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No.: ACP-2022-850 

Title: The effect of anthropogenic emission, meteorological factors, and carbon 

dioxide on the surface ozone increase in China from 2008 to 2018 during the East 

Asia summer monsoon season 

 

Anonymous referee #1: 

In this study, the authors used an up-to-date regional climate-chemistry-ecology 

model to quantify the effect of anthropogenic emission, meteorological factors, and 

carbon dioxide variations on O3 variation across China and highlighted the 

importance of considering CO2 variations. I suggest this article be published with 

some modifications to improve the clarity of some details and ambiguous presentation. 

My comments are listed below. 

Response: We thank referee #1 for careful reading and valuable comments. We have 

responded to each specific comment in blue below. Please note that the line numbers 

given below refer to the clean version of the manuscript. 

 

1. The main innovation is the emphasis on the role of CO2, but this only occupies a 

small part of this study. Other effects such as meteorology and emissions have been 

extensively discussed in previous studies and the authors need to elaborate more on 

the significance of this study. 

Response: Thanks. We have added some discussions on this aspect. 

 

Changes in manuscript: 

Abstract (L25~28): “Changed CO2 played a critical role in the variability of O3 

through radiative forcing and isoprene emissions, particularly in southern China, 

inducing an increase in O3 on the southeast coast of China (0.28~0.46 ppb) and a 

decrease in the southwest and central China (-0.51~-0.11 ppb).” 

Introduction (L88~96): “Previous studies have mainly focused on the impact of 

anthropogenic emissions and meteorological factors on the rise of O3 levels, with 

limited attention given to the role of CO2 variations. However, due to the rapid 

socioeconomic growth in China and the subsequent surge in energy consumption, 

CO2 emissions, and concentrations have also increased significantly, particularly in 

the eastern coastal region (Lv et al., 2020; Ren et al., 2014). Furthermore, given the 

significant impact of CO2 on O3, it is crucial to evaluate the influence of changes in 

CO2 concentration on the maximum daily 8-hour average (MDA8) O3 concentrations 

at the surface. Thus, a comprehensive assessment of the impact of anthropogenic 

emissions, meteorological factors, and CO2 on surface O3 is imperative.” 

Section 3.4 (L386~393): “In some years, the impact of changed CO2 can be as 

significant as or even surpass that of anthropogenic emissions and meteorology 

(Figure 10). For example, in 2013, CO2 caused an increase of 0.95 ppb in MDA8 O3 



in the YRD region, which exceeded that of anthropogenic emissions (0.87 ppb). 

Similarly, in the PRD region in 2012, the effect of CO2, anthropogenic emissions, and 

meteorology was 1.41, 1.77, and 1.95 ppb, respectively. Even in the NCP in 2010, the 

impact of CO2 (0.75 ppb) was comparable to that of anthropogenic emissions (1.5 

ppb). In summary, CO2 has a significant impact on surface O3 concentrations by 

influencing radiation and isoprene emissions, with more prominent effects in regions 

with abundant vegetation.” 
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2. Line 98-100: Why did you choose ERA-Interim data to evaluate meteorological 

variables simulation instead of using observations? 

Response: Thanks. Firstly, observations are considered as the ground truth for 

meteorological variables and are essential for validating model performance. However, 

their usefulness in evaluating models is often limited due to their sparse spatial and 

temporal coverage (Wang et al., 2021). In contrast, reanalysis data, such as 

ERA-Interim, is a gridded dataset that offers high spatial and temporal resolution with 

global coverage. It is derived by assimilating observations into a numerical weather 

prediction model, resulting in a more consistent dataset in both space and time 

compared to observations (He et al., 2020; Lindsay et al., 2014). 

Secondly, reanalysis data can provide a comprehensive set of variables that are 

not always available from observations. For instance, ERA-Interim includes a wide 

range of meteorological variables such as wind speed, temperature, precipitation, 

wind vectors, radiation fields, cloud properties, soil moisture, and relative humidity. 

These variables are produced by incorporating the observation fields, forecast model, 

and a four-dimensional variational assimilation system (4D-VAR). Furthermore, 

ERA-Interim conducts a completely automated bias correction after a series of quality 

control and blacklist data selection (Balsamo et al., 2015; Nogueira, 2020; Rivas and 

Stoffelen, 2019). 

