1 Supplement of

A one-year ACSM source analysis of organic aerosol particle 3 contributions from anthropogenic sources after long-range transport 4 at the TROPOS research station Melpitz

5 Samira Atabakhsh et al.

6 Correspondence to: Hartmut Herrmann (herrmann@tropos.de)

7 1 Source apportionment of organic aerosol

8 This work conducted the most advanced source apportionment analysis following a standardized protocol developed by Chen 9 et al., (2022). In this study, to better identify the organic aerosol (OA) sources in Melpitz, positive matrix factorisation (PMF) 10 was applied on each separate season, following a standardized protocol developed by Chen et al., (2022). Since the 11 measurements were taken between September 2016 and August 2017 (12 months), therefore dataset was split into four 12 meteorological seasons (i.e., fall (September-November); winter (December-February); spring (March-May), and summer 13 (June-August)). Details of the rolling PMF can be found in Chen et al., (2022).

14 1.1 PMF pre-test

15 First, to estimate the potential sources in different seasons, unconstrained PMF was applied with different factors (from 4 to 16 6) runs on each season separately. Considering the residential heating during winter time, it was estimated to have the 17 maximum coal combustion OA (CCOA) and biomass burning OA (BBOA) emissions in this season. Therefore, in order to 18 identify and split the sources of solid fuels, the winter season was comprehensively analyzed. However, clear primary factor 19 profiles did not result from unconstrained PMF during the winter season. Therefore, profiles of two primary factors as 20 hydrocarbon-like OA (HOA) and BBOA were constrained by various *a-values* and applying the reference profiles by Crippa 21 et. Al. (2013) and Ng et al. (2011a) for HOA and BBOA, respectively as suggested by Chen et al. (2021). After HOA and 22 BBOA constraining, a third primary factor could be dedicated as well. This new primary factor presented signals which are 23 common in CCOA profiles (e.g., signals from unsaturated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs)). The 24 bootstrap resampling strategy was applied to the input data matrix to check the reliability of the discovered CCOA factor 25 (Davison and Hinkley, 1997). Three primary factors (HOA, BBOA, and resulted CCOA) were used to constrain the PMF 26 solution. Finally, based on residual analysis, it was possible to determine the number of oxygenated OA (OOA). When the number of factors was increased to 6 or more, either the OOAs or the CCOA were split. As a result, throughout the measurements, the five-factor solution with three primary factors and two OOA factors was preferred.

PMF with the rolling window approach was performed based on these seasonal pre-tests. The following section describes the specific settings used in this study. Since this approach resulted in an immense number of single PMF solutions, it was necessary to identify and distinguish environmentally reasonable PMF solutions, by using properly selected user-defined criteria. The unconstrained factors were also identified and sorted using these criteria. The particular details of the factors are discussed further below.

34 The correlation of NO_x with HOA factor is used as a HOA criterion since it is known as a typical tracer for traffic emissions. 35 However, to determine if the difference in this correlation was considerable in comparison with the correlation of NO_x with 36 other factors, a *t-test* was performed that solutions with a *p-value* ≤ 0.05 were considered acceptable for all the criteria. For the 37 BBOA factor, the explained variation of m/z 60 was selected as a criterion, since BBOA is typically composed of anhydrous 38 sugar fragments (e.g., levoglucosan fragments m/z 60 and 73). Moreover, the correlation of levoglucosan with BBOA was 39 used as the second criterion for this factor. For the CCOA factor, unsaturated hydrocarbon and polycyclic aromatic 40 hydrocarbon (PAH) signals at m/z 41, 51, 53, 55, 69, 77, 91, and 115 characterize coal combustion emissions (Dall'Osto et al., 41 2013; Elser et al., 2016; Lin et al., 2017; Xu et al., 2020). Therefore, as a CCOA criterion, the explained variation of m/z 115 was selected. Further, the R² value of the time series of POA factors (HOA, BBOA, and CCOA) vs equivalent black carbon 42 43 (eBC) was used for them as other criteria. The unconstrained OOA factors were split by less oxidized oxygenated OA (LO-44 OOA) and more oxidized oxygenated OA (MO-OOA). We used f_{44} for the MO-OOA as suggested by (Chen et al., 2021) 45 which LO-OOA simply followed by f_{43} .

