (IPCC, 2021)), methane has an important 

role in the rate of climate warming (Nisbet et al., 2020; Ocko et al., 2021; Szopa et al., 2021). Reducing global methane 

emissions is therefore vital to achieve the goals set out in the 2015 Paris climate agreement (Nisbet et al., 2020). Since 

November 2021, over 125 countries signed the Global Methane Pledge (European Commission, 2021; CCAC, 2022), 

committing them to reduce their methane emissions by 30% in 2030 compared to 2020 levels, this could avoid 0.2◦C of global 

mean warming by 2050 (CCAC, 2022; UNEP and CCAC, 2021). In order to reduce global methane emissions fast and effectively 

during this decade, it is paramount to identify the largest anthropogenic sources of methane and mitigate those. We 

therefore propose an automated detection and monitoring system using satellite data with machine learning models to 

detect methane super-emitters. 

The dominant anthropogenic methane emission sources are agriculture (livestock and rice cultivation), oil and gas 

exploitation, waste management and coal mining; the exact locations and magnitudes of emissions are still uncertain 

(Saunois et al., 2020). Large fractions of methane emissions in various sectors could be mitigated using existing technology, 

about a quarter of those at no net cost (Nisbet et al., 2020; Ocko et al., 2021; Lauvaux et al., 2022). Moreover, a small number 

of emitters is responsible for a disproportionally large fraction of total anthropogenic emissions (Zavala-Araiza et al., 2015; 

Jacob et al., 2016). These concentrated point sources are often referred to as ’super-emitters’ and are difficult to account for 

in global bottom-up inventories (Zavala-Araiza et al., 2015) as they are often caused by severe malfunctioning or abnormal 

operating conditions, e.g. dysfunctional natural gas flaring systems (Irakulis-Loitxate et al., 2022a, b; Plant et al., 2022). Super-

emitters are not limited to oil and gas production but also occur in the coal mining and waste sectors (Cusworth et al., 2020; 

Sadavarte et al., 2021; Maasakkers et al., 2022b). Detection, localization, and global monitoring of these methane super-

emitters provides a large opportunity to reduce emissions (UNEP and CCAC, 2021; Parry et al., 2022). 

One way to obtain more insight in where super-emitters occur is to perform measurements on the ground, with drones, 

or aircraft campaigns. Several regions with known frequent and large methane emissions have been mapped in detail with 

aircraft campaigns (e.g. Frankenberg et al., 2016; Duren et al., 2019; Yu et al., 2022; Plant et al., 2022). While ground-based 

or airborne measurements are limited in spatial and temporal coverage, satellite observations have the potential for global 

monitoring of methane point-sources with frequent revisits (Jacob et al., 2016; Cusworth et al., 2019; Jacob et al., 2022). The 

TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) was launched in 2017 and observes atmospheric 

methane columnaveraged mixing ratios with a pixel size down to 7 km x 5.5 km and daily global coverage (Hu et al., 2018; 

Lorente et al., 2021), resulting in a point-source detection limit down to ∼5 t h-1 under favorable conditions (Jacob et al., 

2016). TROPOMI data have been used to quantify global (Qu et al., 2021) and country-level (Chen et al., 2022) distributions 

of methane emissions as well as large area sources, such as oil and gas basins like the Permian Basin (Zhang et al., 2020; de 

Gouw et al., 2020; Schneising et al., 2020; Shen et al., 2022). Lauvaux et al. (2022) performed a study into oil and gas related 
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methane super-emitters using TROPOMI data. Several individual super-emitters have been studied in detail using TROPOMI 

CH4 data; e.g. natural gas well blowouts (Pandey et al., 2019; Cusworth et al., 2021; Maasakkers et al., 2022a), and various 

persistent sources (Varon et al., 2019; Sadavarte et al., 2021; Tu et al., 2022a, b). 

Given the intermediate spatial resolution of TROPOMI, it can only be used to pinpoint the sources of emissions from the 

largest and most isolated point sources. For more challenging sources, high-resolution instruments are more suitable to 

detect and identify the exact location of super-emitters. So far, the only in-orbit satellite instrument specifically designed to 

do so are the GHGSat instruments that have a spatial resolution of ∼25 m x ∼25 m over targeted ∼15 km x ∼10 km scenes 

(Varon et al., 2019; Jervis et al., 2021; Ramier et al., 2020; MacLean et al., 2021). More recently it was shown that several 

Earth surface imagers with spectral sensitivity in the short-wave infrared (SWIR), although not designed for this purpose, can 

detect signals from methane super-emitters under favorable conditions. As such, the hyperspectral PRISMA instrument 

(Cogliati et al., 2021) was used to retrieve atmospheric methane plumes related to fossil fuel exploitation using targeted 

scenes of 30 km x 30 km at a spatial resolution of 30 m x 30 m (Guanter et al., 2021; Cusworth et al., 2021). Varon et al. 

(2021) demonstrated that the Multi-Spectral Instrument, a band imaging instrument onboard the Sentinel-2 satellite (Drusch 

et al., 2012), is capable of retrieving large methane plumes with a pixel resolution of 20 m x 20 m for continuous, 290 km 

wide swaths over favorable terrain. TROPOMI’s daily global coverage is particularly well suited to guide observations of these 

high-resolution instruments, that often have limited viewing domains, to identify large sources of methane at facility level 

(Irakulis-Loitxate et al., 2022b; Maasakkers et al., 2022b). 

TROPOMI has collected over 5 years of methane data, which include numerous methane emission plume signals that 

cannot feasibly be identified manually. To monitor the growing volume of data for super-emitters, an automated approach 

is needed. The vast amount of data provides an opportunity for machine learning techniques that require a substantial 

amount of representative training data. Applications of machine learning in satellite remote sensing have mostly focused on 

studying the Earth’s surface, but also include monitoring anomalous atmospheric conditions to identify plume signatures in 

large datasets (Valade et al., 2019; Finch et al., 2022). Detecting methane plumes in TROPOMI data is particularly challenging 

because not every retrieved methane enhancement is a genuine methane emission plume as retrieval artefacts and natural 

variability can appear like methane plumes. We therefore use a two-step machine learning method to identify methane 

emission plumes. We first use a Convolutional Neural Network (CNN) to detect plume-like structures in TROPOMI XCH4 data 

and then use a Support Vector Classifier (SVC) to evaluate these potential plumes using additional information to distinguish 

real plumes from artefacts. We train the machine learning models on verified TROPOMI methane plumes from 2018-2020, 

and then apply the trained models to 2021 data. Based on the 2021 detections, we use observations of three high-resolution 

satellite instruments (GHGSat-Cx, PRISMA and Sentinel-2) to determine the origin of the emissions down to facility level. The 

combination of the automated global monitoring based on TROPOMI with the high resolution of targeted instruments allows 

the detection and characterization of super-emitters around the world.  
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2 Data & Methods 

We use two machine learning models in sequence to detect plumes in the TROPOMI methane data. First we apply a 

Convolutional Neural Network (CNN) to detect plume-like structures in TROPOMI methane atmospheric mixing ratio data, 

then we use additional atmospheric parameters and supporting data to further distinguish between genuine methane 

plumes and retrieval artefacts using a second machine learning model. 

Figure 1 illustrates the full machine-learning pipeline and training process. Section 2.1 describes the pre-processing step to 

generate scenes used by the CNN and the feature engineering algorithms. Section 2.2 describes the training process of the 

CNN (Figure 1 ’CNN Training’). Section 2.3 describes the feature engineering algorithms, which are used to generate feature 

vectors for each TROPOMI scene. The SVC uses those feature vectors during its training process (Figure 1 ’SVC Training’), 

covered in Section 2.4. Then, we apply the full, trained, machine learning pipeline to 2021 TROPOMI observations the models 

have not been trained on (Figure 1 ’CNN+SVC Application’). Based on the resulting TROPOMI detections, we perform further 

analysis (Section 2.5) and use (targeted) high-resolution methane observations (Section 2.6) to pinpoint the responsible 

sources for 12 of those detections.  
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Figure 1. Flowchart showing the employed methodology framework. It consists of three phases, where each next phase uses the output 

(the trained model) of the previous phase as indicated with matching colors (orange and green). We use the TROPOMI XCH4 Level 2 

scientific data product version 18_17. Pre-processing is equivalent for each of the three phases, and consists of filtering, de-striping of the 

XCH4 channel and splitting up the data into 32x32 scenes. The output of the pre-processing is a dataset of [N, M, 32, 32] where N is the 

number of scenes, M is the number of channels (fields of data used later on, for example the methane concentrations) and 32x32 gives 

the (pixel) dimensions of the scene. The CNN exclusively uses the XCH4 channel, both during training and when the trained CNN is used for 

classification. In the Feature Engineering step of the second and third phase, a feature vector of shape [1, 41] is computed which 

corresponds to a single scene [1, M, 32, 32]. The SVC exclusively uses the feature vectors, both during training and when the trained SVC 

is used for classification. Manual verification steps are shown in purple. In the application phase, there is one manual step, which is the 

verification of detected plumes to make sure the output of the pipeline is correct. 

