Supplementary Information to

Secondary Aerosol Formation in Incense Burning Particles by Ozonolysis and Photochemical Oxidation

Zhancong Liang1,2, Liyuan Zhou1,2, Xinyue Li1, Rosemarie Ann Infante Cuevas1,2, Rongzhi Tang1,2, Mei Li3,4, Chunlei Cheng3,4, Yangxi Chu5, Chak K. Chan1,2,6,*

1 School of Energy and Environment, City University of Hong Kong, Hong Kong, China
2 City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
3 Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
4 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
5 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
6 Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Hong Kong, China

*To whom the correspondence should be addressed: chak.k.chan@cityu.edu.hk
Content

Text S1. Estimation of the mass hygroscopic growth factor (GF) by AIOMFAC model.

Text S2. The evolution of organic fragments.

Figure S1. Schematic of the experimental set-up.

Figure S2. Positive and negative spectra of different categorizations of particles.

Figure S3. RPA of summed nitrate peaks of aged incense burning particles in the presence and absence of charcoal absorber.

Figure S4. Correlation between APA of ON and total nitrate in fresh and O3-aged particles.

Figure S5. [NO₂⁻]/[NO₃⁻] in water-extract of aged particles.

Figure S6. Correlation between RPA of total nitrate and formate.

Figure S7. [Formate]/[K⁺] as a function of [NO₃⁻]/[K⁺] in the water-extract of fresh and O₃-aged incense burning particles.

Figure S8. The whisker-box plot of the [K⁺] in the particle water-extract measured by IC normalized by the total counts of collected particles for IC measurement.

Figure S9. The difference (aged minus fresh) of the average organic spectra of UV-aged particles and the NF ratio (aged to fresh) of UV-aged particles to fresh particles.

Figure S10. Evolution of [NOx] under different OH exposure as a function of time.

Figure S11. NF of oxalate and malonate of OH-aged incense burning particles in the presence and absence of a charcoal absorber.

Figure S12. Size distribution of OH-aged particles and their dicarboxylate-containing fractions.

Figure S13. The GF of KCl and KNO₃ particles as a function of RH.

Figure S14. The NF ratio of aged particles to fresh particles.

Figure S15. The NF of new organic peaks in aged particles.

Table S1. Potential peaks from the inorganics and elemental carbons.
Text S1. Estimation of the mass hygroscopic growth factor (GF) by AIOMFAC model.

Based on the AIOMFAC model (Zuend et al., 2008), we obtained the weight fraction w of water and solutes (i.e., dry particles) in KNO$_3$ and KCl particles, respectively. Then, the GF is estimated as follows:

$$GF = \frac{m_{\text{wet}}}{m_{\text{dry}}} = \frac{m_{\text{dry}} + m_{\text{water}}}{m_{\text{dry}}} = 1 + \frac{m_{\text{water}}}{m_{\text{dry}}} = 1 + \frac{w_{\text{water}}}{w_{\text{dry}}}$$

where m_{wet}, m_{dry}, and m_{water} are the mass of wet particle, dry particle, and particulate water at different relative humidity (RH), respectively. The GF of KNO$_3$ and KCl particles as a function of time is shown in Figure S13. We did not consider efflorescence in the figure since the efflorescence RH for the KNO$_3$ and KCl are around 50%, much lower than 80% used in this study.

Text S2. The evolution of organic fragments.

We only showed NF ratios larger than 1 to focus on SOA formation. The positive spectra of both O$_3$-aged and OH-aged particles show NF increases for $+30[\text{NO}]$ or $[\text{CH}_2\text{NH}_2]$ (possibly due to nitrates, oxidized NOC, or amine), $+44[\text{CO}_2]$ or $[\text{N}_2\text{O}]$ (oxidized organics), $+53[\text{C}_4\text{H}_5]$ and $+69[\text{C}_5\text{H}_9]$ (aromatic hydrocarbons) (Wang et al., 2009; Silva and Prather, 2000; Dall’osto et al., 2013) (Figure S14). The negative spectra show increases for $-137[\text{C}_8\text{H}_9\text{O}_2]$ (possibly methyl guaiacol) (Pagels et al., 2013; Gaie-Levrel et al., 2012) and $-57[\text{C}_2\text{HO}_2]$ (a glyoxylate fragment) (Sullivan and Prather, 2007; Cheng et al., 2017), as well as $-16[O]$. OH-aged particles showed 200-folds and 10-folds NF increases for $-137[\text{C}_8\text{H}_9\text{O}_2]$ and $-57[\text{C}_2\text{HO}_2]$, respectively, significantly greater than that for UV-aged particles (~2-folds). Compared to OH chemistry, the UV photoactivity of compounds in particulates contributes minorly to organic chemistry (Figure S9).

Figure S15 show the NF of the new peaks in aged particles, which cannot (Dall’osto et al., 2009) be shown in the NF ratio plot due to their absence in fresh particles (zero denominator). O$_3$-aged particles show NF decreases of m/z +186 to +189 (probably PAHs) (Dall’osto et al., 2009) with increasing [O$_3$]. In contrast, OH-aged particles show NF increases of $-31[\text{CH}_3\text{O}]$ or [HON], $+123[\text{C}_4\text{H}_7\text{O}_2]$ and $+124[\text{C}_7\text{H}_8\text{O}_2]$ (probably guaiacol) (Diab et al., 2015), and m/z +140 (probably HULIS) (Qin and Prather, 2006) with increasing OH exposure. These apparent changes in NF of
organics fragments indicate the oxidative evolution of organics and likely formation of SOA, although the molecular characterization was hindered by severe fragmentation.