On the whole, while observations are crucial for model validation, reanalysis 

data, such as ERA-Interim, provides a more complete and consistent dataset that can 

be used to evaluate model performance in a variety of contexts. Consequently, the use 

of reanalysis data to evaluate model performance has become increasingly prevalent 

in recent years (Pu et al., 2017; Xu et al., 2022; Zhou and Wang, 2016; Liu et al., 

2023). In our study, we rely on ERA-Interim data to evaluate meteorological variables 



simulation as it provides a long-term record (2015-2018) of these variables at various 

altitudes (1000, 850, and 200 hPa), and it is derived by assimilating observations into 

a numerical weather prediction model. 
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3. Line 134-139: Can you give more descriptions of the model improvement? 



Response: Thanks. We added some descriptions of the model improvement. 

 

Changes in manuscript: 

2.3.1 Radiation (L156~168) 

“In the previous version of the RegCM-Chem-YIBs model, radiative calculations 

only accounted for changes in the spatiotemporal distribution of particulate matter. To 

simplify the radiation calculations, the atmospheric CO2 and O3 concentrations were 

assumed to be constant throughout the year. However, atmospheric CO2 and O3 are 

subject to modulation by various sources, sinks, physical processes, and chemical 

processes (Ballantyne et al., 2012; Wang et al., 2019a). Additionally, rapid 

urbanization in China has led to an annual increase in CO2 and O3 concentrations 

(Guan et al., 2021; Wei et al., 2022), with elevated concentrations and growth rates 

primarily distributed in the eastern regions where urbanization is most prominent (Shi 

et al., 2016; Wang et al., 2017b). To more accurately simulate the atmospheric 

radiation balance and East Asian monsoon climate, it is necessary to incorporate 

spatiotemporal variations of CO2 and O3 concentrations into the radiation module. 

Therefore, we included the varying CO2 and O3 concentrations simulated by the 

model in the radiation module to calculate the corresponding radiative forcing.” 

2.3.2 Photolysis (L170~181) 

“The photolysis process was simulated using the Tropospheric Ultraviolet and 

Visible (TUV) model, which is commonly used to compute photolysis rates in various 

models (Tie et al., 2003; Shetter et al., 2002; Borg et al., 2011). The TUV model 

employs input parameters such as zenith angle, altitude, ozone column, SO2 column, 

NO2 column, aerosol optical depth (AOD), single scattering albedo (SSA), and albedo, 

among others, to calculate photolysis rates (Singh and Singh, 2004). However, in the 

TUV module of the RegCM-Chem-YIBs model, AOD and SSA were held constant. 

This is problematic as accurate aerosol optical parameters, such as AOD and SSA, 

play a crucial role in the photolysis of O3 (Lefer et al., 2003). To address this issue, we 

incorporated temporally and spatially varying AOD and SSA simulated by the 

RegCM-Chem-YIBs model into the photolysis rate calculations in the TUV module. 

This enabled us to accurately incorporate the extinction effect of the varying particles 

into the photolysis reaction, leading to more realistic simulations of air components 

and regional meteorology.” 

 

References 

Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White, J. W. C.: Increase 

in observed net carbon dioxide uptake by land and oceans during the past 50 

years, Nature, 488, 70-+,https://doi.org/10.1038/nature11299, 2012. 

Borg, I., Groenen, P. J. F., Jehn, K. A., Bilsky, W., and Schwartz, S. H.: Embedding 

the Organizational Culture Profile Into Schwartz's Theory of Universals in Values, 

Journal of Personnel Psychology, 10, 

1-12,https://doi.org/10.1027/1866-5888/a000028, 2011. 

Guan, Y. R., Shan, Y. L., Huang, Q., Chen, H. L., Wang, D., and Hubacek, K.: 

Assessment to China's Recent Emission Pattern Shifts, Earths Future, 

https://doi.org/10.1038/nature11299


9,https://doi.org/10.1029/2021ef002241, 2021. 

Lefer, B. L., Shetter, R. E., Hall, S. R., Crawford, J. H., and Olson, J. R.: Impact of 

clouds and aerosols on photolysis frequencies and photochemistry during 

TRACE-P: 1. Analysis using radiative transfer and photochemical box models, 

Journal of Geophysical Research-Atmospheres, 

108,https://doi.org/10.1029/2002jd003171, 2003. 