  



2.1 TROPOMI 

We use data over land from the TROPOMI XCH4 Level 2 scientific data product version 18_17. This product version is 

consistent with operational version 02.03.01 (Lorente et al., 2021; Hasekamp et al., 2022), but re-processed for the full 

timespan of the mission resulting in a homogeneous data product (SRON CH4 L2 team, 2022). We use albedo-bias corrected 

data with: QA≥0.4, methane precision < 10 ppb, SWIR aerosol optical depth < 0.13, NIR aerosol optical depth < 0.30, SWIR 

surface albedo > 0.02, mixed albedo (2.4 * NIR surface albedo - 1.13 * SWIR surface albedo) < 0.95, and SWIR cloud fraction 

< 0.02. The loosened filtering compared to the recommended QA=1 filter provides more coverage but also retains more 

biased retrievals, especially at the borders of clouds or along coasts. The methane data is de-striped following the approach 

introduced by Borsdorff et al. (2018). 

To train a machine learning model to recognise methane plumes in TROPOMI data, we created a dataset of scenes 

consisting of 32x32 pixels, both with and without methane plumes. 32x32 pixels correspond roughly to an area of ∼176x232 

km2 at nadir, up to ∼176x448 km2 for larger viewing angles. For scenes with plumes, we use data over 60 persistently emitting 

locations identified using long-term wind-rotated averages (Maasakkers et al., 2022b). By manual inspection, we compile a 

dataset of 828 positive scenes from 2018-2020 with plumes, of which 195 originate from coal mines, 203 from landfills/urban 

areas, and 430 from oil&gas infrastructure (Figure 1, ’CNN Training’). An example scene is shown in Figure 2a, including the 

local windfield at the time of observation. 

 

Figure 2. Atmospheric methane mixing ratios of a 32x32 pixel scene containing a methane plume originating from a known persistent 

source (indicated by the +) as observed by TROPOMI on 2021-12-05 at 08:47 UTC (not included in the training data). (a) Mercator projection 

of the scene over ESRI World Imagery (Esri, Maxar, Earthstar Geographics, and the GIS User Community, 2022), arrows show the local 

GEOS-FP 10m windfield (Molod et al., 2012). (b) 32x32 pixel scene in along-orbit vs across-orbit direction, indicating filtered pixels. (c) the 

same scene after pre-processing as used by the CNN. 

A set of (negative) scenes without an emission signal was obtained through manual inspection of six full orbits in different 

sections of the orbital repeat cycle, covering a diverse set of surfaces and (meteorological) conditions. We obtain 32x32 pixel 

scenes using a moving window algorithm with 50% overlap, resulting in a dataset of 2242 scenes without a plume signal. The 

moving window algorithm later ensures that if a plume is cut in half in a particular scene, it will be in the center of the 

adjacent -and partially overlapping- scene. Scenes with <20% valid XCH4 pixels are discarded. This processing is applied to full 
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orbits, the scenes with plumes originating from known locations were processed to match the same format. Combined, the 

dataset contains 3070 scenes used for training, the difference in the number of positive (828) and negative (2242) scenes is 

corrected for later on using class weights. For each scene, we store 46 other channels of supporting information from the 

same TROPOMI Level 2 methane dataproduct, including co-retrieved atmospheric properties, meteorological parameters 

and geometric properties. These channels are used in later steps of the machine learning pipeline. 

In order to correct for differences in local background concentrations (e.g. due to difference in latitude or surface altitude), 

each scene is normalized from 0 to 1. Values below the mean methane concentration of the scene minus one standard 

deviation are set to 0. Values above the mean plus 100 ppb minus one standard deviation are set to 1, values in between are 

linearly distributed. Filtered pixels are set to 0. This pre-processing preserves the information of plume-like enhancements 

above the local background. Examples of the normalization input and output are shown in respectively Figure 2b and 2c.  Deleted: 1b
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2.2 Convolutional Neural Network (CNN) 

We use a Convolutional Neural Network (LeCun et al., 2010) to detect methane plumes in the TROPOMI methane data, split 

into 32x32 pixel scenes. Convolutional Neural Networks (CNN) are a type of machine learning model commonly applied in 

image recognition and object detection problems (Cheng et al., 2020). A CNN consists of multiple layers, where information 

moves from an input image, through the layers of the CNN at an increasingly abstract coarse resolution, to the output; the 

classification of the image. To condense the information of the image to coarser resolution, the CNN uses "convolutional 

blocks" that consist of two or more convolutional layers, followed by a (max-)pooling layer. A convolutional layer produces 

"feature maps" that indicate where certain features (e.g. curves, edges or more abstract features) are detected within the 

image. These feature maps are obtained by convoluting the input image with a convolutional kernel, a small matrix with 

weights that are optimised during training to best detect features relevant to the particular classification problem. The 

resulting feature maps (one for each kernel applied) are then the input for the next layer (LeCun et al., 2010; Cheng et al., 

2020). A max-pooling layer scans the previous layer with a 2x2 kernel and returns the maximum value, thereby creating a 

feature map at half the resolution, focused on dominant features (LeCun et al., 2010). After the last convolutional block, the 

resulting feature maps are flattened and interpreted by one or more fully-connected "dense" layers, consisting of neurons, 

between which the connections have trainable weights. This part of the network aggregates the information into a single 

output value. During training, the trainable weights, in the convolutional kernels and dense layers, are optimized to best 

perform the classification task based on the training dataset (LeCun et al., 2010; Cheng et al., 2020). The trained CNN can 

then be used to classify new images, in this case as ’plume’ versus ’no-plume’. 

The main advantages of the CNN compared to regular neural networks or other machine learning models are that: (1) the 

CNN is capable of better retaining spatial information which is lost in fully-connected networks or machine learning models 

like decision trees or support vector machines (Selvaraju et al., 2020); (2) the training of a CNN can be done with image level 

labels (plume or no plume), there is no need to indicate where within the image the feature of interest is located as the CNN 

learns to localize these features during training; (3) the same convolutional kernels are convoluted with the entire image, 

which is more computationally efficient compared to fully-connected networks (LeCun et al., 2010; Cheng et al., 2020); (4) 

the model is rotational and translational invariant when properly trained (LeCun et al., 2010). 

This last model property is essential for the automated detection of plumes as a plume can be located anywhere within a 

scene and the wind can be in any direction. The CNN’s output is a prediction between 0 and 1 indicating the confidence of 

the model about the presence of a plume-like structure. Scenes with prediction scores >0.5 are classified as plumes. 

Although we use this output for binary classification, the value holds additional information regarding the confidence of the 

CNN (i.e. 0.6 vs. 0.98), which we use for the second model. 

We first select a high-level architecture for the CNN with standard hyperparameters, which we later optimize. 

Hyperparameters are model settings, separate from the trainable weights, such as the number of convolutional layers and 

kernel sizes, but also parameters that influence the training process, such as the learning rate. As high-level architecture we 

selected two convolutional blocks followed by two fully-connected layers and an output neuron (Figure 3). We found that 
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deeper networks (e.g. Resnet (He et al., 2016) or VGG-16 (Simonyan and Zisserman, 2014)) did not yield an improvement in 

performance for this problem with relatively low resolution, small size (32x32 pixel) scenes. 

 

Figure 3. A schematic overview of the Convolutional Neural Network with a pre-processed 32x32 pixel TROPOMI methane scene (left) as 

input (Figure 2c). The CNN consists of two convolutional blocks (each with two convolutional layers followed by a max-pooling layer) 

followed by two dense (or fully-connected) layers and an output neuron with sigmoid activation. Numerical values show input dimensions, 

layer dimensions and the number of feature maps in the convolutional and max-pooling layers. Visualization generated using PlotNeuralNet 

(Iqbal, 2018). 

 

Our training dataset mostly contains clear positives (828) and clear negatives (2242) to effectively learn distinguishing 

features. Our dataset has many more negative than positive scenes. When training our CNN however, we want both 

categories of training samples (classes) to have equal impact to obtain optimal performance (Johnson and Khoshgoftaar, 

2019). This balancing can be achieved by applying class weights during training (Johnson and Khoshgoftaar, 2019), giving 

positive scenes more weight. We set the class weight parameter to the inverse of the ratio between the number of positives 

and negatives. We randomly split the data into a training (80%) and test (20%) set. 20% of the training scenes are then used 

as validation subset (Table A1). The validation dataset is used to infer whether there is a generalized performance increase 

during the training of the CNN to prevent overfitting. We then augment the data in order to obtain larger training and test 

sets; all scenes are rotated 90◦	thrice and flipped, enlarging the datasets by a factor 8. 

We use the training dataset of 19,648 (augmented) scenes (Table A1) to train the CNN (Figure 1, ’CNN Training’). The CNN 

was designed and trained using the machine learning framework Keras (Chollet et al. (2015), Chollet (2021)), at first using 

the default values for the hyperparameters. The model is trained for a maximum of 100 epochs (iterations of the training 

process). During training we optimize the validation loss, which measures the error made on the subset of the training data 

not used in that epoch. We use binary cross-entropy as the loss function and ADAM (an improved version of stochastic 

Deleted: ¶

Deleted: 2

Deleted: 1c

Deleted: Convolutional

Deleted: Max-Pooling

Deleted: Dense

Deleted: Fully-Connected

Deleted: node.

Deleted: optimized hyperparameter values

Deleted: For the

Deleted: process, the class weight parameter is set to the 
ratio between the number of plumes (828 positives) and 
negatives (2242), such that both categories have equal 
impact. These scenes…

Deleted: contain

Deleted: .

Deleted: ., 

Deleted: we selected

Deleted: , which control the details of the high-level 
architecture and training process (i.e. number of layers, 
dimensions of layers, number of filters, learning rate etc.).