46 1.2 Rolling PMF

Following the analysis of the seasonal PMF solutions (i.e., pre-test PMF), rolling PMF was carried out. The shift parameter (the number of days), the width of the window (the number of consecutive days), and the number of repetitions for each PMF window define the rolling PMF approach (Canonaco et al., 2021). Here, to detect source variation, the PMF window with a length of 14 days with a 1-day shift was applied as suggested by (Chen et al., 2021). To compare the four different PMF analyses, the same criteria and thresholds have been used.

52 To investigate the statistical uncertainties of the rolling PMF, repeats per window are needed. However, statistical uncertainty 53 could be evaluated by using the bootstrap strategy, which resamples the PMF input at random. When the factors are constrained 54 by prior knowledge (i.e., reference profiles or external time series), a sensitivity analysis of the *a-value* must be done to 55 investigate the rotational ambiguity. The *a-values* in this study were selected at random for each PMF repetition, ranging from 56 0 to 0.4 for HOA and BBOA, and 0.5 for CCOA ($\Delta a = 0.1$ for all). Based on the criteria described above, 15165 solutions 57 (42.36 %) of the overall 35800 single PMF runs were produced in the rolling PMF approach. All measured time points were 58 modeled within the context of a rolling PMF. As presented in Fig. S1, no systematic errors were observed during the evaluation 59 of the scaled residual over time and variables (m/z).

Fig. S1: Analysis of the scaled residuals for the total scaled residuals.

Fig. S2: Seasonal wind roses and NWR plots for the different chemical compositions (in μg/m³). PM₁ is the average of all the compositions.

Fig. S3: Seasonal diurnal cycle of Temperature, sun radiation, Sulphur dioxide, Nitrogen Oxides, and Ozone.

Table. S1: PM ₁ seasona	l mass fraction (%) of ea	ch ACSM species, and A	AMS study (Poulain)	et al, 2011).
		1 /	•	/ /

	Species	Fall		Wi	nter	Sun	Summer				
	· _	ACSM	AMS	ACSM	AMS	ACSM	AMS				
	Org	55	32	46	23	63	59				
	$\mathrm{SO}_4^{2^-}$	16	17	12	18	16	22				
ACSM	NO ₃ -	16	23	25	34	10	5				
	NH_{4^+}	7	12	10	17	7	8				
	Cl	0	0	1	2	0	0				
MAAP	eBC	6	10	6	6	4	6				

Table. S2: Studies information, Current study, Crippa et al., 2014, van Pinxteren et al., 2016 and 2023.

Information	Comment storder	Crimes et al. 2014	van Pinxteren et al.,	van Pinxteren et al.,
Information	Current study	Crippa et al., 2014	2016	2023
Instrument	ACSM	AMS	Berner-type cascade impactor	Digitel DHA-80 high- volume filter samplers
PM size	1 μm	1 µm	0.05, 0.14, 0.42, 1.2, 3.5, and	10 µm
PM type	PM type Organic Organic		Total mass	Total mass
Data coverage	overage 1 year (Sep 2016-Aug2017) 2 spring, 1 fall		21 days per: 1 summer, 1 winter	1 year (Nov2018- Oct2019)
Sources	HOA, BBOA, CCOA, LO-	HOA, BBOA, LO-OOA,	Crustal material, Salt, Secondary I, II,	Traffic, Tr. Exhaust, CCOA, BBOA, SA, Photochem,
category	OOA, MO-OOA	MO-OOA	Biomass combustion, Coal	Cooking, Spores, Urban dust,
			combustion	Sea salt

