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We thank both reviewers for their construc4ve comments and feedback on how to improve 
both the quality and clarity of the manuscript. We implemented the comments below and 
also made minor changes and improvements elsewhere to improve the flow of the 
manuscript.  
 
 
Grey are the reviews, replies to the reviews are in black, blocks of text in the manuscript are 
italic within “ ” , addi$ons to this are italic and bold. 
 
 
Anonymous Referee #1, 21 Feb 2023 
h6ps://doi.org/10.5194/acp-2022-862-RC1 
 
 

This paper describes a two-step machine learning approach that uses a Convolu4onal 
Neural Network (CNN) to detect plume-like structures in TROPOMI methane data 
and then applies a Support Vector Classifier (SVC) to dis4nguish emission plumes 
from retrieval artefacts. The CNN is trained using hand-selected scenes from 2018-
2020 and then applied to 2021 observa4ons. This is an important topic because 
TROPOMI collects millions of measurements over the globe each day, and future 
missions will collect even more. Automated approaches are therefore needed to 
process these data and reliably iden4fy emission plumes.  In general, this manuscript 
does represent a substan4al contribu4on. However, the methods sec4on (sec4on 
2.2, 2.3) needs a substan4al revision to make it more understandable to the average 
reader of Atmospheric Chemistry and Physics, who may not be familiar with these 
machine learning techniques. 

We thank the reviewer for this posi4ve overall review. The feedback on the methods sec4on 
is implemented as discussed in more detail below. We have added a flowchart (new Figure 
1), which illustrates the different steps in our method, what TROPOMI data are used in every 
step, what the format of the data is (32x32 scene vs. 1x41 feature vector), when a model is 
trained, where a priorly trained model is used and which steps require manual input. This 
flowchart is referenced at various loca4ons in the manuscript. 
 
 

The descrip4on of the choice and configura4on of the CNN is very short. Four 
reasons are cited to jus4fy the choice of this par4cular machine-learning method 
(L131-136), but readers not familiar with these methods might not know that CNNs 
are commonly chosen for image recogni4on and pa[ern recogni4on. We learn that 
“the same convolu4onal kernel scans the en4re image”, but never told what this 
kernel is or where it comes from or what a “pooling layer” (figure 2) is or does. 
 

We have added an introductory sec4on on CNNs at the start of the methodology sec4on and 
also include a reference to an overview paper about deep learning methodologies applied to 
remote sensing images to give the context that CNNs are commonly used for image 
recogni4on. 
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“Convolu$onal Neural Networks (CNN) are a type of machine learning model commonly 
applied in image recogni$on and object detec$on problems (Cheng et al., 2020). A CNN 
consists of mul$ple layers, where informa$on moves from an input image, through the 
layers of the CNN at an increasingly abstract coarse resolu$on, to the output; the 
classifica$on of the image. To condense the informa$on of the image to coarser 
resolu$on, the CNN uses "convolu$onal blocks" that consist of two or more convolu$onal 
layers, followed by a (max-)pooling layer. A convolu$onal layer produces "feature maps" 
that indicate where certain features (e.g. curves, edges or more abstract features) are 
detected within the image. These feature maps are obtained by convolu$ng the input 
image with a convolu$onal kernel, a small matrix with weights that are op$mised during 
training to best detect features relevant to the par$cular classifica$on problem. The 
resul$ng feature maps (one for each kernel applied) are then the input for the next layer 
(LeCun et al., 2010; Cheng et al., 2020). A max-pooling layer scans the previous layer with 
a 2x2 kernel and returns the maximum value, thereby crea$ng a feature map at half the 
resolu$on, focused on dominant features (LeCun et al., 2010). AKer the last convolu$onal 
block, the resul$ng feature maps are flaMened and interpreted by one or more fully-
connected "dense" layers, consis$ng of neurons, between which the connec$ons have 
trainable weights. This part of the network aggregates the informa$on into a single 
output value. During training, the trainable weights, in the convolu$onal kernels and 
dense layers, are op$mized to best perform the classifica$on task based on the training 
dataset (LeCun et al., 2010; Cheng et al., 2020). The trained CNN can then be used to 
classify new images, in this case as ’plume’ versus ’no-plume’.” 
 
