
Editor’s comment

Thank you for submitting a revised version of the manuscript to ACP. I have received two evaluation
reports from the original referees. While both referees agree that most of the previous comments
are addressed and the manuscript is clearly improved, there are remaining concerns. A major one
shared by them both is the potential uncertainty in conclusions imposed by internal variability. The
observations and CMIP6 model results are from different time periods, during which the modes
of internal variability can be different. Also, how well can the CMIP6/w and CMIP6/s groups of
models reproduce the observed internal variability in the analyzed historical period? How will the
claimed model biases change if the effect of internal variability is removed from the CMIP6 models?
The referees also raised a couple of other major issues. Please refer to their reports. These will
need to be addressed before I can make a recommendation for the publication of your manuscript
in ACP.

Reply: We thank the editor and reviewers for their constructive comments which have helped us to
improve the manuscript. In the revised manuscript we now put a new emphasis on the role of internal
variability. It has been criticised before that by using the mean of realizations from each participating
CMIP6 model alone might not justify 1) interpreting the differences between CMIP6/w and CMIP6/s
subsets (weak and strong AA/ALRF models in the historical period), and 2) constraining the climate
relevant parameters by observations. We want to give a general remark on these points, before addressing
the specific comments of the reviewers below:

1) By taking the average of model realizations over the past decades, we average out the effect
of internal variability, and isolate the response to external forcing. As such, the differences between
CMIP6/w and CMIP6/s can be attributed to external forcing. The observations, however, represent
a single climate trajectory and thus combine both the effect of internal variability and response to
external forcing. We revised the method section that elaborates on the CMIP6 simulations accordingly
(newly added Section 2.9 in the manuscript). When comparing the observations to the model subsets
(CMIP6/w and CMIP6/s) it is thus important to discuss if the attribution to either one (in our work,
based on their respective distributions) can be justified if accounting for internal variability. This leads
to the second point:
2) We now discuss our results concerning thermodynamic structure of the boundary layer (i.e., inversion),
energy transport, and TOA energy budget (OLR) also in context of internal variability. Specifically,
we examine whether the differences between observations, and CMIP6/w / CMIP6/s models, can
be explained by internal variability within each subset. In particular, we compute the difference in
parameters (OBS minus CMIP/w / CMIP6/s) and compare that difference to the respective range of
model realizations which is attributable to internal variability. This range is calculated by subtracting
the ensemble mean from each realization (to remove the forced response), and then calculating the
central 95% range of internal variability per model subset. If the OBS-model difference lies within
(without) that range, it can (cannot) with confidence be explained by internal variability, which justifies
verifying (falsifying) the specific subset based on the OBS. We specify these points within the reviewer’s
comments and revised the manuscript accordingly.
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Author’s response to RC1

Major

Reviewer Point P 0.1 — The authors stick with the use of short time series as climatological
averages, disregarding internal variability. Especially for the MOSAiC winter, that has been shown
to have a particular large-scale circulation with less meridional advection of warm air then other
recent winter, I do not think this is an appropriate choice.

Reply: We thank the reviewer for bringing up internal variability and agree that it should be accounted
for. Regarding MOSAiC, the observations during winter are roughly consistent with the ensemble mean
of CMIP6/w. This leads to the conclusion that the ensemble mean of CMIP6/w models (response
to external forcing) more realistically represents the OBS. We acknowledge, however, the reviewer’s
concern that the observations might be a low-probability trajectory of the climate system, and therefore
need to be put into context of the envelope of model realizations.

We show in Fig. R 1 (also added to the manuscript as Fig. B1) the averages of inversion during
DJFM, observed and simulated (ensemble averages), corresponding to Fig. 4 of the manuscript. We
also indicate the residuals after subtracting the CMIP6/w and CMIP6/s data from the observations.
The error bars account for internal variability of the respective model subset. They are computed by
subtracting the subset ensemble mean from each realization, and then calculating the central 95% range
(e.g. England et al., 2021).