Fig. S4: *f44* vs. *f43* for OOA factors (after subtraction of signals contributed by the primary HOA, BBOA, and CCOA factors as
 shown in Eq. (S1) and (S2)) in hourly resolution, colour coded by date. The triangle plot established by Ng et al., (2010), depicts the
 region where several PMF OOA from the last decade resided in the *f44* vs *f43* space

subtracted
$$f44 = \frac{mass \ conc.of \ 00A \ @ \ [m/z44]}{mass \ conc.of \ 00A+residual \ of \ total \ 0A}$$
 (S1)

 $subtracted f43 = \frac{mass \ conc. of \ OOA @ [m/z43]}{mass \ conc. of \ OOA + residual \ of \ total \ OA}$ (S2)

Relative humidity (%) Fig. S5: Temperature (T) and relative humidity (RH) dependence variations of the mass loadings of two OOA fractions.

Table. S3: Linear regression coefficient for *m*_{HOA}, *m*_{BBOA}, and *m*_{CCOA}, defined as a, b, and c for HOA, BBOA, and CCOA; respectively.

Factor	Fall	Winter	Spring	Summer
a (HOA)	0.38	0.55	0.11	0.17
b (BBOA)	0.95	0.52	0.65	0.75
c (CCOA)	0.32	0.46	0.35	0.09

Fig. S7: Time series of meteorological variables; a) hourly resolution of Temperature in red dots, Sun radiation in yellow line, b)
 daily resolution of Wind speed and c) hourly resolution of Relative Humidity

Table. S4: Main statistical details of the fifteen air mass types for PM_1 and PMF factors (CS=Cold Season, WS=Warm Season,
ST=Stagnant, A=Anticyclonic, C=Cyclonic) based on mass concentration (μ g/m ³).

Main season	Airmass Wind			Average mass concentration (µg/m ³)											
	type	type direction	Vorticity	eBC- HOA	eBC- BBOA	eBC- CCOA	NO3 ⁻	SO_4	$\mathrm{NH_4^+}$	Cl	HOA	BBOA	CCOA	L0_00A	MO_OOA
	CS-ST	Stagnating	Anticyclonic	0.06	0.62	0.91	5.38	3.33	2.78	0.14	0.35	0.97	1.89	2.73	2.73
	CS-A1	East	Anticyclonic	0.08	0.67	1.93	5.60	5.39	3.44	0.24	0.49	1.06	4.01	2.72	3.45
Winter	CS-A2	West	Anticyclonic	0.04	0.24	0.31	3.86	1.83	1.89	0.13	0.25	0.38	0.65	1.77	1.97
winter	CS-C1	South	Cyclonic	0.05	0.38	0.40	2.62	2.99	1.75	0.06	0.30	0.61	0.84	2.17	3.77
	CS-C2a	South West	Cyclonic	0.01	0.07	0.06	1.16	0.78	0.58	0.03	0.07	0.11	0.13	0.30	0.72
	CS-C2b	West	Cyclonic	0.01	0.04	0.05	0.35	0.74	0.26	0.02	0.07	0.07	0.10	0.29	0.55
	TS-A1	North East	Anticyclonic	0.03	0.11	0.13	1.08	1.07	0.59	0.04	0.17	0.17	0.27	1.03	1.31
Transition	TS-A2	West	Anticyclonic	0.02	0.09	0.08	1.54	1.05	0.73	0.03	0.11	0.15	0.18	0.60	1.23
(Spring/ Fall)	TS-C1	South West	Cyclonic	0.02	0.12	0.15	0.77	0.68	0.36	0.01	0.15	0.19	0.31	0.65	1.24
	TS-C2	North West	Cyclonic	0.01	0.07	0.08	1.35	0.90	0.68	0.06	0.09	0.12	0.18	0.50	0.84
	WS-ST	Stagnating	Anticyclonic	0.04	0.21	0.17	1.01	1.88	0.71	0.01	0.23	0.34	0.36	1.10	2.84
	WS-A1	South East	Anticyclonic	0.06	0.32	0.62	3.20	3.25	1.96	0.10	0.34	0.51	1.28	2.15	3.11
Summer	WS-A2	North West	Anticyclonic	0.03	0.14	0.21	2.22	1.63	1.09	0.04	0.19	0.23	0.44	1.13	2.09
	WS-C1	West	Cyclonic	0.03	0.16	0.15	1.63	1.86	0.90	0.03	0.17	0.25	0.32	0.88	2.00
	WS-C2	West	Cyclonic	0.01	0.08	0.07	0.83	1.20	0.51	0.02	0.09	0.13	0.14	0.37	0.97

 Table. S5: Main statistical details of the fifteen air mass types for PM1 PMF factors (CS=Cold Season, WS=Warm Season, ST=Stagnant, A=Anticyclonic, C=Cyclonic) based on contribution (%).