We now elaborate on what a convolu4onal kernel and a pooling layer are in the general 
introduc4on on CNNs (see above) and improved the jus4fica4on for the choice for the CNN 
together with addi4onal CNN references: 
 
“The main advantages of the CNN compared to regular neural networks or other machine 
learning models are that: (1) the CNN is capable of beMer retaining spaCal informaCon which 
is lost in fully-connected networks or machine learning models like decision trees or support 
vector machines (Selvaraju et al., 2020); (2) the training of a CNN can be done with image 
level labels (plume or no plume), there is no need to indicate where within the image the 
feature of interest is located as the CNN learns to localize these features during training; 
(3) the same convoluConal kernels are convoluted with the enCre image, which is more 
computaConally efficient compared to fully-connected networks (LeCun et al., 2010; Cheng 
et al., 2020); (4) the model is rotaConal and translaConal invariant when properly trained 
(LeCun et al., 2010).” 
 
 

The descrip4on of the CNN training process is even more obscure and confusing. We 
are told that “For the training process, the class weight parameter is set to the ra4o 
between the number of plumes (828 posi4ves) and nega4ves (2242), …”, but we are 
never told what the class weight parameter is or how sensi4ve the solu4on might be 
to this se`ng.  

We have added an explana4on on class weights with a detailed reference that specifically 
covers the issue of class imbalance: 
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“Our training dataset mostly contains clear posiCves (828) and clear negaCves (2242) to 
effecCvely learn disCnguishing features. Our dataset has many more nega$ve than posi$ve 
scenes. When training our CNN however, we want both categories of training samples 
(classes) to have equal impact to obtain op$mal performance (Johnson and KhoshgoKaar, 
2019). This balancing can be achieved by applying class weights during training (Johnson 
and KhoshgoKaar, 2019), giving posi$ve scenes more weight. We set the class weight 
parameter to the inverse of the ra$o between the number of posi$ves and nega$ves.” 
 
 

The paragraph that follows (L148-163) makes the training process look more like 
black magic, where the user u[ers a few magic words (Keras, ReLU, ADAM, sodmax) 
and wondrous things happen. All of these terms are used without reference to 
refereed scien4fic papers.  
Instead, the reader is sent to a web page (Chollet et al., 2015) with a sales pitch and 
code and then a github site (O\’Malley et la.. 2019). What part of these code 
distribu4ons are used here?  All of them? The only real reference in this paragraph is 
Li et al. (2018), which describes one of two approaches used for op4mizing 
hyperparameters. Neural network training is a major of this paper. Addi4onal insight 
into these methods is essen4al to gain the acceptance and understanding of this 
Earth Science audience. At a minimum, we need to understand the specific inputs 
and outputs of these methods and how the results are validated against standards.  A 
few addi4onal  figures illustra4ng these topics would be great. 

 
We now added a flowchart (new Figure 1) to provide an overview of where the CNN training 
process fits within the en4re ML approach, and provide addi4onal details on inputs, output 
and data formats in this step. We have added addi4onal references to academic literature 
where possible in this paragraph (e.g. for ADAM). For Keras and KerasTuner we have also 
maintained the (web-based) references requested by their authors. We wrote a more 
elaborate discussion on the func4on of different components of the CNN and be[er 
explained the different terms. We fixed an error where we wrote we used sodmax as 
ac4va4on func4on in the output neuron, this was changed to sigmoid.  
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“Figure 1: Flowchart showing the employed methodology framework. It consists of three 
phases, where each next phase uses the output (the trained model) of the previous phase 
as indicated with matching colors (orange and green). We use the TROPOMI XCH4 Level 2 
scien$fic data product version 18_17. Pre-processing is equivalent for each of the three 
phases, and consists of filtering, de-striping of the XCH4 channel and splidng up the data 
into 32x32 scenes. The output of the pre-processing is a dataset of [N, M, 32, 32] where N 
is the number of scenes, M is the number of channels (fields of data used later on, for 
example the methane concentra$ons) and 32x32 gives the (pixel) dimensions of the scene. 
The CNN exclusively uses the XCH4 channel, both during training and when the trained 
CNN is used for classifica$on. In the Feature Engineering step of the second and third 
phase, a feature vector of shape [1, 41] is computed which corresponds to a single scene 
[1, M, 32, 32]. The SVC exclusively uses the feature vectors, both during training and when 
the trained SVC is used for classifica$on. Manual verifica$on steps are shown in purple. In 
the applica$on phase, there is one manual step, which is the verifica$on of detected 
plumes to make sure the output of the pipeline is correct.” 
 