Figure R 1: Averaged inversion during DJFM for MOSAiC, CMIP6/w and CMIP/s (ensemble
means, respectively), corresponding to Fig. 4 of the manuscript. Gray bars give the residuals after
subtracting the externally forced simulation from the observed inversion. The error bars indicate
the 95% range of simulated internal variability of both CMIP/w (blue), and CMIP6/s (red) models,
respectively.
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The difference between observations and CMIP6/w is small compared to the one for CMIP6/s (this
result is already discussed in the manuscript and has led us to the conclusion that CMIP6/w models more
realistically represent the inversion). However, individual CMIP6/s realizations might still be consistent
with the observed inversion. Fig. R 1 shows that this is not the case: the MOSAiC − CMIP6/s difference
cannot be explained with confidence by internal variability of the CMIP6/s ensemble, as is the case for
CMIP6/w. This justifies our main conclusion that CMIP6/s models systematically underestimate the
inversion. We added these results to the manuscript in L507ff (a similar analysis is also done for
atmospheric energy transport and OLR at TOA in Fig. B1 of the manuscript).

The second point of the reviewer concerns the usage of MOSAiC data in general, as it might
represent anomalous inversion conditions. It is true that during MOSAiC the Polarstern experienced
certain anomalous events, e.g., extreme cases of warm, moist air transported from the northern North
Atlantic or northwestern Siberia during late fall until early spring. Rinke et al. (2021) compared the near-
surface meteorological conditions during MOSAiC to the context of the recent climatology (characterised
by co-located ERA5 reanalyses with hourly resolution 1979–2020). They show that for the full time
series, the near-surface meteorological variables were mostly within the record, even during storms and
moisture intrusion events. We want to emphasise in particular that this is true for the near-surface air
temperature. In order to respond in depth to the reviewer comment, we examined whether this statement
also is true for the inversion strength. The result is shown in Fig. R 2, namely a comparison between
MOSAiC inversion time series and co-located ERA5 data as statistics of the 30 years preceding MOSAiC
(1991–2020). Note that the MOSAiC inversion appears generally smaller than in the manuscript, since
we had to interpolate the radiosonde data to common pressure levels of ERA5 (CMIP6 models have
pressure data, ERA5 not).
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Figure R 2: Inversion strengths ∆T obtained from radio soundings and concurrent 2-m temperature
measurements from the nearby ice camp during MOSAiC, and for ERA5. ERA5 inversion data is
computed as the difference between the maximum temperature below the 250 hPa isobar, and the
surface (as for CMIP6 and MOSAiC). MOSAiC data is interpolated to ERA5 pressure levels. The
blue line shows MOSAiC, and the orange line ERA5 data (inter-annual average 1991–2020). Grey
lines give the 5th and 95th percentiles, black lines the minimum–maximum range from 1991–2020
data from ERA5, respectively. Blue and green crosses give the DJFM average value for MOSAiC
and ERA5, respectively.

In conclusion, the inversion strength observed during MOSAIC was not unusual. Extending the results
of Rinke et al. (2021), it is evident that the MOSAIC inversion lies within the climatological range. In
particular, the seasonal average during DJFM is close to the average values from the past years, which
justifies the comparison between climate models and MOSAiC data. Another line of evidence is that the
average winter-time inversion during MOSAiC is fundamentally similar to the average winter inversion
during the SHEBA campaign (approx. 8K in the averaged DJF temperature profile; Stramler et al.,
2011). In addition (albeit not relevant for DJFM), recent work of Svensson et al. (2023) shows that for
the MOSAiC April (where most of the warm air intrusion events were recorded), the 2-m temperature
from observations and ERA5 are in large agreement for most of the month. We added a comment to
the manuscript (L484ff).

Reviewer Point P 0.2 — It is unclear to me what the profiles over sea ice (> 15%) and
their trends actually show. My understanding of the definition is that they would include grid
points passing from 100 to 30% sea-ice cover between the reference and recent period, and thus an
important amount of sea-ice retreat, which the authors attempt to exclude from this analysis.