Deleted: , optimizing

Deleted: using 



gradient descend algorithm, Kingma and Ba (2014)) as the optimizer. We use a 0.4 dropout layer (randomly disabling 40% of 

the neurons) in the first fully-connected layer during training to prevent overfitting and make the model more robust 

(Srivastava et al., 2014). The activation function modifies the output before it is passed to the next layer; we apply the ReLU 

(rectified linear unit, outputs zero when the input is negative and otherwise outputs the input value) activation function in 

all layers except for the final layer where we apply sigmoid ( ), which normalizes the output. To force the model to focus 

more on plume-like signatures during training, the loss weight of plume scenes is set to double that of negatives scenes. 

Training is halted after the validation loss does not improve for several epochs, the best model weights found up to that point 

are used. After training, the model performance is inferred by classifying the labeled test dataset. 

After training this initial "default" model version, the hyperparameters were further optimized using the KerasTuner 

optimization framework (O’Malley et al., 2019) and Hyperband (Li et al., 2018). With these methods, we perform a grid-

search to find the best hyperparameters for our particular problem. The optimal hyperparameters depend on the size of the 

training dataset, architecture of the CNN, number of classes and problem type. The search space for the optimization was 

defined using insights from the initial training, theoretical foundation, and design constraints. We inspected the 

hyperparameters of the top 10 performing set-ups and selected the optimal hyperparameters by combining the results of 

this optimization with expert judgement on this particular problem. Figure 3 shows a schematic overview of the CNN with 

optimized hyperparameters. 

We evaluate the performance of the CNN using performance evaluation metrics (Equation 1) calculated from the number 

of true positives and negatives (TP, TN), and false positives and negatives (FP, FN) (Johnson and Khoshgoftaar, 2019). The 

Cohen’s Kappa score (Cohen, 1960) is a weighted accuracy which takes into account class imbalances and chance agreement. 

The Recall indicates which fraction of plumes present in the testset are correctly identified and the precision indicates which 

fraction of scenes identified as plumes are actually a plume, the F1-score incorporates both into a single metric. 

 TP	+TN	 TP	 TP	 precision×recall 
Accuracy =	  Precision =	  Recall =	 	F1	=	2·	 TP	+TN	+FP	+FN	TP	

+FP	TP	+FN	precision+recall 
(1) 

To test the influence of the split of the training and test datasets (which can be an issue for datasets of limited size), the 

training of the model with optimized hyper-parameters was repeated 50 times with different splits. We found that model 

performance is relatively insensitive to different training splits with kappa = 0.943 ±	0.012, recall = 0.956 ±	0.014 and F1 = 

0.958 ±	0.009 (standard deviations). We further found that small changes in the hyperparameters have even lower effect 

compared to different training splits. The consistent performance on the corresponding test datasets shows the model is 

robust and well generalized. We focus on recall over precision, because the key focus is to have as few potential plumes as 

possible go undetected. We selected the model which scored best on kappa, second best on F1-score and third best on recall. 

The performance metrics of the selected CNN are shown in Figure 4a. Manual inspection of the misclassified scenes (30 false 
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negatives and 37 false positives, out of 4912 augmented test scenes) indicates these are borderline cases with difficult to 

discern morphological structures that are even challenging to a human expert. 

 

 

Figure 4. Confusion Matrices showing the performance of the CNN (a) and the SVC (b) on their corresponding test datasets. The 

performance metrics are defined in Equation 1, the values between brackets for the SVC show the performance when the problem is 

considered as a binary problem; i.e. when ’Artefact’ and ’Empty’ are combined as ’No Plume’. 

The trained CNN is applied to all 2020 data. Processing of the 5193 orbits of 2020 resulted in 752,890 scenes (only taking 

into account scenes with >20% valid pixels), of which 25,626 scenes (3.4%) are identified as containing plume-like 

morphological structures by the CNN. This number does include artefacts and duplicates due to the moving window 

algorithm, these are filtered later on. We use a subset of these scenes to train the second step of the machine learning 

pipeline (section 2.4).  
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2.3 Feature Engineering 

Due to the difficult nature of methane retrievals, not every plume-like morphological structure in the XCH4 field is an actual 

methane plume. Different types of surface variability and atmospheric or meteorological conditions are known to affect the 

retrieval (Lorente et al., 2021); if there is a strong correlation between the methane enhancement and retrieval parameters, 

e.g. the surface albedo or the aerosol scattering coefficient, the retrieved methane enhancement might be caused by the 

albedo or aerosol variation and could therefore be a retrieval artefact. Other common examples of artefacts are those on 

the borders of clouds and coastlines or when the direction of the enhanced structure is not in agreement with the windfield 

but with surface structures instead. 

In order to automate the necessary further inspection we compute numerical values for several "features" of potential 

plumes through feature engineering. Feature engineering is a commonly applied approach in machine learning problems and 

is especially helpful when limited amounts of labeled training data are available. These features are a representation of 

information a human expert would use to inspect the potential plumes in order to determine whether a scene contains a 

genuine plume or an artefact. We construct feature vectors consisting of features based on the corresponding scene. These 

vectors are then used to train the second model of the machine learning pipeline, the SVC (Figure 1 ’SVC Training’). An 

overview of all developed features is presented in Table C1. 

Fundamental to many of those features is "masking" the plume in order to isolate the plume pixels from the background. 

For this purpose, we use information about which part of the scene has triggered the CNN detection. For this we use the 
Class 

Activation Map (CAM) to visualize the localized activations of a CNN corresponding to a certain class on which it was trained 

(Zhou et al., 2015). We apply Grad-CAM (Selvaraju et al., 2020), which allows the computation of the CAM for our CNN that 

includes fully-connected layers. In our binary classification problem, the CAM visualizes which regions of the deepest 

(coarsest) feature maps (Max-Pooling 2 [8x8] in Figure 3) contribute strongest to an activation of the plume class (output > 

0.5) for a given input image. This spatial activation is calculated using the gradients (Selvaraju et al., 2020) between the 64 

feature maps (each of 8x8 resolution, resulting in a 64x8x8 array, Figure 3) of the deepest max-pooling layer (Max-Pooling 2) 

and the first fully-connected, or dense layer (Dense 1 in Figure 3). In order to obtain a CAM of sufficient resolution we limit 

the depth of the CNN to two convolutional blocks. The CAM is upsampled to match the input resolution (Selvaraju et al., 

2020). Figure 5b shows that the CAM correctly identified the plume-like structure in the XCH4 scene in Figure 5a, disregarding 

noisy high-enhancement pixels elsewhere in the scene. 
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Figure 5. Several Feature Engineering results computed for the 32x32 scene from Figure 2. (a) The atmospheric methane mixing ratio XCH4, 

(b) Class Activation Map which highlights the areas identified by the CNN as plume-like structures based on Figure 2c, the pre-processed 

scene, (c) methane enhancements relative to the local background with the black line indicating the high-confidence plume mask. The pixel 

with the ’x’ is identified as the pixel most likely to contain the source location based on the plume mask and local windfield (shown in 

Figure 

2a). 

In addition to using the CAM to analyze CNN performance, we also use it to generate a binary plume mask. We multiply 

the CAM with the enhancement above the mean XCH4 value minus the scene’s standard deviation. The output is a map 

highlighting pixels with high methane enhancements that are identified as part of the plume by the CNN; we identify the 

pixel with the maximum value as starting point for the plume mask. To compute a "high confidence" plume mask, we start 

from the corresponding pixel in the xch4 image and dilate outwards (including diagonally). We only add adjacent pixels with 

enhancements of 1.8 standard deviations above the mean (Figure 5c). We repeat this process with a lower threshold of 0.8 

standard deviations to also obtain a "low confidence mask"; both thresholds were established empirically. This approach 

ensures that noise in other parts of the image is excluded from the plume mask. A plume mask can consist of any number of 

pixels depending on the scene. The minimum is 1 pixel, but this is rare, the average is around 20 pixels. Several statistics of 

the (potential) plume can be computed using these masks with supporting data. 

One of the major indicators of an artefact is a strong correlation with one or more retrieval parameters. If an enhancement 

in the XCH4 field is caused by a surface (albedo) feature or by (enhanced) scattering in the atmosphere which is represented 

by the aerosol optical thickness, we expect their spatial patterns to be similar. Therefore, we calculate the correlation 

between XCH4, and the surface albedo (SWIR), aerosol optical thickness, χ2	(an indicator for retrieval fit quality) and surface 

pressure across the plume mask. We calculate these correlations for the high and low confidence plume masks as well as 1- 

and 2-times dilated versions of the low confidence mask, and the entire scene. We account for pixels outside the plume mask 

as we would expect a strong correlation around the enhancement if it is an artefact. The correlations over the entire scene 

reflect large scale patterns that do not necessarily imply artefacts. 
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Another major indicator for artefacts is a mismatch between the direction of the plume and the direction of the local 10-

m wind field from the ERA5 reanalysis (Hersbach et al., 2020) included in the TROPOMI Level 2 data product (Hasekamp et 

al., 2022). By applying a Principle Component Analysis (PCA) we compute the two main axes of the pixels in the high 

confidence plume mask, after re-projecting the pixel centers to meter space and weighting them by their enhancement 

relative to the background. We use the ratio of the variances described by the axes as a measure of the plume’s elongation. 