“We use the training dataset of 19,648 (augmented) scenes (Table A1) to train the CNN 
(Figure 1, ’CNN Training’). The CNN was designed and trained using the machine learning 
framework Keras (Chollet et al. (2015), Chollet (2021)), at first using the default values for 
the hyperparameters. The model is trained for a maximum of 100 epochs (itera$ons of the 
training process). During training we op$mize the validaCon loss, which measures the error 
made on the subset of the training data not used in that epoch. We use binary cross-
entropy as the loss funcCon and ADAM (an improved version of stochas$c gradient descend 
algorithm, Kingma and Ba (2014)) as the opCmizer. We use a 0.4 dropout layer (randomly 
disabling 40% of the neurons) in the first fully-connected layer during training to prevent 
overfidng and make the model more robust (Srivastava et al., 2014). The ac$va$on 
func$on modifies the output before it is passed to the next layer; we apply the ReLU 
(recCfied linear unit, outputs zero when the input is nega$ve and otherwise outputs the 
input value) acCvaCon funcCon in all layers except for the final layer where we apply 
sigmoid (LATEX MATH), which normalizes the output. To force the model to focus more on 
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plume-like signatures during training, the loss weight of plume scenes is set to double that 
of negaCves scenes. Training is halted a\er the validaCon loss does not improve for several 
epochs, the best model weights found up to that point are used. A\er training, the model 
performance is inferred by classifying the labeled test dataset. 
 
A\er training this iniCal "default" model version, the hyperparameters were further 
opCmized using the Keras Tuner op$miza$on framework (O’Malley et al., 2019) and 
Hyperband (Li et al., 2018). With these methods, we perform a grid-search to find the best 
hyperparameters for our par$cular problem. The opCmal hyperparameters depend on the 
size of the training dataset, architecture of the CNN, number of classes and problem type. 
The search space for the opCmizaCon was defined using insights from the iniCal training, 
theoreCcal foundaCon, and design constraints. We inspected the hyperparameters of the top 
10 performing set-ups and selected the opCmal hyperparameters by combining the results of 
this opCmizaCon with expert judgement on this parCcular problem. Figure 3 shows a 
schemaCc overview of the CNN with opCmized hyperparameters.” 
 
 

The discussion of Feature Engineering (Sec4on 2.3, L193-199) and list of features in 
Table C1 is more helpful, but s4ll unnecessarily confusing. I was surprised that the 
feature vector included the CNN score (0, 1) as feature, that is apparently no less or 
more important than any other. We are told that the algorithm operates on 32x32 
pixel scenes using a 41 x 1 feature vector. However, then we learn (L205)  that “In our 
binary classifica4on problem, the CAM visualizes which regions of the deepest 
feature maps(the 8x8, deepest max-pooling layer in Figure 2) lead to an ac4va4on of 
the plume class.”  Figure 2 shows only two pooling layers and does not men4on 
where the 8x8, deepest max-pooling layer.  We are then told (L207-208) that “This 
spa4al ac4va4on is calculated using the gradients between all internal 64 feature 
maps and the fully-connected layer.” Where did we learn about internal 64 feature 
maps? At this point, I was totally lost. 

We have added a statement on the fact that the output CNN score is also valuable to the 
SVC: 
“Scenes with predicCon scores >0.5 are classified as plumes. Although we use this output for 
binary classifica$on, the value holds addi$onal informa$on regarding the confidence of 
the CNN (i.e. 0.6 vs. 0.98), which we use for the second model.” 
 
We now state more clearly which steps use a 32x32 pixels scene and which steps use a 1x41 
feature vector, both in the flowchart and at relevant loca4ons throughout the text. Feature 
maps are now also explained in the CNN introduc4on above, the difference between a 
feature map and feature vector, which are unrelated, is now more clearly reflected in the 
text and in the flowchart. 
 