Main season	Airmass type	Wind	Vorticity	Average mass contribution (%)											
		direction		eBC- HOA	eBC- BBOA	eBC- CCOA	NO3	SO_4^{-2}	$\mathrm{NH_4^+}$	Cl	HOA	BBOA	CCOA	LO_OOA	MO_OOA
	CS-ST	Stagnating	Anticyclonic	0	3	4	25	15	13	1	2	4	9	12	12
	CS-A1	East	Anticyclonic	0	2	7	19	18	12	1	2	4	14	9	12
	CS-A2	West	Anticyclonic	0	2	2	29	14	14	1	2	3	5	13	15
winter	CS-C1	South	Cyclonic	0	2	3	16	19	11	0	2	4	5	14	24
	CS-C2a	South West	Cyclonic	0	2	2	28	19	14	1	2	3	3	8	18
	CS-C2b	West	Cyclonic	0	2	2	14	29	10	1	3	3	4	11	21
Transition	TS-A1	North East	Anticyclonic	0	2	2	18	18	10	1	3	3	4	17	22

(Spring/ Fall)	TS-A2	West	Anticyclonic	0	2	1	26	18	13	1	2	3	3	10	21
	TS-C1	South West	Cyclonic	1	3	3	17	14	8	0	3	4	7	14	26
	TS-C2	North West	Cyclonic	0	2	2	27	18	14	1	2	3	4	10	17
	WS-ST	Stagnating	Anticyclonic	1	1	2	11	21	8	0	3	4	4	12	32
	WS-A1	South East	Anticyclonic	0	2	4	19	19	11	1	2	3	8	13	18
Summer	WS-A2	North West	Anticyclonic	0	2	2	23	17	12	1	2	2	5	12	22
	WS-C1	West	Cyclonic	0	0	2	19	22	11	0	2	3	4	11	24
	WS-C2	West	Cyclonic	0	2	2	19	27	11	1	2	3	3	8	22

132 References

Canonaco, F., Tobler, A., Chen, G., Sosedova, Y., Gates Slowik, J., Bozzetti, C., Rudolf Daellenbach, K., el Haddad, I., Crippa,
 M., Huang, R. J., Furger, M., Baltensperger, U., and Prévôt, A. S. H.: A new method for long-term source apportionment
 with time-dependent factor profiles and uncertainty assessment using SoFi Pro: Application to 1 year of organic aerosol
 data, Atmos. Meas. Tech., 14(2), 923–943, https://doi.org/10.5194/amt-14-923-2021, 2021.