Shetter, R. E., Cinquini, L., Lefer, B. L., Hall, S. R., and Madronich, S.: Comparison 

of airborne measured and calculated spectral actinic flux and derived photolysis 

frequencies during the PEM Tropics B mission, Journal of Geophysical 

Research-Atmospheres, 108,https://doi.org/10.1029/2001jd001320, 2002. 

Shi, K. F., Chen, Y., Yu, B. L., Xu, T. B., Chen, Z. Q., Liu, R., Li, L. Y., and Wu, J. P.: 

Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from 

DMSP-OLS nighttime stable light data using panel data analysis, Applied Energy, 

168, 523-533,https://doi.org/10.1016/j.apenergy.2015.11.055, 2016. 

Singh, S. and Singh, R.: High-altitude clear-sky direct solar ultraviolet irradiance at 

Leh and Hanle in the western Himalayas: Observations and model calculations, 

Journal of Geophysical Research-Atmospheres, 

109,https://doi.org/10.1029/2004jd004854, 2004. 

Tie, X. X., Madronich, S., Walters, S., Zhang, R. Y., Rasch, P., and Collins, W.: Effect 

of clouds on photolysis and oxidants in the troposphere, Journal of Geophysical 

Research-Atmospheres, 108,https://doi.org/10.1029/2003jd003659, 2003. 

Wang, N., Lyu, X. P., Deng, X. J., Huang, X., Jiang, F., and Ding, A. J.: Aggravating 

O-3 pollution due to NOx emission control in eastern China, Science of the Total 

Environment, 677, 732-744,https://doi.org/10.1016/j.scitotenv.2019.04.388, 

2019a. 

Wang, W. N., Cheng, T. H., Gu, X. F., Chen, H., Guo, H., Wang, Y., Bao, F. W., Shi, S. 

Y., Xu, B. R., Zuo, X., Meng, C., and Zhang, X. C.: Assessing Spatial and 

Temporal Patterns of Observed Ground-level Ozone in China, Scientific Reports, 

7,https://doi.org/10.1038/s41598-017-03929-w, 2017b. 

Wei, J., Li, Z. Q., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., 

Xue, W. H., and Cribb, M.: Full-coverage mapping and spatiotemporal variations 

of ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote 

Sensing of Environment, 270,https://doi.org/10.1016/j.rse.2021.112775, 2022. 

 

4. Line 162: “i,m=2008” should be the subscript. 

Response: Thanks. Sorry for the mistake. We have revised. 

 

5. Section 3.1: Why did you only compare simulations and observations in 2018? Did 

the model perform well in other years? I suggest you evaluate simulated surface 

meteorological variables because they significantly affect surface air pollutants. I also 

recommend you assess the spatial distribution of surface O3 and CO2. For example, 

you can additionally evaluate model performance in key regions like NCP, YRD, and 

PRD apart from the whole domain. 

Response: Thanks for your suggestion. We added the evaluations of meteorological 



fields, O3, and CO2 from 2015 to 2018. 

 

Changes in manuscript (L238~261): 

“Given that the monitoring of near-surface O3 levels by CNEMC was initiated 

only in late 2013, the monitoring sites in 2013 and 2014 were limited, and the 

monitoring period was disjointed. As a result, in this study, we compared the 

simulated meteorological fields, O3, and CO2 levels with observations only from 2015 

to 2018. 

Figures S1~4 demonstrated that the RegCM-Chem-YIBs model effectively 

captured the spatial distribution and magnitude of temperature, humidity, and wind 

over East Asia at 500 hPa, 850 hPa, and 1000 hPa between 2015 and 2018. However, 

due to the complex terrain's influence on the lower atmosphere, most models show 

better results at higher levels (Zhuang et al., 2018; Anwar et al., 2019; Xie et al., 

2019). Thus, the simulations at 500 hPa were more consistent with the reanalysis data. 

At 1000 hPa, the simulated wind speed was slightly higher than the reanalysis data in 

eastern China. This difference may be due to common deficiencies in meteorological 

models, such as insufficient horizontal resolution, initial and boundary conditions, and 

physical parameterizations (Cassola and Burlando, 2012; Accadia et al., 2007), 

particularly in areas with low wind speeds (Carvalho et al., 2012). 