Figure S1. Schematic of the experimental set-up.
Figure S2. Positive (K- and OC-) and negative spectra (-ON, -ONEC, -Cl, -N, and -ONN) of different categorizations of particles. The spectral characteristics of these categories are similar under different conditions.
Figure S3. RPA of summed nitrate peaks of aged incense burning particles in the presence and absence of charcoal absorber.

Figure S4. Correlation between APA of ON and total nitrate in fresh and O3-aged particles.
Figure S5. $[\text{NO}_2^-]/[\text{NO}_3^-]$ in water-extract of aged particles. Noted that the NO_2^- in 800ppb O_3+UV and 1500ppb O_3+UV experiments are undetectable.

Figure S6. Correlation between RPA of total nitrate and formate.
Figure S7. [Formate]/[K⁺] as a function of [NO₃⁻]/[K⁺] in the water-extract of fresh and O₃-aged incense burning particles.

Figure S8. The whisker-box plot of the [K⁺] in the particle water-extract measured by IC normalized by the total counts of collected particles for IC measurement. The error bar shows one standard deviation. We assume there was no new particle formation under ozone exposure since the WCPC showed comparable particle number concentration in the presence and absence of ozone.
Figure S9. (a) The difference (aged minus fresh) of the average organic spectra of UV-aged particles; (b) The NF ratio (aged to fresh) of UV-aged particles to fresh particles, as a function of m/z [-150, 150].

Figure S10. Evolution of [NOx] under different OH exposure as a function of time. The shadings show one standard deviation. The [NOx] was equilibrated without O₃ and UV at 0 min.
Figure S11. NF of oxalate and malonate of OH-aged incense burning particles (1500 ppb O₃ + UV) in the presence and absence of a charcoal absorber.

Figure S12. Size distribution (0.2-2 μm) of OH-aged particles (at 1500 ppb O₃ and UV) and their dicarboxylate-containing fractions. The shadings show one standard deviation.
Figure S13. The GF of KCl and KNO₃ particles as a function of RH. The red line denotes 80% RH.

Figure S14. The NF ratio (aged to fresh) of (a) O₃-aged, (b) OH-aged particles to fresh particles, as a function of m/z [-150, 150].
Figure S15. The NF of new organic peaks in aged particles.

Table S1. Potential peaks from the inorganics and elemental carbons.

<table>
<thead>
<tr>
<th>Inorganic salts</th>
<th>m/z</th>
<th>Formula</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>-163</td>
<td>-155</td>
<td>KNO₃</td>
<td>(Pratt et al., 2011)</td>
</tr>
<tr>
<td>-153</td>
<td>-151</td>
<td>Na₂Cl₃</td>
<td>(Harrison et al., 2012)</td>
</tr>
<tr>
<td>-147</td>
<td></td>
<td>Na(NO₃)₂</td>
<td>(Ault et al., 2014)</td>
</tr>
<tr>
<td>-131</td>
<td></td>
<td>NaNO₃NO₂</td>
<td>(Ault et al., 2014)</td>
</tr>
<tr>
<td>-125</td>
<td></td>
<td>H(NO₃)₂</td>
<td></td>
</tr>
<tr>
<td>-113</td>
<td></td>
<td>KCl₂</td>
<td>(Bi et al., 2011)</td>
</tr>
<tr>
<td>-111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-109</td>
<td>-101</td>
<td>KNO₃/NaNONO₂</td>
<td>(Ault et al., 2014)</td>
</tr>
<tr>
<td>-97</td>
<td>-96</td>
<td>HSO₄/NaCl₂</td>
<td>(Liang et al., 2022)</td>
</tr>
<tr>
<td>-96</td>
<td>-95</td>
<td>Cl₂</td>
<td>(Ault et al., 2014)</td>
</tr>
<tr>
<td>-93</td>
<td>-62</td>
<td>NO₃</td>
<td>(Cheng et al., 2017)</td>
</tr>
<tr>
<td>-58</td>
<td>-46</td>
<td>Cl</td>
<td>(Cheng et al., 2017)</td>
</tr>
<tr>
<td>-37</td>
<td>-35</td>
<td>Cl</td>
<td>(Ault et al., 2014)</td>
</tr>
<tr>
<td>+23</td>
<td></td>
<td>Cl</td>
<td>(Dall’osto et al., 2004)</td>
</tr>
<tr>
<td>+39</td>
<td>K</td>
<td>(Bi et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>+41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+63</td>
<td>Na$_2$OH</td>
<td>(Yang et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>+81</td>
<td>Na$_2$Cl</td>
<td>(Dall'Osto et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>+83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+97</td>
<td>NaKCl</td>
<td>(Gross et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>+113</td>
<td>K$_2$Cl</td>
<td>(Silva et al., 1999)</td>
<td></td>
</tr>
<tr>
<td>+115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+139</td>
<td>Na$_3$Cl$_2$</td>
<td>(Dall'Osto et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>+141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±12n</td>
<td>C$_n$</td>
<td>(Zhou et al., 2022)</td>
<td></td>
</tr>
</tbody>
</table>

Reference