For elongated plumes (e.g. Figure 5), the primary axis’ variance is much larger than the variance projected to the secondary 

axis, while for less elongated "blob"-like plumes this ratio is small. Furthermore, we compare the angle of the primary axis of 

the potential plume to the angle of the wind direction (averaged across the plume mask), the smaller the difference, the 

more confidence we have in the plume following the wind. We also use the wind field to identify the pixel that most likely 

contains the plume’s source by taking the ’most upwind’ pixel within the high confidence plume mask (Figure 5c).  
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2.4 Support Vector Classifier (SVC) 

A Support Vector Classifier (SVC) constructs hyperplanes as the optimal decision boundary to separate multiple classes in 

high-dimensional feature space. SVCs in general perform better with datasets of limited size compared to deep learning 

algorithms and are in general less prone to erroneous influence from outliers. We use 843 labeled scenes from 2020 classified 

by the CNN to contain plume-like structures as a training dataset for the Support Vector Classifier (SVC) (Figure 1, ’SVC 

Training’). About half of the scenes are randomly selected from within 7 geographical zones with specific types of 

predominant artefacts and the other half is selected randomly. Scenes are labeled as ’plume’ (444 scenes), ’artefact’ (341 

scenes) or ’empty’ (58 scenes, indicating there is not a clear plume or artefact). We have only included scenes with 

unambiguous labels. The fact that there are relatively few ’empty’ scenes in this subset indicates the CNN performs well. We 

use balanced class weights to correct the imbalance in the number of training samples per class, the weights are inversely 

proportional to the number of scenes in each class. 

The dataformat we use for the SVC is a vector of 41 features, each feature vector corresponds to a 32x32 pixel scene. This 

feature vector includes: correlations with retrieval parameters for different plume masks, the angle between the wind and 

elongated direction of the plume, the elongation ratio of the plume, several intermediate outputs of the source rate estimate 

(Section 2.5.1) and several statistical properties (all engineered features are listed in Table C1). We do not include features 

such as latitude and longitude or distance to a known source or known infrastructure in order to be unbiased to where a 

scene is located. We train the SVC to find the optimal classification boundary within this 41 dimensional space based on the 

843 labeled feature vectors. Each feature is standardized by subtracting the mean, and scaling the value to the unit variance 

of that feature in the entire trainingset. We use a Radial Basis Function (RBF) kernel and set the regularization parameter to 

1.2, this hyperparameter was optimized using a simple grid search optimization. The gamma value is scaled inversely to the 

number of features (41 in this case) multiplied with the variance of the training dataset, as is common practice and helps to 

homogenize the features which have different units and ranges of values (Table C1). 

We randomly split the labeled dataset into a training set (80%) and a test set (20%). Contrary to the CNN, when training an 

SVC no validation set is used. Correctly detecting plumes is of predominant interest, therefore we combine non-plume scenes 

(artefact & empty classes) when evaluating the performance. We train the model 2000 times for different splits of the 

dataset. The distribution of these different realizations shows convergence with binary kappa = 0.78 ±	0.04 and recall = 0.88 

±	0.03 (standard deviations), indicating the model setup is not too dependent on the data split. We select a model with 

relatively high kappa and recall, where performance is similar between the training and test sets. Figure 4b shows the 3-class 

performance on the test set, indicating distinguishing between plumes and artefacts is the most challenging distinction for 

the SVC. The binary Cohen’s Kappa score of the selected model is 0.83. A Kappa score of above 0.8 is generally seen as a good 

classification performance. The recall is 0.93, meaning that 93% of the scenes with plumes which were present in the test 

set are successfully identified, and only 7% of the plumes are missed. 

To evaluate which features are important for the SVC to classify a scene, we performed a permutation importance analysis 

perturbing each feature 40 times (Breiman, 2001). Based on the resulting mean feature importance, the most important 
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features are: correlation of XCH4 with χ2, the CNN score, the albedo correlation, the enhancement of the plume, the fraction 

of valid pixels, the angle with the local wind, and the average quality flag of plume pixels (the top 10 ranking feature 

importance metrics are presented in Table C1). These correspond to what is important to a human expert labeler. 

2.5 Plume characterization 

2.5.1 Source rate quantification 

To estimate the source rates of the plumes observed by TROPOMI, we apply the Integrated Mass Enhancement (IME) method 

(Frankenberg et al., 2016; Varon et al., 2018). Some intermediate outputs of the IME method (such as the plume length) are 

used as features in the feature vector for the SVC (Section 2.4). We perform a full source rate quantification, including 

uncertainty estimates, for the plumes that pass the machine learning pipeline and are manually verified. The IME method 

relates the emission rate (Q) to the observed methane enhancement in the plume (IME) and the local windfield (Varon et al., 

2018): 

N 

IME	= IME	 ;	 IME	=	X∆ΩjAj	 (2) 
j=1 

where ∆Ωj	denotes the methane column mass enhancement above the local background of pixel j	with footprint Aj. The local 

background is calculated as the median value of the scene’s pixels outside the high-confidence plume mask. The IME of all N	

pixels in the plume is related to the source rate using the average residence time τ	of methane particles in the plume, 

with τ	given by the ratio between plume length L	and the effective wind speed Ueff. The plume length L	is approximated 
√  

as L	=	AM, where AM	 is the area of the plume mask (Varon et al., 2018). Ueff	can be expressed as a function of the local 

(reanalysis) wind speed. Frankenberg et al. (2016) and Varon et al. (2018) developed the IME method for high resolution 

instruments, for which the 10-meter winds are most representative for Ueff. For the larger scale of TROPOMI plumes, both 

10-meter (U10) as well as boundary layer average (UPBL) winds have been used (Varon et al., 2019; Schneising et al., 2020; 

Cusworth et al., 2021; Tu et al., 2022a). As the most representative wind can vary from case to case, we use the mean of 

quantifications using ERA5 10-meter winds (Hersbach et al., 2020), GEOS-FP 10-meter winds and GEOS-FP PBL winds (Molod 

et al., 2012). 

We calibrate the relation between Ueff	and these local windspeeds by quantifying 15,336 plumes simulated with the 

Weather Research and Forecasting model coupled with a Chemistry module, version 4.1.5 (Skamarock et al., 2019; Grell et 

al., 2005). The model uses 38 vertical levels and three nested domains at a horizontal resolution of up to 4x4 km2. Physical 

parameterisations and meteorological initial and boundary conditions are as described in Dekker et al. (2017). We release 

passive tracers with emission rates mostly between 10-100 t h-1 at various locations in West Asia, Mexico, and Argentina for 

June-September 2019 and 2020. We sample the plume at the TROPOMI overpass time and quantify them as described above. 
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Using the model wind speeds and known emission rates, we find that Ueff’s dependence on the PBL wind is best 

described by a linear relationship: Ueff	=	α1	·UPBL	+α2, with α1	= 0.47 and α2	= 0.31 (r2 = 0.78). For the dependence on U10, we 

also find a linear relation as optimal and constrain α2	to be non-negative: Ueff	=	α1	·U10	+α2, with α1	= 0.59 and α2	= 0.00 (r2 = 

0.77). We use the mean of the three resulting Ueff	values to quantify emissions. 

To estimate uncertainty, we create an ensemble of estimates by varying the parameters influencing the quantification. For 

each of the different input wind speeds: we vary the threshold for masking the plume from 1.3 to 2.3 standard deviations 

(step 0.1); adjust the background concentration by ±2 times the mean XCH4 uncertainty in the scene (step 0.4); vary the wind 

values from -50% to +50% (step 10%); and vary α1	and α2	for -5% to 5% (step 1%). We report the standard deviation of the 

resulting 43,923 member ensembles as uncertainty for each plume. 

2.5.2 Removal of duplicate scenes 

Due to the moving-window algorithm, each group of 16x16 pixels is seen by the ML pipeline up to four times, as a different 

corner of a 50% overlapping 32x32 pixel scene. This ensures plumes do not go undetected because they are cut in half and 

allows multiple nearby plumes to be detected in adjacent scenes, but also leads to duplicate detections. Therefore, plumes 

for which the generated plume mask overlaps with a plume mask from another scene are grouped into a group. For each 

group, the scene with the highest IME value is selected. 

2.5.3 Anthropogenic source sector estimation 

To assess which anthropogenic activity might underlie a detected plume, we use the estimated source location to find the 

local dominant source type in gridded bottom-up inventories. We exclude sectors that are unlikely to produce point-source 

emission signals in the TROPOMI, such as rice cultivation and livestock. We include 2019 oil, gas and coal emissions from the 

Updated Global Fuel Exploitation Inventory (GFEI v2) (Scarpelli et al., 2022) and 2018 landfill emissions from EDGAR V6.0 

(Crippa et al., 2021). We identify the dominant source type as the source type with the largest annual flux in a 0.7◦x0.7◦	square 

centered around the estimated source location. Based on known emitters, we found that using a window of this size mitigates 

errors in the estimated source location as well as spatial errors in the emission inventories. We do not use this approach to 

attribute detections to wetlands. However, we do inspect 2019 fluxes from WetCHARTs v1.3.1 ensemble (Bloom et al., 2021) 

to identify regions where detections might be influenced by strong wetlands fluxes, such as central Africa (Pandey et al., 

2021). 