Reply: The reviewer is exactly right: where the sea ice concentration is 15% or higher, the area
is considered ice-covered; where sea ice concentration is below 15%, the area is considered ice-free.
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With this definition we follow the recommendation of the NSIDC (https://nsidc.org/data/soac/sea-
ice-concentration), and it allows to classify sea ice conditions and their changes. We define sea ice as
areas with SIC of >15% in both reference and warmer climate, open ocean with SIC of <15% in both
reference and warmer climate, and sea-ice retreat as SIC of >15% in reference climate and<15% in
warmer climate, respectively (e.g. Lauer et al., 2020; Boeke et al., 2021; Linke and Quaas, 2022). What
we are actually interested in (Fig. 2 of the manuscript) is the effect of both, surface type (i.e. difference
sea ice vs. ocean profile) and cloudiness (overcast and non-overcast).

By comparing, e.g., the two black lines with squared markers in each panel of Fig. 2, we account for
different cloud conditions over an equal surface type (sea ice). This allows to isolate the cloud effect
at least partly, and its changes in panel c. By comparing, e.g., the solid black and red line (square and
triangle markers, respectively), we compare profiles over sea ice and ocean, respectively, at equal cloud
conditions (overcast). This aims to isolate the effect of the surface type on the temperature profile, and
its changes in panel c. We do not account explicitly for the profile over sea ice retreat, but it is implied
by the surface-type difference, and the way it changes.
In order to address the reviewer’s comment, we now adapted the caption of Fig. 2 in the revised
manuscript in order to clearly explain the above statements, and further expanded the text (L80ff).

Reviewer Point P 0.3 — The authors conclude that “local processes mediating the lower
thermodynamic structure of the atmosphere are more realistically depicted in climate models with
weak simulated ALRF/AA in the past”. However, in my view the authors have not actually studied
the representation of these processes in any subset of models, let alone to the extent to generalize
such conclusions. The differences in inversion strengths shown in the manuscript may well be due
to different combinations of compensating or non-compensating biases in the underlying processes
(mixed-phase clouds, turbulence, sea-ice concentration and thickness, heat conduction through
snow and ice).

Reply: The reviewer has a good point that this formulation was misleading. What we intended to do
is summarise the results of Section 2.2–2.4 (inversion and profiling), and 2.5–2.6. (energy transport).
The former conclusions cover the vertical thermodynamic structure of the lower troposphere, whereas
the latter can also impact the free troposphere. We agree that ”processes mediating” these features
is only partly correct, since there are other processes that can impact them, as rightly pointed out. In
response to the reviewer’s comment, we now adapt the formulation to clarify that we constrain the
climate-relevant parameters that relate to the processes, without excluding other impacts: It is now
e.g., ”Local, near-surface features like temperature inversion”, or ”the vertical temperature structure of
the Arctic boundary layer”. We also added subsection 3.2 and 3.3 to more clearly sort local vs. remote
features that are linked to AA/ALRF.

Author’s response to RC1

Minor

Reviewer Point P 0.4 — The authors addressed most of my comments, although they didn’t
reduce the comparisons to fewer but more robust metrics. For that reason, I am hesitant to recom-
mend ”accept”. For example, a major, remaining concern is the use of OLR data. As recognised by
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Figure R 3: Comparison between OLR data from CERES and AVHRR. Left: Distribution of OLR
at TOA. Right: Overlapping time series during 2001–2014. All values are derived as Pan-Arctic
and seasonal averages during DJFM.

the authors in their reply, there are significant uncertainties in the observation datasets, obscuring
the determination of a trend signal from it. This uncertainty, together with the uncertainty from
matching the time periods (against internal variability in the models), makes it very questionable
to use the data to discriminate the linear trends in the GCMs. I’d suggest again the authors think
more critically about their use of the different data.