We changed the figure with the CNN architecture (now figure 3) to more clearly show which 
layers are used for the CAM (Max-Pooling 2 and Dense 1). We changed the naming of the 
layers and referred to those layers more clearly in the text.  
“Fundamental to many of those features is "masking" the plume in order to isolate the plume 
pixels from the background. For this purpose, we use informa$on about which part of the 
scene has triggered the CNN detecCon. For this we use the Class AcCvaCon Map (CAM) to 
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visualize the localized acCvaCons of a CNN corresponding to a certain class on which it was 
trained (Zhou et al., 2015). We apply Grad-CAM (Selvaraju et al., 2020), which allows the 
computaCon of the CAM for our CNN that includes fully-connected layers. In our binary 
classificaCon problem, the CAM visualizes which regions of the deepest (coarsest) feature 
maps (Max-Pooling 2 [8x8] in Figure 3) contribute strongest to an acCvaCon of the plume 
class (output > 0.5) for a given input image. This spaCal acCvaCon is calculated using the 
gradients (Selvaraju et al., 2020) between the 64 feature maps (each of 8x8 resolu$on, 
resul$ng in a 64x8x8 array, Figure 3) of the deepest max-pooling layer (Max-Pooling 2) and 
the first fully-connected, or dense layer (Dense 1 in Figure 3). In order to obtain a CAM of 
sufficient resoluCon…” 
 

Smaller issues, concerns and editorial sugges4ons: 
L66: “As such the hyperspectral …” à “As such, the hyperspectral …” 

This was changed in the text following the reviewer’s sugges4on. 
“As such, the hyperspectral PRISMA instrument…” 
 

L78: “atmospheric condi4ons and iden4fy plume signatures” à “atmospheric 
condi4ons to iden4fy plume signatures …”? 

This was changed in the text following the reviewer’s sugges4on. 
“…include monitoring anomalous atmospheric condiCons to idenCfy plume signatures in 
large datasets…” 
 

L85: “we target three high-resolu4on satellite instruments …”  The word “target” is 
ambiguous here, because it some4me means that you point a satellite instrument 
(i.e., GHGSat) at a target.  From the context, I believe you mean “we use data from 
three high-resolu4on satellite instruments …”  Is that correct? 
 

We changed the text to remove the ambiguity between targeted observa4ons and targeted 
analysis: 
 
“Based on the 2021 detecCons, we use observa$ons of three high-resoluCon satellite 
instruments…” 
 

L90: “We use two 90 machine learning models in sequence to detect plumes in the 
TROPOMI methane data. First we apply a Convolu4onal Neural Network to detect 
plume-like structures in TROPOMI methane atmospheric mixing ra4o data, then we 
use addi4onal atmospheric parameters and suppor4ng data to further dis4nguish 
between genuine methane plumes and retrieval artefacts. We then use (targeted) 
high-resolu4on methane observa4ons to pinpoint the responsible sources.” 
These two sentences are largely redundant with the last few sentences of the 
paragraph above. It would be be[er to replace them with a brief overview of the 
next few subsec4ons. 
 

This was done in order to make sure the Methodology sec4on was self-contained. With the 
addi4on of the flowchart at the start of the Methods sec4on we modified this paragraph to 
incorporate a brief outline of the flowchart and Methods sec4on: 
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“Figure 1 illustrates the full machine-learning pipeline and training process. Sec$on 2.1 
describes the pre-processing step to generate scenes used by the CNN and the feature 
engineering algorithms. Sec$on 2.2 describes the training process of the CNN (Figure 1 
’CNN Training’). Sec$on 2.3 describes the feature engineering algorithms, which are used 
to generate feature vectors for each TROPOMI scene. The SVC uses those feature vectors 
during its training process (Figure 1 ’SVC Training’), covered in Sec$on 2.4. Then, we apply 
the full, trained, machine learning pipeline to 2021 TROPOMI observa$ons the models 
have not been trained on (Figure 1 ’CNN+SVC Applica$on’). Based on the resul$ng 
TROPOMI detec$ons, we perform further analysis (Sec$on 2.5) and use (targeted) high-
resoluCon methane observaCons (Sec$on 2.6) to pinpoint the responsible sources for 12 of 
those detecCons.” 
 
 

Sec4ons 2.2 – 2.4 – see comments above. 
L314: “allows mul4ple close by plumes” à “allows mul4ple nearby plumes” 

This was changed in the text following the reviewer’s sugges4on. 
“…are cut in half and allows mulCple nearby plumes to be detected in adjacent…” 
 
 

Also, somewhere in this paragraph, it would be good to specify the minimum 
number of enhanced pixels needed to define a "plume". 