2.5.4 Comparison with a previously studied super-emitter event 

In order to test the automated pipeline and feature engineering algorithms, we apply it to data over a September 2019 

superemitter event in Louisiana, US (Maasakkers et al., 2022a). The model detects the emission event on multiple days, 

including on the first day with large emissions and significant TROPOMI coverage (September 25). The CNN score is >0.999 

and the SVC classified the scene as a plume. The estimated source location of the plume is 2.2 km away from the source and 

our automated quantification estimate is 121 ±	46 t h-1. Our estimate is in good agreement with the quantification by 
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Maasakkers et al. (2022a) of 101 (49-127) t h-1 who scale a plume simulated with the WRF atmospheric transport model to 

match the enhancements seen in TROPOMI using a Bayesian inversion.  
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2.6 High spatial resolution methane satellite instruments, retrievals and source rate quantification 

We use observations from three high spatial resolution instruments, GHGSat, PRISMA and Sentinel-2 to inspect the sources 

of the detected methane plumes. This section describes the main characteristics of these instruments. 

2.6.1 GHGSat 

GHGSat-Cx instruments are Fabry-Perot imaging spectrometers launched in 2020-2022 (C1-C5) building on the GHGSat-D 

instrument (Jervis et al., 2021). The instruments have a spatial resolution of 25 m x 25 m over targeted scenes of ∼10 km x 

∼15 km (Ramier et al., 2020; MacLean et al., 2021). They sample the SWIR part of the spectrum between 1630 and 1675 nm 

at ∼0.3 nm spectral resolution, retrieving methane column density with a precision of 1% of the background concentration 

and a theoretical detection threshold of down to ∼100 kg/h at a windspeed of 3 m s-1 (ESA, GHGSat, 2022). During a controlled 

release experiment comparing methane observing capabilities of different high-resolution instruments by Sherwin et al. 

(2022), a plume of ∼200 kg/h was successfully detected. We use data from GHGSat-C1 and C2 and estimate source rates 

using the IME method as described in Maasakkers et al. (2022b) for point sources with 10m wind data from GEOS-FP (Molod 

et al., 2012). The uncertainty in the quantification is estimated as described by Varon et al. (2019), taking into account error 

contributions from measurement noise, the wind speed and the IME method similar to Maasakkers et al. (2022b). 

2.6.2 PRISMA 

The Italian Space Agency’s hyperspectral instrument PRISMA was launched in March 2019 and generates publicly available 

targeted hyperspectral 30 km x 30 km images at a spatial resolution of 30 m x 30 m and ∼10 nm spectral resolution (Cogliati 

et al., 2021; Guanter et al., 2021; Cusworth et al., 2021). The revisit time can be as short as 7 days using the instrument’s 

±20% across-track pointing (Cogliati et al., 2021). The smallest source rate tested during a controlled release experiment 

(Sherwin et al., 2022) is ∼2500 kg/h. The theoretical detection threshold is lower (∼300-900 kg/hr for homogeneous scenes) 

and strongly depends on the surface type/homogeneity (Guanter et al., 2021). The PRISMA instrument is not a continuous 

mapper, but a data archive of past (targeted) observations is publicly available. PRISMA can also be used to target a location 

of interest in the future. We perform methane retrievals and IME quantifications as described in Guanter et al. (2021) using 

plume masking following Varon et al. (2018) and GEOS-FP 10m wind data (Molod et al., 2012). 

2.6.3 Sentinel-2 

The Sentinel-2 surface-imaging mission (consisting of Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017) was 

demonstrated by Varon et al. (2021) to be capable of detecting methane super-emitter plumes under favorable conditions. 

Both satellites carry a MultiSpectral Instrument, with a pixel resolution of 20 m x 20 m for the B11 (∼100 nm) and B12 (∼200 

nm) SWIR bands with sensitivity to methane. The instruments have a 290 km wide swath resulting in a global 2-5 day revisit 

time (Drusch et al., 2012), Sentinel-2 observes continuously (as opposed to GHGSat and PRISMA) and provides an extensive 

publicly available archive going back years. A methane absorption signal has to be strong in order to stand out within the 

aggregated signal of the entire band, therefore only relatively large quantities of methane can be retrieved and the detection 

limit worsens considerably over non-homogeneous terrain. The detection limit is estimated at ∼1-2 t h-1 for homogeneous 
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scenes (Gorroño et al., 2022), in agreement with Sherwin et al. (2022) where a ∼1800 kg/h emission was detected and 

quantified. We apply the methane retrieval and IME quantification approach from Gorroño et al. (2022), that, like Varon et 

al. (2021) uses a "reference day" without a plume to isolate the difference caused by methane concentration enhancement. 

We again use GEOS-FP 10m wind data (Molod et al., 2012).  
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3 Results 

We apply the trained and optimized CNN and SVC models (Figure 1, ’CNN training’ and ’SVC training’) in sequence on all 2021 

TROPOMI XCH4 data (Figure 1, ’CNN+SVC Application’). Analysing the full year with the ML pipeline takes approximately three 

hours on a single core. From the 794,395 (32x32 pixel) scenes, the CNN identifies 26,444 scenes (3.3 %) that contain plume-

like XCH4 morphological structures. The SVC classifies 10,430 of these scenes as plumes. After duplicate removal, 4869 scenes 

are identified as unique. These 4869 scenes are manually inspected to assess the performance of the pipeline. We confirm 

2974 scenes as confident plumes. Another 745 scenes are labeled as ’potential plumes’, accepting these scenes as plumes 

results in a precision of 76% for the full pipeline. These potential plumes could not readily be verified as real methane plumes, 

but are valuable for further inspection. The remaining scenes are either labeled as artefacts or not containing a 

(concentrated) plume. These misclassifications can be used to further optimize the machine learning pipeline. Here, we will 

focus on the 2974 ’confident plumes’, and present the result of our high-resolution satellite instrument analysis to pinpoint 

the exact sources of twelve (clusters of) detections. 

3.1 Overview of the confirmed detections in 2021 

 

Figure 6. All 2974 confident plume detections for 2021, grouped into one of the four dominant anthropogenic source types and sized by 

source rate. 30 detections in central Africa are labeled as ’Unclassified’. 
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Figure 6 shows the spatial distribution of all 2974 detected and confirmed 2021 plumes, classified by source sector based on 

the three bottom-up inventories (Section 2.5). We find that 1031 plumes predominantly relate to urban areas/landfills, 720 

to gas infrastructure, 612 to oil infrastructure and 581 to coal mines. As super-emitters are usually not the result of regular 

operations, and are therefore not well represented in bottom-up inventories, especially large transient emissions may be 

misattributed by this approach. Wetlands are not expected to result in point source emissions, but strongly emitting wetlands 

in central Africa, such as South-Sudan and the Niger delta, can produce large enhancements in TROPOMI data (Pandey et al., 

2021; Shaw et al., 2022). In the absence of large anthropogenic emissions, we label plumes from these two regions as 

’unclassified’. Wetlands might also contribute to detected signals in areas with large anthropogenic emissions like the Dhaka 

delta (Bangladesh) and the Mississippi delta (US). 

There are many clear hot spot locations with frequent detections. To group the detections into clusters with a common 

source, we apply the DBSCAN clustering algorithm (Ester et al., 1996; Schubert et al., 2017). We cluster based on the distance 

between detections in meters and set a threshold of 5 detections within 30 km as the minimum to identify a cluster. We 

identify 94 clusters, this is a conservative estimate for the number of persistent locations as some known persistent emitters 

have fewer than 5 detections in 2021. We also observe several areas with extensive plumes from multiple emitters such as 

the west-coast of Turkmenistan which are grouped into one big cluster. We find the majority of detected plumes (74.8%) to 

be clustered at a persistent urban or fossil fuel exploitation source and classify the remaining plumes as transients. Zoom-ins 

of the clusters in several distinct regions as well as source rates for all detections are shown in Figure 7.  

Deleted: 5

Deleted: 6



 

Figure 7. Regional plume detections showing color-coded persistent emission clusters with transient emissions shown in black. (a) Large 

clusters of detections related to oil/gas exploitation in Turkmenistan. (b) The clearly distinguishable outlines of the Delaware Basin and 

Midland Sub-Basins within the Permian Basin, US. (c) Detections show the same spatial structure along compressor stations and pipelines 

in western Russia. (d) Clusters of hotspots in eastern China with the extensive Shanxi coal-mining region in the center. (e) Clusters of coal 

mining detections in north-east Australia. (f) A clear cluster of detections around the persistent source in Casablanca, Morocco. (g) The 

distribution of estimated source rates for all 2974 detected plumes in the year 2021, capped at 200 t h-1. The 5th and 95th percentile as well 

as the mean values of the distribution are shown as vertical lines. 

 

Several of the identified clusters are located over well-known oil/gas production regions such as the west coast of 

Turkmenistan (Figure 7a) previously studied by Varon et al. (2019) and Irakulis-Loitxate et al. (2022b), Algeria (Varon et al., 

2021), Libya, and multiple basins in the US (Shen et al., 2022) including the Eagle Ford, Haynesville, and most prominently 

the Permian (Figure 7b) where Zhang et al. (2020) quantified emissions based on TROPOMI and we find individual clusters of 
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detections over the Midland and Delaware sub-basins. The fact that many of the detections are clustered around known 

large sources gives confidence in the performance of the models that did not use prior location information. We also identify 

oil/gas production clusters which have not been studied in detail, such as in northern Libya, Yemen, and northeastern India. 

We also find large transient plumes along the major gas transmission pipelines in western Russia (Figure 7c), similar to 

what Lauvaux et al. (2022) found for 2019-2020. Clusters of detections are seen over coal mining areas in China (Chen et al., 

2022), southern Poland (Tu et al., 2022b), South Africa, Russia, and northeastern Australia (Figure 7e) where Sadavarte et al. 