Figures S5 and S6 demonstrated that the model accurately reproduced the 

observed increase in surface CO2 and O3 from 2015 to 2018, with high correlation 

coefficients ranging from 0.39 to 0.74 (Table 2). The model effectively captured the 

high concentrations of O3 in major urban areas such as the NCP, the YRD, the PRD, 

the SCB, and the FWP, while also successfully reproducing the gradient in CO2 

concentrations between eastern and western China. However, the model slightly 

underpredicted MDA8 O3 concentrations (-4.02 to -3.21 ppb) and overestimated CO2 

levels (3.32~7.07 ppm). These discrepancies are mainly attributed to uncertainties in 

the emissions inventory (Hong et al., 2017). Overall, the simulated meteorological 

factors and surface CO2 and O3 concentrations were deemed acceptable.” 

 



 

Figure S1. Comparisons between the simulated (a, c) and reanalysis (b, d) mean temperature 

(shading, units: K), wind (vectors, units: m/s), and relative humidity (contours, units: %) at 

500 hPa (a, b), 850 hPa (c, d) and 1000 hPa (e, f) in 2015. 

 

Figure S2. Comparisons between the simulated (a, c) and reanalysis (b, d) mean temperature 

(shading, units: K), wind (vectors, units: m/s), and relative humidity (contours, units: %) at 

500 hPa (a, b), 850 hPa (c, d) and 1000 hPa (e, f) in 2016. 



 

Figure S3. Comparisons between the simulated (a, c) and reanalysis (b, d) mean temperature 

(shading, units: K), wind (vectors, units: m/s), and relative humidity (contours, units: %) at 

500 hPa (a, b), 850 hPa (c, d) and 1000 hPa (e, f) in 2017. 

 

 

Figure S4. Comparisons between the simulated (a, c) and reanalysis (b, d) mean temperature 

(shading, units: K), wind (vectors, units: m/s), and relative humidity (contours, units: %) at 

500 hPa (a, b), 850 hPa (c, d) and 1000 hPa (e, f) in 2018. 



 

Figure S5. Comparisons between the simulated and observed surface MDA8 O3 

concentrations (units: ppb) during the summer monsoon period in (a)2015, (b)2016, (c)2017, 

(d)2018. Colored circles represent the observations. 

 
Figure S6. Comparisons between the simulated and observed surface CO2 concentrations 

(units: ppm) during the summer monsoon period in (a)2015, (b)2016, (c)2017, (d)2018. 

 

Table 2. Evaluations of the surface CO2 (units: ppm) and MDA8 O3 (units: ppb) during the 

summer monsoon period in East Asia. 

Species Year OBS SIM MB RMSE R 

CO2（ppm） 

2015 402.82 406.98 4.16 9.37 0.44 

2016 407.12 410.44 3.32 8.22 0.69 

2017 408.35 413.62 5.27 11 0.39 

2018 409.61 416.68 7.07 11.32 0.41 

MDA8 O3 

（ppb） 

2015 48.77 44.75 -4.02 29.39 0.57 

2016 50.16 46.95 -3.21 27.56 0.60 



2017 55.43 51.87 -3.56 21.55 0.74 

2018 55.53 52.08 -3.42 24.78 0.73 

OBS: observation; SIM: simulation; MB: bias; NMB: normalized mean bias; RMSE: root 

mean square error; R: correlation coefficient. MDA8 O3: the maximum daily 8-hour average 

O3. 
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6. Line 243: This expression is ambiguous. Meteorological factors are favorable for 

ozone formation in summer. 

Response: Thanks. We have revised the ambiguous expression.  

 

Changes in manuscript (L300~301): 

“Overall, the meteorological variations from 2008 to 2018 were unfavorable for the 

O3 increase during the EASM period, as illustrated in Figure 3.” 

 



7. Line 260-270: There are some contradictions in this part. You attributed the 

decrease in ozone concentration to increased cloud fraction, decreased SWF, 

increased precipitation, and enhanced wind speed. But how the warmer surface and 

higher PBL can accompany these conditions? 

Response: Thanks. We have added some discussions on this aspect. 

 

Changes in manuscript (L319~332): 

“As we know, the formation of surface O3 is promoted by rising temperatures 

(Steiner et al., 2010). However, increased surface temperatures can also intensify 

turbulence within the planetary boundary layer (PBL), increasing PBL height (Guo et 

al., 2016). This increase in PBL height, coupled with the enhanced upward motion, 

can transport near-surface pollutants to the upper atmosphere, reducing their 

concentration in the lower atmosphere (Gao et al., 2016). Additionally, the upward 

motion can also facilitate cloud formation and precipitation, resulting in a reduction of 

near-surface atmospheric pollutants via precipitation washout (Yoo et al., 2014). 