We added a statement on the minimum number of enhanced pixels in a plume mask in the 
sec4on about the plume mask. 
“…from the plume mask. A plume mask can consist of any number of pixels depending on 
the scene. The minimum is 1 pixel, but this is rare, the average is around 20 pixels. Several 
staCsCcs of the…” 
 
 

L345, L358, L371.  It appears that the same, 10m wind field is used in the analysis of 
GHGSat, PRISMA, and sen4nel-2, but two different nota4ons are used. For GHGSat 
(L345), it is called with U10 winds from GEOS-FP, while for the other two satellites, it 
is called “GEOS-FP 10m wind data”. It would be good to use consistent nomenclature. 

This was changed in the text following the reviewer’s sugges4on, we changed “U10 winds” 
to “10m wind data” in the GHGSat sec4on. In the IME sec4on we use U10 in the equa4ons, 
we explicitly defined U10 and UPBL in that same sec4on for clarity. Everywhere else in the text 
we now write 10m wind data. 
 
 

L351: “hyperspectral 30x30 km2 images at a spa4al resolu4on of 30x30 m …” If the 
pixels and images are nearly square, it would be be[er to describe their dimensions 
as 30 km x 30 km and 30 m x 30 m, respec4vely. 

This was changed in the text following the reviewer’s sugges4on. We also changed this 
nota4on elsewhere in the text, for example when sta4ng GHGSat’s resolu4on. 
 
 

L352: “The minimum revisit 4me can be up to 7 days with ±20\% across-track 
poin4ng.” 
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Do you mean "up to" or "as short as" 7 days? For example, can PRISMA some4mes 
have repeat cycles as short as one day or are they almost always longer than 7 days? 

Thank you for poin4ng this out, this was indeed phrased in an unclear way. The revisit 4me is 
at least 7 days and even longer when only considering nadir viewing geometry. We added a 
reference to the original paper about the instrument which men4ons the revisit 4me for this 
viewing geometry: 
“The revisit Cme can be as short as 7 days using the instrument’s +/- 20% across-track 
poinCng (Coglia$ et al., 2021).” 
 
 

L356: “loca4on of interest on a future moment in 4me.” à “loca4on of interest in the 
future.” 

This was changed in the text following the reviewer’s sugges4on. 
“…used to target a locaCon of interest in the future. We perform…” 
 
 

L361: “capable of the detec4on of methane” à “capable of detec4ng methane” 
This was changed in the text following the reviewer’s sugges4on. 
“…to be capable of detec$ng methane super-eminer plumes…” 
 
 

L362: “with a pixel resolu4on of 20 m” à is this “with a pixel resolu4on of 20 m x 20 
m”? 

This was changed in the text following the reviewer’s sugges4on, also elsewhere in the text. 
“…Instrument, with a pixel resoluCon of 20 m x 20 m for the…” 
 

L369: “that similarly to Varon et al. (2021)” à “", that, like Varon (2021) uses ..." 
This was changed in the text following the reviewer’s sugges4on: 
“We apply the methane retrieval and IME quanCficaCon approach from Gorroño et al. 
(2022), that, like Varon et al. (2021) uses a "reference day" without a…” 
 
 

L375: “iden4fies 26,444 scenes (3.3 \%) as containing” à “iden4fies 26,444 scenes 
(3.3 \%) that contain” 

This was changed in the text following the reviewer’s sugges4on. 
“…scenes, the CNN idenCfies 26,444 scenes (3.3 %) that contain plume-like XCH4 
morphological…” 
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Anonymous Referee #2, 06 Mar 2023 
h6ps://doi.org/10.5194/acp-2022-862-RC2 
 

General comments 
This study by Schuit et al. proposed a machine-learning-based approach to 
automa4cally detect super-emi[ers of methane from high-resolu4on TROPOMI 
retrievals. This is an important work because it provides opportuni4es to make the 
most of the huge amount of measurements obtained by TROPOMI or other 
instrument in the future. However, I found the methodology sec4on hard to follow, 
as it involves different models (e.g., CNN, SVC, IME, the Weather Research and 
Forecas4ng model coupled with a Chemistry module, version 4.1.5), different 
datasets (e.g., TROPOMI, emission inventory, GEOS-FP, GHGSat, PRISMA and 
Sen4nel-2), and the rela4onship between these models and datasets are 
complicated. 
 
A flow chart of the full methodology framework is needed, which describes each step 
of the approach in detail, including the purpose, the input and output data, as well as 
the involved model. Such figure would help the readers to be[er understand the 
whole procedures of the complicated approach. For example, it could explain the 
rela4onship between the CNN and the SVC model, and describes how the data is 
transferred between these models. 
The method sec4on is suggest to be reorganized according to the method flow chart. 
 