(2021) quantified large emissions from these clusters of coal mines. Our approach allows us to detect which specific locations 

within a larger area of fossil fuel exploitation cause large methane plumes, examples are the super-emitter clusters within 

the large, spread-out Shanxi coal-mining region in China (Figure 7d). 

The majority of our detections are related to urban areas around the world, including four cities with large fluxes (Buenos 

Aires, Mumbai, Delhi and Lahore), which were also identified by Maasakkers et al. (2022b) based on long-term wind-rotated 

TROPOMI averages. Urban areas comprise a range of source types but individual landfills can make up a large fraction of 

total urban emissions (Maasakkers et al., 2022b). When we zoom into the area around Casablanca, Morocco (Figure 7f), we 

see strong convergence in a cluster. Most plumes within the cluster (19 out of 23) are quantified below 25 t h-1, of which 8 

are quantified below 15 t h-1. The estimated source locations of the plumes are on average 12 km away from a landfill later 

detected and quantified using GHGSat observations (Figure 8, Section 3.2). Other urban clusters include Madrid in Spain; 7 

cities in Pakistan; Riyadh in Saudi Arabia; Bucharest in Romania; and Mexico City and Guadalajara in Mexico. The most 

frequently detected (104 detections) urban cluster is centered around Dhaka, Bangladesh. In India, we see 8 urban clusters 

and several cities with at least two detections. Detections over India are seasonally limited by meteorology as there are 

hardly any TROPOMI data during the May-September monsoon season because of persistent cloud cover. 

The distribution of the estimated source rates of all 2974 verified plumes is shown in Figure 7g. Our IME-based 

quantifications show mean emissions of 44 t h-1, with a large 5-95th percentile range of 8-122 t h-1. Many detections are 

quantified below the detection threshold of previous TROPOMI plume identification & quantification methods of 25 t h-1 

(Lauvaux et al., 2022; Jacob et al., 2022). We find 1143 plumes quantified under 25 t h-1 including 241 plumes under 10 th-1. 

Many of these originate from persistent emission clusters where emissions have been confirmed using high-resolution 

instruments. Although the applied mass balance quantification method has significant uncertainty, this shows the plume 

detection limit of TROPOMI is better than previously reported in literature. 

In order to present a rough estimate for the total emissions represented by the detected plumes, we assume each emission 

event is active for 24 hours (the minimum sampling frequency of TROPOMI). For some transient plumes, such as pulse 

emissions at compressor stations, the 24 hours estimate can be an overestimate, but we take these as representative for 

similar transient events occurring outside of the TROPOMI observation window. Using these assumptions, we find detected 

emissions of 3.1 ±1.3 Tg for 2021. As a conservative uncertainty estimate we use the sum of the standard deviations of the 

individual ensembles. The number of detected plumes is an underestimate of the true number of plumes as observations are 

limited by clouds and illumination. 
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To account for the limited TROPOMI coverage and get an indication of the annual emissions our detections are 

representative of, we scale our detected emissions by the fraction of days with coverage. We estimate the local number of 

days with coverage from our 794,395 valid scenes by first mapping their spatial footprints to a 0.1x0.1 degree grid, removing 

duplicate coverage from overlapping scenes in the same orbit. We then correct for local variations in coverage (such as 

persistent areas without data) by convoluting this field with the summed footprints of all 2021 TROPOMI data at 0.1x0.1 

degrees. We finally aggregate our detected emissions to a 1x1 degree grid and divide those by the fraction of days in 2021 

with coverage resulting from the coverage map average to 1x1 degrees. We find a scaled-up annual emission flux of 10.3 Tg, 

which is approximately 2.7% of total bottom-up 2017 anthropogenic emissions (380 Tg yr-1) (Saunois et al., 2020). Super-

emitter plumes from landfills account for 4.1 Tg yr-1 (6% of global emissions), those from coal 2.1 Tg yr-1 (4.7%), those from 

oil 2.2 Tg yr-1 and those from gas 1.9 Tg yr-1 (4.9% of global oil and gas) (Saunois et al., 2020). These estimates are only small 

fractions of total anthropogenic emissions as our conservative upscaling approach only takes large TROPOMI-detected super-

emitter plumes into account. Emissions from smaller point sources and area sources make a large contribution to the total, 

but are not part of our upscaling. Such emissions are better captured by an atmospheric inversion. 
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3.2 Synergy of automated TROPOMI detections with high-resolution instruments 

We use the detection of persistent methane plumes in TROPOMI data to target high-resolution observations (GHGSat-

C1/C2) and data analysis (PRISMA archive, Sentinel-2) following (Maasakkers et al., 2022b). Furthermore, we investigate 

large transient emissions with data from non-targeted instruments such as Sentinel-2. 

 

Figure 8. Methane plumes detected from Casablanca, Morocco on two different days, with TROPOMI and GHGSat data overlaid over visual 

ESRI World Imagery (Esri, Maxar, Earthstar Geographics, and the GIS User Community, 2022). Timestamps are UTC. The plume observed 

by TROPOMI on 2021-06-12 is quantified at 14.6 ±	8.8 t h-1. The plume observed by GHGSat on 2021-08-19 originates from the landfill 

between Casablanca and Médiouna (33.483, -7.538) and is quantified at 7.4 ±	3.3 t h-1. The winds are the GEOS-FP 10 meter windfield 

(Molod et al., 2012). 

Figure 8 shows a TROPOMI plume (14.6 ±	8.8 th-1) detected near Casablanca in Morocco on June 12th, 2021. We detected 

23 plumes in the area in 2021 with source rates ranging from 8.9 ±	5.1 t h-1 to 40.5 ±	18.0 t h-1 with a mean of 18.8 t h-1, 

indicating a persistent source (Figure 7f). Based on wind-rotation analysis (Maasakkers et al., 2022b), we find the landfill 

located in between Casablanca and Médiouna to be the optimal target for high-resolution observations. Based on this 

TROPOMI analysis, we "tip-and-cue" GHGSat to observe this location. The inset image shows a targeted GHGSat-C2 

observation on August 19th, 2021, indeed showing a methane plume (quantified at 7.4 ±	3.3 t h-1) originating from the landfill 

and extending downwind. 
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Figure 9 shows two methane plumes detected with TROPOMI in northern Kazakhstan on May 14th, 2021 at 07:53 UTC, 

quantified at 35.2 ±	13.2 t h-1 for the northern and 28.1 ±	11.2 t h-1 for the southern plume. The same locations were also 

detected in an adjacent orbit at 09:33 UTC but the closest days with coverage before and after May 14 do not show emissions, 

which indicates the plumes are transient. The bottom-up inventories give natural gas systems as the locally dominant 

anthropogenic source sector because of the presence of a gas transmission pipeline. In Sentinel-2 observations taken 38 

minutes before the first detection, we find two emitting locations close to the pipeline in the upwind part of the TROPOMI 

plume masks. The source rates of the Sentinel-2 plumes are 180 ±	59 t h-1 and 75 ±	23 t h-1 for the northern and southern 

plume respectively. The rather large discrepancy between the TROPOMI and Sentinel-2 quantifications can be explained by 

the uncertain low wind speeds, the not well-developed plume in TROPOMI increasing the uncertainty in the IME, and possibly 

the partial pixel enhancement effect described by Pandey et al. (2019). 

 

Figure 9. Transient methane plumes detected at two different locations in northern Kazakhstan with TROPOMI (quantified at 35.2 ±	13.2 t 

h-1 for the northern and 28.1 ±	11.2 t h-1 for the southern plume) and Sentinel-2 overlaid over visual ESRI World Imagery (Esri, Maxar, 

Earthstar Geographics, and the GIS User Community, 2022). Timestamps are UTC. The plumes originate from natural gas pipeline 

infrastructure. The winds are the GEOS-FP 10 meter windfield (Molod et al., 2012). 
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Figure 10. (Caption next page.) Figure 10. (Previous page.) Plumes detected over 10 locations which were inspected with high-resolution 

instruments. Observations at the same location with different instruments are most often not on the same day. Details are provided in 

Tables B1-B3 for the high-resolution instruments and in Table B4 for TROPOMI. TROPOMI data is shown in Mercator projection 

(EPSG:4326), high-resolution data is shown in the local Universal Transverse Mercator (UTM) projection. The data is overlain over visual 
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ESRI World Imagery (Esri, Maxar, Earthstar Geographics, and the GIS User Community, 2022). The worldmap in the center of the image 

corresponds to Figure 6, showing all 2974 detected plumes in 2021. TROPOMI data is here displayed as enhancement relative to the median 

XCH4 of the 32x32 pixel scene. Several of the zoomed-in views with high-resolution data were set to an opacity of 0.5 in order to reveal the 

infrastructure at the source of the plume. 

Figures 8 and 9 show how TROPOMI detections can be combined with high-resolution observations for both persistent and 

transient emitters. Figure 10 shows ten additional locations analyzed with GHGSat (7 scenes), PRISMA (2), and Sentinel-2 (1) 

based on TROPOMI detections. These 12 selected locations show the range of typical anthropogenic source types and 

intermittencies we have observed with both TROPOMI and high-resolution instruments. Supplemental Tables B1-B3 provide 

details on these high resolution observations and associated (not necessarily on the same day) TROPOMI scenes (Table B4). 