We have improved the accuracy of O3 photodissociation rate calculations by 

including varying AOD and SSA in the TUV module, as described in Section 2.3.2. 

As a result, the increase in cloud cover reduced the shortwave radiation flux and 

photochemical formation rates of near-surface O3, leading to decreased formation. 

Thus, the increase in near-surface temperature is often accompanied by an elevation 

in PBL height, enhanced cloud cover, precipitation, and reduced shortwave radiation. 

Moreover, higher wind speeds can enhance the dispersion of O3 (Gorai et al., 2015).” 
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8. Figure 5: Please modify the value range of the color bar. 

Response: Thanks for pointing that out. We have modified the value range of the 

color bar in Fig.5. 

 

Changes in manuscript: 

 
Figure 3. The responds of the surface MDA8 O3 mixing ratios (units: ppb) to variations in 

meteorological conditions during the summer monsoon period in 2009 (a), 2010 (b), 2011 (c), 

2012 (d), 2013 (e), 2014 (f), 2015 (g), 2016 (h), 2017 (i) and 2018 (j) relative to 2008. 

 

9. Section 3.4: How did you quantify the contributions of isoprene and precipitation to 

ozone concentration? 

Response: Thanks. We did not quantitatively differentiate the impacts of precipitation 

and isoprene on O3 concentrations. In Section 3.4, we analyzed the impact of CO2 on 

O3 and provided explanations from two perspectives: isoprene emissions and 

precipitation changes. This approach facilitated a more comprehensive comprehension 

of the mechanisms that underlie the impact of CO2 on O3 concentrations. We have 

improved the statements in this section. 

 

Changes in manuscript (L373~385): 

“CO2 is a significant driver of climate change and alterations in biogenic 

emissions. As shown in Figures 6 b and c, the impact of CO2 on O3 levels varies 

across locations, with a positive effect of 0.5~2 ppb along the southeastern coast of 

China but a negative influence of -0.5 to -2 ppb in the southwest and central China. 

CO2 affects O3 concentration by influencing both precipitation and isoprene emissions. 

In western and central China, CO2 primarily affects O3 concentration through its 

impact on precipitation (Table 5). Elevated CO2 concentrations lead to increased 

precipitation (0.06~0.64 mm/day) in the FWP and SCB regions, resulting in a 

decrease in surface O3 (up to -0.51 ppb). In eastern and southern coastal China, where 

vegetation is abundant, CO2 has a greater impact on isoprene emissions. In the YRD 

region, decreased isoprene (-0.58 to -0.32 μg/m3) and increased precipitations 

(0.09~0.13 mm/day) reduced MDA8 O3 levels (0.09~0.14 ppb). In PRD, increased 



isoprene levels (0.31~0.92 μg/m3) and decreased precipitations (-1.02~-0.33 mm/day) 

led to the enhancement of MDA8 O3 (0.28~0.46 ppb).” 

 

 

 

 

 

Figure 6. The simulated averaged MDA8 O3 (a~c, units: ppb), CO2 (d~f, units: ppm), 

precipitation (g~i, units: mm/day), and isoprene mixing ratios (j~l, units: μg/m3) in 2008 from 

the base simulations (the left column) and their changes due to variations in CO2 emissions in 

PreG (2009~2013, the central column) and PostG (2014~2018, the right column) relative to 

2008. 

 

Table 5. Simulated responses of MDA8 O3 mixing ratios (units: ppb), CO2 mixing ratios 

(units: ppm), precipitations (units: mm/day), and isoprene mixing ratios to the changes in CO2 

emissions over North China Plain, Fenwei Plain, Yangtze River Delta, Pearl River Delta, and 

Sichuan Basin in PreG (2009~2013) and PostG (2014~2018) relative to 2008. 

Regions Period 
MDA8 O3 

(ppb) 

CO2 

(ppm) 

Precipitation 

(mm/day) 

Isoprene 

(μg/m3) 

NCP 
PreG 0.07  3.19 0.27 -0.1 

PostG -0.05  4.24 0.13 0.26 

FWP 
PreG -0.11 1.70 0.21 -0.16 

PostG -0.51 2.05 0.06 0.33 

YRD 
PreG -0.09  4.1 0.13 -0.32 

PostG -0.14  6.2 0.09 -0.58 

PRD 
PreG 0.46  1.97 -1.02 0.31 

PostG 0.28  3.20 -0.33 0.92 

SCB PreG -0.30  2.80 0.64 -0.78 



PostG -0.30  2.78 0.21 0.69 

 

10. Figure 7: Please modify the value range of the color bar. 

Response: Thanks. We have modified the color bar in Fig.7. 