We thank the reviewer for the posi4ve review. We recognize the complexity of the different 
models, datasets and instruments and different steps of the Methodology. We have added a 
flowchart (new Figure 1) as well as a more comprehensive introduc4on and overview of the 
methodology at the start of the Data and Methods sec4on to further clarify the structure 
and contents of the paper, and how different parts relate to one another. The flowchart 
clearly splits the methodology sec4on into three parts (training of the CNN, training of the 
SVC and opera4onal use) and shows the rela4ons between the three parts (i.e. how the 
trained models are applied to later steps). Further specific comments are addressed below. 
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“Figure 1: Flowchart showing the employed methodology framework. It consists of three 
phases, where each next phase uses the output (the trained model) of the previous phase 
as indicated with matching colors (orange and green). We use the TROPOMI XCH4 Level 2 
scien$fic data product version 18_17. Pre-processing is equivalent for each of the three 
phases, and consists of filtering, de-striping of the XCH4 channel and splidng up the data 
into 32x32 scenes. The output of the pre-processing is a dataset of [N, M, 32, 32] where N 
is the number of scenes, M is the number of channels (fields of data used later on, for 
example the methane concentra$ons) and 32x32 gives the (pixel) dimensions of the scene. 
The CNN exclusively uses the XCH4 channel, both during training and when the trained 
CNN is used for classifica$on. In the Feature Engineering step of the second and third 
phase, a feature vector of shape [1, 41] is computed which corresponds to a single scene 
[1, M, 32, 32]. The SVC exclusively uses the feature vectors, both during training and when 
the trained SVC is used for classifica$on. Manual verifica$on steps are shown in purple. In 
the applica$on phase, there is one manual step, which is the verifica$on of detected 
plumes to make sure the output of the pipeline is correct.” 
 
The new start of the Data and Methods sec4on now includes references to the specific 
sec4ons, linking it to the overview in the flowchart: 
 
“Figure 1 illustrates the full machine-learning pipeline and training process. Sec$on 2.1 
describes the pre-processing step to generate scenes used by the CNN and the feature 
engineering algorithms. Sec$on 2.2 describes the training process of the CNN (Figure 1 
’CNN Training’). Sec$on 2.3 describes the feature engineering algorithms, which are used 
to generate feature vectors for each TROPOMI scene. The SVC uses those feature vectors 
during its training process (Figure 1 ’SVC Training’), covered in Sec$on 2.4. Then, we apply 
the full, trained, machine learning pipeline to 2021 TROPOMI observa$ons the models 
have not been trained on (Figure 1 ’CNN+SVC Applica$on’). Based on the resul$ng 
TROPOMI detec$ons, we perform further analysis (Sec$on 2.5) and use (targeted) high-
resoluCon methane observaCons (Sec$on 2.6) to pinpoint the responsible sources for 12 of 
those detecCons.” 
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Another important informa4on that should be reflected in the flow chart is, whether 
the specific step is automa4c or manual. I’ve no4ced that some processes in this 
method need manual inspec4on, and such kind of informa4on are suggested to be 
summarized. 

We have explicitly listed the three manual labeling/verifica4on steps in the flowchart, and 
color-coded those steps purple. We also clarified this where necessary elsewhere in the text, 
e.g. in the Conclusions: 
“We have trained a ConvoluConal Neural Network with a relaCvely small set of manually 
iden$fied plumes in pre-2021 TROPOMI methane data to detect plume-like morphological 
structures (kappa score of 0.97 and recall of 0.98 on the test set).” 
 
 

The evalua4on of the es4mated emission source rates are conducted through 
comparison with GHGSat, PRISMA, and Sen4nel-2 detec4ons. Such comparison was 
conducted for several loca4ons as examples. I suggest the authors to clarify the 
representa4veness of these loca4ons. Meanwhile, comparison of all the available 
source rates es4mated from different methods are encouraged, including the 
correla4on coefficient, mean bias, etc. 

We now men4on how these 12 selected loca4ons show the range of typical source types 
and intermi[encies we have observed: 
“Supplemental Tables B1-B3 provide details on these high resoluCon observaCons and 
associated (not necessarily on the same day) TROPOMI scenes (Table B4). These 12 selected 
loca$ons show the range of typical anthropogenic source types and intermiMencies we 
have observed with both TROPOMI and high-resolu$on instruments.” 
 