We find facility-level source rates from 0.3 ±	0.1 t h-1 up to 16 ±	5 t h-1. Because of the different spatial footprints, sensitivities, 

and detection dates, these emission rates cannot be directly compared to the TROPOMI emission estimates (Maasakkers et 

al., 2022b). 

The different specifications of the high-resolution instruments make them suitable for different purposes. The methane 

designated GHGSat-Cx instruments have the lowest detection limit and are capable of retrieving methane over areas with 

challenging surface structures such as urban areas. Southeast of Madrid we observe plumes from two separate landfills 

located 7 km apart. The methane plumes originate from the active areas of the landfills where waste is added. In TROPOMI, 

the signals from these two landfills appear as a single point source. In the gas production region around Shreveport, Louisiana, 

US, we observe three emission plumes originating from distinct infrastructure including from two facilities that are only ∼500 

m apart. Over a coal mining area in Russia we see in a GHGSat observation that a single TROPOMI-based target has 

contributions from 10 different point sources with source rates from 0.2 ±	0.1 to 2.4 ±	1.1 t h-1. The emissions originate from 

coal mining facilities, such as underground mine vents, add up to 8.8 t h-1. In the Assam oil and gas production region in India, 

we find five plumes adding up to 12.9 t h-1, showing the GHGSat-Cx instruments are also capable of retrieving methane 

plumes over non-homogeneous areas including forest and agricultural lands. We also use GHGSat to target two less 

challenging desert scenes with oil and gas production. A GHGSat observation over Libya shows two sources downwind of 

each other, the most upwind source is an unlit flare stack. At the border of Uzbekistan and Turkmenistan (listed as Uzbekistan 

in Figure 10), we find emissions at three distinct locations within a single natural gas facility, with source rates ranging from 

3.6 ±	1.0 to 6.4 ±	1.8 t h-1. These emissions appear to originate from unlit flaring stacks, similar to what Irakulis-Loitxate et al. 

(2022b) and Varon et al. (2019) found for other natural gas facilities in the region. 

For scenes with more homogeneous surfaces or extremely large emissions, PRISMA and Sentinel-2 can also be used. The 

PRISMA observation in Turkmenistan shows three plumes with an aggregated emission rate of 9.0 ±	2.9 t h-1. The emissions 

originate from distinct pieces of gas infrastructure (quantified at 3.5 ±	1.1, 3.0 ±	1.0 and 2.5 ±	0.8 th-1), the sources are located 

within the footprint of a single TROPOMI pixel (the same source as shown in Figures 2 and 5). We also use the PRISMA archive 

to detect a plume originating from a coal mine ventilation shaft in Liuzhuang Village in Shanxi, China. Finally, we use Sentinel-

2 to investigate a single location in Iran with complex observation conditions (elevation) where we only had a single TROPOMI 

detection in 2021. The emission therefore appeared to be transient at first, but with Sentinel-2 we find three emission plumes 

ranging from 1.3 ±	0.4 to 10.0 ±	3.0 t h-1 originating from the same oil facility in a timespan of two months. Extensive 
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monitoring of a location of interest over a longer timespan is feasible using Sentinel-2 (Varon et al., 2021; Irakulis-Loitxate et 

al., 2022b).  



4 Conclusions 

We detected methane emission plumes in 2021 TROPOMI data using an automated, machine-learning-based pipeline. We 

have trained a Convolutional Neural Network with a relatively small set of manually identified plumes in pre-2021 TROPOMI 

methane data to detect plume-like morphological structures (kappa score of 0.97 and recall of 0.98 on the test set). We then 

used a Support Vector Classifier to distinguish real plumes from retrieval artefacts using additional information from the 

scene and supporting data (kappa score of 0.81 and recall of 0.93 on the test set). This two-step approach can also be applied 

to other instruments in the future. We tested our detection, source localization, and emission quantification estimate for a 

specific well-characterized natural gas well blowout and found it was accurately captured by our monitoring system. After 

application of our pipeline to 2021 data, we targeted high-resolution observations and analyses to find the facilities 

responsible for twelve (clusters of) plumes seen in TROPOMI. 

Using our automated machine learning pipeline we scan all 794.395 scenes of 2021 in three hours on a single core. 4869 

scenes are automatically classified as plume, of which 2974 are manually verified as confident plumes and 745 as potential 

plumes; giving the automated pipeline a precision of 61-76%. The most challenging distinction for the SVC is between plume 

and artefact, a distinction that even for a human expert can be inconclusive for difficult cases. We focus on the manually 

verified plumes, the remaining 39% of the scenes are mostly difficult to classify and can still be followed up with manual 

inspection or be used to further train the models. We find that most plumes (74.8%) originate from 94 clusters of detections 

around both known and new persistent source locations. The other plumes are mainly caused by transient emission events, 

such as along natural gas transmission pipelines in Russia. We most often detect plumes (based on bottom-up emission 

inventories) from urban areas / landfills (1031 plumes), followed by 720 plumes from gas infrastructure, 612 from oil 

infrastructure and 581 from coal mining. Many of the identified clusters are located at well-known fossil fuel exploitation 

regions, or urban areas known to emit methane. We also identify several previously unstudied sources such as in Libya and 

Assam (India) and identify specific super-emitting locations within spread-out fossil fuel production regions like the Shanxi 

coal mining area in China. Based on IME quantifications of all plumes, we found mean emissions of 44 t h-1 with a 5-95th 

percentile range of 8-122 t h-1, which is an indication of the TROPOMI detection limit. With 1143 detections under 25 t h-1 

including 241 plumes under 10 th-1, our automated approach has a better detection limit than previously published methods 

based on TROPOMI data. When we assume all 2944 detected anthropogenic emissions to be active for 24 hours, we find 

detected 2021 emissions of 3.1 ±1.3 Tg. Accounting for the limited coverage of TROPOMI, these detected emissions are 

representative of 10.3 Tg yr-1, which is approximately 2.7% of global annual anthropogenic emissions. 

For twelve locations, we used high-resolution satellite observations (GHGSat-C1/C2, PRISMA, and Sentinel-2) to identify 

the exact sources responsible for the detected plumes in TROPOMI. We utilized the different strengths of the high-

resolution instruments; we made targeted observations with GHGSat over scenes with complex surface reflectance, 

whereas the archive of Sentinel-2 is used to analyze large transient emission events and track intermittent emissions. We 

found point sources from landfills and fossil fuel exploitation with emission rates from 0.3 ±	0.14 t h-1 to 180 ±	59 t h-1. 

Most fossil-fuel-related TROPOMI plumes had contributions from multiple point sources, with one GHGSat observation 

over Russia revealing emissions from ten different sources. 
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Over the next few years, the number of global, regional, and point-source mapping instruments capable of retrieving 

methane plumes will vastly increase; with i.a. Sentinel-5, CO2M, MethaneSAT and Carbon Mapper (Jacob et al., 2022). Our 

monitoring system can incorporate these fast-growing data volumes and can already be used to automatically detect plumes 

in the operational TROPOMI data, track temporal variability in super-emitter plumes, and "tip-and-cue" high-resolution 

satellite instruments to find the associated super-emitting facilities. This identification and monitoring of super-emitters with 

large mitigation potential is paramount to reach the goals of the Global Methane Pledge.  



Code and data availability. TROPOMI data are publicly available at https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/18_17/. 

GHGSat-C1/C2 methane plume data used in this study are available at https://doi.org/10.7910/DVN/QQQ9IU. Sentinel-2 data are publicly 

available at the Copernicus Open Access Hub https://scihub.copernicus.eu/. PRISMA data are publicly available at https://prisma.asi.it/, 

after registering at https://prismauserregistration.asi.it. GEOS-FP wind data can be downloaded at 

https://gmao.gsfc.nasa.gov/GMAO_products/. ERA5 wind data are available at https://cds.climate.copernicus.eu. WRF-CHEM code is 

available at https://github.com/wrf-model/WRF/releases, in this work version 4.1.5 was used. The GFEI (v2) emission inventory is available 

at https://doi.org/10.7910/DVN/HH4EUM. The WetCHARTs emission inventory is available at 

https://daac.ornl.gov/cgibin/dsviewer.pl?ds_id=1502. EDGAR v6 data is available at http://data.europa.eu/89h/97a67d67-c62e-4826-

b873-9d972c4f670b. The dataset of detected plumes in 2021 TROPOMI data will be made available upon publication.  



Appendix A: CNN trainingdata table 

 split subsplit Nr of scenes Nr of scenes 
augmented 

All labeled scenes 1.0  3070  

training set 0.8  2456 19648 

- training subset  0.8 - 1965 - 15718 

- validation subset  0.2 - 491 - 3930 

test set 0.2  614 4912 

Table A1. An overview of the split in training and test data for the CNN.  