- Chen, G., Sosedova, Y., Canonaco, F., Fröhlich, R., Tobler, A., Vlachou, A., Daellenbach, K. R., Bozzetti, C., Hueglin, C.,
 Graf, P., Baltensperger, U., Slowik, J. G., el Haddad, I., and Prévôt, A. S. H.: Time-dependent source apportionment
 of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF)
 window, Atmos. Chem. Phys., 21(19), 15081–15101, <u>https://doi.org/10.5194/acp-21-15081-2021</u>, 2021.
- Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela, M., Baltensperger, U.,
 Bougiatioti, A., de Brito, J. F., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M., el Haddad, I.,
 Eleftheriadis, K., Favez, O., Flentje, H., Font, A., Fossum, K., Freney, E., Gini, M., Green, D.C., Heikkinen, L.,
 Herrmann, H., Kalogridis, A., Keernik, H., Lhotka, R., Lin, C., Lunder, C., Maasikmets, M., Manousakas, M.I.,
- 145 Marchand, N., Marin, C., Marmureanu, L., Mihalopoulos, N., Mocnika, G., Neckia, J., O'Dowd, C., Ovadnevaite, J.,
- 146 Petera, T., Petita, J.E., Pikridasa, M., Matthew Platt, S., Pokorna, P., Poulain, L., Priestman, M., Riffault, V., Rinaldia,
- 147 M., Rozanskia, K., Schwarz, J., Sciarea, J., Simon, L., Skiba, A., Slowik, J.G., Sosedova, Y., Stavroulas, I., Styszkoa,
- 148 K., Teinemaa, E., Timonen, H., Tremper, A., Vasilescu, J., Via, M., Vodicka, P., Wiedensohler, A., Zografou, O., Cruz
- Minguillon, M., and Prévôt, A. S. H.: European aerosol phenomenology 8: Harmonised source apportionment of
 organic aerosol using 22 Year-long ACSM/AMS datasets, Environment International, 166,
 https://doi.org/10.1016/j.envint.2022.107325, 2022.
- Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day,
 D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Ruiz, L. H., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-
- 154 Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah10, A.A., Mohr1, C., Nemitz, E., O'Dowd, C.,
- 155 Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D.
- 156 R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe
- using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14(12), 6159–6176,
 https://doi.org/10.5194/acp-14-6159-2014, 2014.
- 159 Crippa, M., Decarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J.,
- 160 di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J.,

- Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prevot, A. S. H., and Baltensperger, U. Wintertime aerosol
- chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem.
 Phys., 13(2), 961–981, <u>https://doi.org/10.5194/acp-13-961-2013</u>, 2013.
- Dall'Osto, M., Ovadnevaite, J., Ceburnis, D., Martin, D., Healy, R. M., O'Connor, I. P., Kourtchev, I., Sodeau, J. R., Wenger,
 J. C., and O'Dowd, C.: Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry, Atmos.
 Chem. Phys., 13(9), 4997–5015, https://doi.org/10.5194/acp-13-4997-2013, 2013.
- 167 Davison, A. C., and Hinkley, D. V.: Bootstrap methods and their application, Cambridge University Press, 1997.
- Elser, M., Huang, R. J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y.,
 Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and André, P.: New insights into PM2.5 chemical
 composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry,
 Atmos. Chem. Phys., 16(5), 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, 2016.
- Lin, C., Ceburnis, D., Hellebust, S., Buckley, P., Wenger, J., Canonaco, F., Prévôt, A. S. H., Huang, R. J., O'Dowd, C., and
 Ovadnevaite, J.: Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland,
 Environ. Sci. Technol., 51(18), 10624–10632, https://doi.org/10.1021/acs.est.7b01926, 2017.
- Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, D. R.: Real-time methods for
 estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. Technol., 45(3),
 910–916. <u>https://doi.org/10.1021/es102951k</u>, 2011.
- 178 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P.
- 179 S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., Decarlo, P. F., Lanz, V. A., Prévôt,
- 180 A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric
- datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10(10), 4625–4641, <u>https://doi.org/10.5194/acp-10-</u>
 4625-2010, 2010.
- Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations
 of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11(24), 12579–12599.
 https://doi.org/10.5194/acp-11-12579-2011, 2011.
- van Pinxteren, D., Fomba, K. W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Löschau, G., Hausmann, A., and
 Herrmann, H.: Regional air quality in Leipzig, Germany: Detailed source apportionment of size-resolved aerosol
 particles and comparison with the year 2000, Faraday Discussions, 189, 291–315, https://doi.org/10.1039/c5fd00228a,
 2016.
- van Pinxteren, D., Engelhardt, V., Mothes, F., Poulain, L., Spindler, G., Cuesta, A., Tuch, T., Müller, T., Wiedensohler, A.,
 and Herrmann, H.: Residential wood combustion in Germany: A twin-site study of local village contributions to
 particulate pollutants. In preparation 2023.
- 193