We do not aim to evaluate the TROPOMI emission es4mates with those from the high-
resolu4on instruments. We use TROPOMI detec4ons to guide follow-up targeted 
observa4ons or analysis with high resolu4on satellites to iden4fy the main source(s) 
responsible for these super emissions. The high spa4al resolu4on instruments are 
par4cularly sensi4ve to point source emissions at a scale of ~25 m, while TROPOMI 
integrates all (diffuse) emissions over its km-scale footprints. We now clarify this aspect in 
the text. 
“Because of the different spa$al footprints, sensi$vi$es, and detec$ons dates, these 
emission rates cannot be directly compared to the TROPOMI emission es$mates 
[Maasakkers et al., 2022].” 
 
For the nearly concurrent observa4ons of isolated point sources in Kazakhstan, we do 
discuss the large difference between TROPOMI and high-resolu4on es4mates. We now also 
more prominently men4on the inter-comparison between the high-resolu4on instruments 
in a controlled release experiment by Sherwin et al. (2022) in Sec4on 2.6: 
“During a controlled release experiment comparing methane-observing capabili$es of 
different high-resolu$on instruments by Sherwin et al. ( 2022), a plume of ~200 kg/h was 
successfully detected.” 
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Other specific comments: 
The only third-level heading under Sect. 2.3 is Sect. 2.3.1. Besides, does “source rate 
quan4fica4on” belong to “feature engineering”? I think that the source rate 
quan4fica4on step should be ader the SVC model when the artefact is excluded. 

We use some of the (intermediate) outputs of the IME method, such as the length of the 
plume mask, as features for the SVC. We do agree that the detailed quan4fica4on (including 
uncertainty ensemble) be[er fits later in the paper, therefore we moved Sec4on 2.3.1 to the 
plume characteriza4on sec4on and briefly refer to that sec4on in the descrip4on of the SVC 
model: 
“…ElongaCon raCo of the plume, several intermediate outputs of the source rate es$mate 
(Sec$on 2.5.1) and several staCsCcal properCes…” 
 
And we men4on that intermediate output of the IME is used for the SVC in the Source rate 
quan4fica4on sec4on: 
“…method (Frankenberg et al., 2016; Varon et al., 2018). Some intermediate outputs of the 
IME method (such as the plume length) are used as features in the feature vector for the 
SVC (Sec$on 2.4). We perform a full source rate quan$fica$on, including uncertainty 
es$mates, for the plumes that pass the machine learning pipeline and are manually 
verified. The IME method relates the emission…” 
 
 

Line 322: How did the authors define the dominant source type in a specific grid if it 
contained mixed emission sources? 

We further clarified the statement: 
“We idenCfy the dominant source type as the source type with the largest annual flux in a 
0.7◦x0.7◦ square centered around the esCmated source locaCon.” 
 
 

Line 332: What is the inversion-based method? Please provide a brief descrip4on of 
this method and its comparison with the new method developed in this study. 

We now be[er explain the method employed by Maasakkers et al. 2022a.  
“The esCmated source locaCon of the plume is 2.2 km away from the source and our 
automated quanCficaCon esCmate is 121 ± 46 t h-1. Our es$mate is in good agreement with 
the quanCficaCon by Maasakkers et al. (2022a) of 101 (49-127) t h-1 who scale a plume 
simulated with the WRF atmospheric transport model to match the enhancements seen in 
TROPOMI using a Bayesian inversion.” 
 

“Is it able to capture the day-to-day varia4on of emissions for a specific source 
detected?” 

We now men4on the poten4al of our method to capture temporal (up to day-to-day) 
varia4on in the conclusions: 

“Over the next few years, the number of global, regional, and point-source mapping 
instruments capable of retrieving methane plumes will vastly increase; with i.a. 
SenCnel-5, CO2M, MethaneSAT and Carbon Mapper (Jacob et al., 2022). Our 
monitoring system can incorporate these fast-growing data volumes and can already 
be used to automaCcally detect plumes in the operaConal TROPOMI data, track 
temporal variability in super-emiMer plumes, and "Cp-and-cue" high-resoluCon 
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satellite instruments to find the associated super-emixng faciliCes. This idenCficaCon 
and monitoring of super-eminers with large miCgaCon potenCal is paramount to 
reach the goals of the Global Methane Pledge.” 