Appendix B: Details on the plumes observed with high resolution instruments 

GHGSat 
 

Observation time Latitude Longitude Source rate Wind speed Sector 

  [UTC] [deg] [deg] [t h-1] U10 [m s-1]  

Casablanca, Morocco  2021-08-19 10:21:43 33.4837 -7.5378 7.4 ±3.3 2.6  Landfill 

Madrid, Spain a 2021-12-13 10:04:26 40.3222 -3.5913 4.3 ±2.0 2.7  Landfill 

 b 2021-12-13 10:04:26 40.2611 -3.6364 5.6 ±2.5 2.7  Landfill 

Libya a 2021-04-17 08:30:12 28.9089 20.9807 8.8 ±2.0 8.6  Oil exploitation 

 b 2021-04-17 08:30:12 28.9400 20.9856 2.7 ±0.6 8.6  Oil exploitation 

Australia a 2021-06-08 23:23:08 -21.8321 148.0099 0.7 ±0.2 6.4  Coal mine 

 b 2021-06-08 23:23:08 -21.8847 147.9737 1.1 ±0.3 6.4  Coal mine 

 c 2021-06-08 23:23:08 -21.8883 147.9949 2.9 ±0.8 6.4  Coal mine 

Uzbekistan a 2021-12-20 06:22:11 38.7989 64.6410 6.4 ±1.8 6.5  flaring stack 

 b 2021-12-20 06:22:11 38.7839 64.6289 4.0 ±1.1 6.5  O&G facility 

 c 2021-12-20 06:22:11 38.7347 64.6169 3.6 ±1.0 6.5  O&G facility 

Louisiana, US a 2021-04-19 16:04:48 32.1979 -93.4882 0.5 ±0.4 0.1  O&G facility 

 b 2021-04-19 16:04:48 32.1960 -93.4996 2.3 ±2.0 0.1  O&G facility 

 c 2021-04-19 16:04:48 32.1900 -93.4856 0.4 ±0.3 0.1  O&G facility 

Russia a 2021-08-25 04:26:02 54.6520 86.1506 1.3 ±0.6 2.8  Coal facility 

 b 2021-08-25 04:26:02 54.6313 86.1736 0.3 ±0.1 2.8  Coal 

 c 2021-08-25 04:26:02 54.6190 86.1747 2.4 ±1.1 2.8  Coal 

 d 2021-08-25 04:26:02 54.6120 86.1498 1.6 ±0.7 2.8  Coal 

 e 2021-08-25 04:26:02 54.6122 86.1315 0.9 ±0.4 2.8  Coal 



 f 2021-08-25 04:26:02 54.6080 86.1496 0.5 ±0.2 2.8  Coal 

 g 2021-08-25 04:26:02 54.5964 86.1828 0.4 ±0.2 2.8  Coal 

 h 2021-08-25 04:26:02 54.6168 86.1465 1.0 ±0.4 2.8  Coal 

 i 2021-08-25 04:26:02 54.5904 86.1812 0.2 ±0.1 2.8  Coal 

 j 2021-08-25 04:26:02 54.5621 86.2065 0.4 ±0.2 2.8  Coal 

Table B1. Observation, location and quantification details corresponding to the GHGSat scenes. One of which is Morocco, Casablanca, 

Landfill in Figure 8. Windspeeds are 10m windspeeds obtained from GEOS-FP (Molod et al., 2012). 

Locations Uzbekistan-b and Uzbekistan-c are located just over the border in Turkmenistan, however the main building of the facility (near 

Uzbekistan-a) is located in Uzbekistan. Because there is another location in Turkmenistan we have chosen this naming. 

GHGSat Observation time Latitude Longitude Source rate Wind speed Sector 

 [UTC] [deg] [deg] [t h-1] U10 [m s-1]  

India a 2021-12-24 03:21:48 27.4626 95.4788 1.2 ±0.8 0.6 
 

Oil exploitation 

b 2021-12-24 03:21:48 27.3902 94.4695 2.3 ±1.6 0.6  Oil exploitation 

c 2021-12-24 03:21:48 27.3545 95.4733 2.8 ±2.0 0.6  Oil exploitation 

d 2021-12-24 03:21:48 27.3402 95.4830 3.1 ±2.2 0.6  Oil exploitation 

e 2021-12-24 03:21:48 27.3771 95.4472 3.5 ±2.5 0.6  Oil exploitation 

Table B1. Observation, location and quantification details corresponding to the GHGSat scenes. One of which is Morocco, Casablanca, 
Landfill in Figure 8. Windspeeds are 10m windspeeds obtained from GEOS-FP (Molod et al., 2012). 

PRISMA Observation time Latitude Longitude Source rate Wind speed Sector 

 [UTC] [deg] [deg] [t h-1] U10 [m s-1]  

Turkmenistan a 2021-02-13 06:51:45 40.0106 60.9346 3.0 ±1.0 1.9 
 

O&G exploitation 

b 2021-02-13 06:51:45 40.0496 61.0456 3.5 ±1.1 1.9  O&G exploitation 
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c 2021-02-13 06:51:45 40.0240 61.0536 2.5 ±0.8 1.9  O&G exploitation 

Shanxi, China 2021-12-22 03:18:33 35.6083 112.5282 11.6 ±3.7 2.7  Coal facility 

Table B2. Observation, location and quantification details corresponding to the PRISMA scenes. Windspeeds are 10m windspeeds obtained 

from GEOS-FP (Molod et al., 2012). 

The plume mask of plume Turkmenistan-c (Figure 10, Table B2) was curated in order to exclude an artifact which was caused by a nearby 

road. Retrieval artefacts in high-resolution methane retrievals from hyper-spectral instruments resulting from surface features such as 

roads is a known issue (Sánchez-García et al., 2022; Gorroño et al., 2022). PRISMA and Sentinel-2 are more prone to such issues than 

GHGSat-Cx. 

Sentinel-2 
 

Observation time Latitude Longitude Source rate Wind speed Sector 

  [UTC] [deg] [deg] [t h-1] U10 [m s-1]  

Kazakhstan a 2021-05-14 07:15:51 49.7205 59.0809 179.8 ±59.1 2.6 
 Natural gas 

pipeline 

 b 2021-05-14 07:15:37 49.3704 59.0660 74.6 ±23.0 2.2  Natural gas 
pipeline 

Iran a 2021-08-24 07:12:03 27.5345 53.2946 10.0 ±3.0 2.1  O&G facility 

 b 2021-09-08 07:11:57 27.5345 53.2946 16.1 ±5.3 2.7  O&G facility 

 c 2021-10-23 07:12:06 27.5345 53.2946 1.3 ±0.4 1.8  O&G facility 

Table B3. Observation, location and quantification details corresponding to the Sentinel-2 scenes. One of which is Kazakhstan, Natural gas 

pipeline in Figure 9. Windspeeds are 10m windspeeds obtained from GEOS-FP (Molod et al., 2012).  
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TROPOMI Observation time Latitude Longitude Source rate Wind speed 
Sector 
estimate 

 [UTC] [deg] [deg] [t h-1] GEOS-10m / 

GEOS-PBL / 

ERA5-10m [m s-1] 

(bottom-up) 

Casablanca, Morocco 2021-06-12 13:48:37 33.48 -7.54 14.6 ±8.8 6.9 / 2.6 / 2.8 Landfill 

Madrid, Spain 2021-01-05 13:13:19 40.30 -3.64 6.8 ±2.6 0.6 / 0.6 / 1.0 Landfill 

Libya 2021-07-26 11:40:42 28.88 20.93 87.3 ±28.7 4.4 / 4.6 / 3.4 Oil 

Australia 2021-09-25 03:56:01 -21.91 148.06 17.5 ±6.1 3.0 / 2.0 / 2.5 Coal 

Uzbekistan 2021-08-10 08:39:36 38.76 64.59 15.2 ±5.6 4.2 / 3.6 / 4.9 Gas 

Louisiana, US 2021-09-23 20:02:42 32.13 -93.72 31.1 ±12.1 1.1 / 1.9 / 1.6 Gas 

Russia 2021-06-08 06:43:36 54.61 86.10 40.4 ±16.9 1.1 / 1.8 / 1.0 Coal 

India 2021-01-04 06:42:43 27.38 95.69 21.1 ±9.0 1.0 / 0.8 / 0.5 Gas 

Turkmenistan 2021-12-05 08:47:19 40.10 60.99 11.1 ±3.9 2.4 / 3.2 / 3.3 Oil 

Shanxi, China 2021-01-23 05:47:47 35.63 112.52 47.7 ±15.3 3.5 / 4.6 / 3.6 Coal 

Kazakhstan a 2021-05-14 07:53:19 49.85 59.12 35.2 ±13.2 2.2 / 2.5 / 1.4 Gas 

Kazakhstan b 2021-05-14 07:53:14 49.46 59.08 28.1 ±11.2 2.3 / 3.0 / 1.5 Gas 

Iran 2021-11-04 10:05:30 27.48 53.41 45.4 ±13.7 2.1 / 1.8 / 2.0 Oil 

Table B4. Observation, location and quantification details of the TROPOMI scenes corresponding to the high resolution observations in 

Figures 8, 9 and 10. Windspeeds presented in this table are the GEOS-10m, GEOS-PBL and ERA5-10m windproducts (Molod et al., 2012; 

Hersbach et al., 2020) which are used to compute three Ueff	values, which are then averaged (Section 2.5.1). 

Appendix C: Features used as input for the SVC  
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Table C1. Overview of the features used by the SVC as input. Each scene is represented as a feature vector with shape [1x41]. This table 

provides the name of the feature, the category the feature is aimed to provide information about, the ranking of the top-10 features in 

the feature importance analysis (FIR = Feature Importance Ranking), the possible range of values the feature can attain and a description 

of the 
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feature. 
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Table C1. Overview of the features used by the SVC as input. Each scene is represented as a feature vector with shape [1x41]. This table 

provides the name of the feature, the category the feature is aimed to provide information about, the ranking of the top-10 features in 

the feature importance analysis (FIR = Feature Importance Ranking), the possible range of values the feature can attain and a description 

of the 

feature. 
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