Reply: We thank the reviewer for their comments regarding credibility of observational data, and the
role of internal variability. To address the first point regarding credibility of the OBS we added a second
satellite from NOAA/NCEI HIRS, just as ERA5 reanalyses data to the previously used AVHRR record
in response to the reviewer’s concern in the first review. All three datasets support our conclusions.
The combined observational estimate is now derived as the average of these three data records (BEST
COMB; added to the article). We further added uncertainty ranges to the trends, which are computed
as standard deviation of trends following Lelli et al. (2023). In addition, we compared the AVHRR
record with the current standard and that is CERES EBAF 4.2 first edition, published on January 27,
2023 (https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_EBAF_Ed4.2_DQS.pdf).
CERES data has not been used in the manuscript due to insufficient time coverage, but it is widely
used for data evaluation. For the available overlap years, for latitudes north of 66°N and during boreal
winter (DJFM), Fig. R 3 shows the OLR distribution (left), and the time series of the two records (right),
respectively. Although some small differences can be detected in the distributions (mainly due to surface
characterisation, e.g. emissivity), the consistency of the two time series is further confirmation of the
robustness of the records, and the soundness of the derived trend data.

The second point addresses the valid concern regarding the role of internal variability. So far, all
model-to-OBS/reanalysis comparisons rely on ensemble averages in the climate model data, i.e., internal
variability has been averaged out. The observations, however, comprise only one possible climate
trajectory reflecting both the response to external forcing as well as internal climate variability, and
therefore need to be put into context of the envelope of model realizations. We revised the manuscript
and now discuss our main results (temperature inversion, energy transport, and OLR at TOA) also in
the context of internal climate variability (see new method Section 2.9 in the manuscript). To address
the specific comment of the reviewer, we show in Fig. R 4 the averages of the OLR anomaly trend during
DJFM, observed and simulated (ensemble averages), corresponding to Fig. 9 of the manuscript. We
also indicate the residuals after subtracting the CMIP6/w and CMIP6/s data from the BEST COMB
(best combined estimate from satellite observations and ERA5). The error bars account for internal
variability of the respective model subset. They are computed by subtracting the subset ensemble mean
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from each realization, and then calculating the central 95% ranges (England et al., 2021).

(a) OLR trend anomaly w.r.t. 1983–1994 (DJFM) (b) OLR average 2000–2014 (DJFM)

Figure R 4: a) Averaged OLR anomaly trend during DJFM for BEST COMB (average from
NOAA/NCEI HIRS, ERA5, and AVHRR), CMIP6/w and CMIP/s (ensemble means, respectively),
corresponding to Fig. 9 of the manuscript. Gray bars give the residuals after subtracting the
externally forced simulation (ensemble means) from the BEST COMB. The error bars indicate the
95% ranges which could be explained by internal variability per subset. b) Same as a), but for
climatological OLR averages 2000–2014.

Fig. R 4a indicates that the difference between BEST COMB and CMIP6/s is smaller compared to
CMIP6/w (this result is already discussed in the manuscript, and it has led us to the conclusion that
the mean of CMIP6/s simulations more realistically represents the observed OLR trends, albeit still
underestimating them). However, also the CMIP6/w ensemble members might still be consistent with
the observed OLR trends. Fig. R 4 now allows to conclude that this is unlikely. The fact that the BEST-
COMB − CMIP6/s difference is within the range of internal variability simulated by CMIP6/s, but
the BEST-COMB − CMIP6/w difference cannot be fully explained by the range of internal variability
simulated by CMIP6/w, justifies our previous conclusion. We further show the absolute values of
OLR at the end of the historical period (2000–2014), with a similar result: The difference BEST-
COMB − CMIP6/s is small compared to OBS − CMIP6/w, and the differences are covered by the
range of simulated internal variability for CMIP6/s, but not for CMIP6/w. Fig. R 4a is now added to the
manuscript (as Fig. B1), together with a similar analysis of MOSAiC inversion and Pan-Arctic energy
transport, to support the main conclusions of our study with regards to the role of internal variability.
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