 

Changes in manuscript: 

 
Figure 5. Simulated responses of surface MDA8 O3 mixing ratios (units: ppb) to the 

variations in CO2 emissions during the summer monsoon period in 2009 (a), 2010 (b), 2011 

(c), 2012 (d), 2013 I, 2014 (f), 2015 (g), 2016 (h), 2017 (i) and 2018 (j) relative to 2008. 

 

11. Line 342-343: What did you mean by “due to the slight increase in air O3 

concentration”? 

Response: Thanks. Sorry for the mistake. We have revised the erroneous expression. 

 

Changes in manuscript (L432~433): 

“In the PRD region, anthropogenic emissions led to a slight enhancement of O3 by 

2.33~5.74 ppb.”  

 

12. Section 3.5: I suggest adding a figure or table showing emission trends of main air 

pollutants and precursors to support the explanation. 

Response: Thanks for the suggestion. We have added Fig. S1 and Table S4 to 

illustrate the emission trend of SO2, NOx, VOCs, NH3, CO, PM10, PM2.5, and OC 

from the MEIC inventory. 

 

Changes in manuscript: 

(L413~422):“ Figure S8 and Table S1 illustrate that the levels of PM2.5, PM10, 

SO2, CO, and OC emissions remained consistently high during the PreG period. 

However, a linear decrease in emissions was observed after the implementation of the 

Clean Air Action Plan in 2013. Prior to 2013, the emission of VOCs increased steadily 

but subsequently stabilized. Similarly, the emission of nitrogen oxides (NOx) 

exhibited an upward trend before 2013, but since then, the emissions have shown a 

linear decrease, with each subsequent year exhibiting lower levels of NOx emissions. 

In comparison to other species, the emissions of ammonia (NH3) remained relatively 

stable from 2008 to 2018. Our analysis results of the emissions of different species 



align with those of Zheng et al. (2018), who computed the changes of each species in 

the MEIC inventory from 2010 to 2017.” 

(L442~448):“Before 2013, the continuous increase in VOCs and NOx emissions 

(Figure S8 b, c) facilitated the rise of O3 levels. Following the implementation of the 

Clean Air Action Plan in 2013, the emissions of VOCs and NOx were regulated. 

However, with the decrease in PM2.5 levels, direct radiation increased, and scattered 

radiation decreased (Figure 9), thereby promoting the photochemical formation of O3 

(Bian et al., 2007). In addition, the reduced NO emission weakened the titration effect 

(Figure S8 b), thus increasing surface O3 (Li et al., 2022).” 

  

Table S1. Changes in the model domain's anthropogenic emissions (Tg) from 2008 to 2018 

Year SO2 NOX VOCs NH3 CO PM10 PM2.5 OC 

2008 31.9 25.3 24.9 11.0 196.4 18.4 13.1 3.4 

2009 29.9 25.7 25.5 11.0 196.4 17.7 12.7 3.4 

2010 29.3 27.8 27.3 10.8 197.0 17.2 12.5 3.4 

2011 30.7 30.1 28.5 11.2 193.3 17.5 12.6 3.4 

2012 30.0 30.7 29.7 11.4 190.7 17.4 12.6 3.4 

2013 26.9 29.1 29.7 11.3 186.8 16.7 12.0 3.3 

2014 21.6 26.6 30.7 11.2 173.2 14.9 10.9 3.0 

2015 17.9 24.9 30.1 11.2 162.4 13.0 9.7 2.7 

2016 14.1 23.7 29.9 11.0 150.2 11.4 8.6 2.4 

2017 11.1 23.1 30.2 10.9 144.1 10.8 8.1 2.2 

2018 8.7 22.5 30.5 10.8 138.2 10.2 7.6 2.0 

 

 



 

 

 

 



Figure S8. Changes in the anthropogenic emissions (Tg) from 2008 to 2018. The species 

include (a)SO2, (b)NOx, (c)VOCs, (d)NH3, (e)CO, (f)PM10, (g)PM2.5, (h)OC. 
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