
Author’s response to RC2

We thank Reviewer 2 for very constructive and helpful comments on our manuscript. We have
addressed the concerns which have helped us to improve our manuscript. Our responses are listed
below.

Major

Reviewer Point P 0.1 — This paper aims to dissect the Arctic warming simulated in the CMIP6
models by comparing them to observations. The analysis is centered on the geophysical variables
related to the lapse rate feedback, which, as argued by a number of studies, is of critical importance
for the Arctic warming amplification. To the extent this argument is valid, the comparisons in
this paper are well motivated. A novel aspect of this paper is that it includes comparisons to
several different kinds of data, some of which, such as the newly acquired Mosaic campaign data,
provides fresh perspectives for model validation. However, although each comparison included
here potentially provides a useful line of evidence for discriminating the models, unfortunately few
results appear conclusive in the end. This calls into question whether one had better aim to identify
and focus on what can be more conclusively stated about the models and/or nature, as opposed to
a somewhat nonselective listing of results.

Reply: We acknowledge the major criticism that is being raised here, and we would have also hoped
for a more clear story in parts. However, we want to justify presenting each of the results in this study:
Firstly, to some extent and especially for the model comparison to the observations at higher time
resolution, we do not have clear emerging relationships between simulated AA/ALRF and present-day
climate aspects that is used to constrain the mediating processes. This is simply due to the fact that
only few simulations exist, even in the historical simulations, to derive a relationship as done for e.g.,
an emergent constraint. However, especially these local processes are crucial in better understanding
and constraining both ALRF, and AA as a whole. Our idea was to chose those models at the edge
of the AA/ALRF distribution as a compromise. If the observational constraint then fits either one of
these categories, we have a clear signal. If the OBS are in the range of inter-model mean, then the
attribution to either weak or strong-AA/ALRF is less straightforward. This might appear as somewhat
inconclusive, but it is still a result, i.e., an attribution to the inter-model mean. That is why we want
to show all results, also to cover each process that is believed to have a mediating impact (inversion,
sea ice retreat, transport, ...) and reduce gaps in the interpretation. We prefer not to select some that
match one line of evidence and omit others. The collaborative project continues and in the next project
phase one aim is to reconcile the differences in conclusions.

We adapted several major changes to the manuscript to clarify our intention: At the end of each
section, we now comment more carefully on the significance in model differences, and the attribution of
several observations to either one of the emerging subsets, just as the synergy that gradually appears
trough the result sections. These inter-mediate results are later brought into context: The conclusion
focuses only on results that show a clear signal in both model subset differences and their constraint
through observations, and further brings attention to the synergy that emerges between inter-mediate
results.

Reviewer Point P 0.2 — Moreover, the use of some data and analysis methods are not sufficiently
explained (see comments below), raising questions about their properness. For these reasons, I think
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the paper would need a major revision before being considered for publication.

Reply: We thank the reviewer for their specific suggestions and performed the major revisions.

Reviewer Point P 0.3 — Figure 1. Can you also provide the observations for a comparison in
these diagnostics?

Reply: It is a very good suggestion to add the observed estimate for AA 1985–2014 with respect to
1951–1980. We added the average from several observational estimates to Figure 1 of the manuscript.
We present the OBS estimate of AA in Figure 1 of the manuscript as average from several observational
data set (GISTEMP, Berkeley Earth, HadCRUT5, NOAA’s MLOST, and ERA5; Rantanen et al., 2022).
An overview of the observed AA as time series is shown in Fig. R 1. We added comments on the OBS
estimate in Section 2 L151 ff. In addition, the inclusion of OBS in the introducing plot allows us to
interpret the simulated model range with respect to observations. It ensures that our classification of
either weak or strong-AA model subset actually shows AA values below or above the OBS, respectively.
We include this interpretation in Section 3.1. L420 ff, and additionally expand the elaboration on
statistical significance in the discussion. This concerns primarily the previously mentioned model-to-
OBS comparisons at 6-hourly time resolution (MOSAiC, NSA, dropsondes), which is limited by the
availability of models. Simply categorising the model range by taking the top-3 lowest and highest
AA models might not do justice to the classification as either weak or low AA simulations at 6-hourly
resolution, since the entire model spread (all models in Table 1 of the manuscript) is larger. However, by
adding the observations we show that the discrimination is still valid, since the sub-set average of AA for
CMIP6/w, and CMIP6/s lies below, and above the OBS estimate, respectively (for any time-resolution
group). This gives further justification to our approach.

Figure R 1: Time series of AA: Difference in annual mean temperature anomalies in the Arctic
with respect to global average as derived from the various observational datasets. Temperature
anomalies have been calculated relative to the 30-year period of 1951–1980.

Reviewer Point P 0.4 — L172 ”consistency”: can you provide any reference to this belief? Note
that it is quite known that there are noticeable differences between different kernels, especially in
the Arctic. In either case, it would be move convincing to provide an error bar based on results
computed from more than one kernel.
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Reply: We agree with the reviewer that the formulation ”consistency” is too unspecific in this context.
We show in Fig R 2 the same scatter plot as in Figure 1 b of the manuscript, but with ALRF values
derived from different kernels (the inter-model distribution of AA is not effected by the choice of kernel).
There are indeed differences in the quantification of the ALRF across the kernels, and slight variations
of the inter-model correlation between AA and ALRF. We acknowledge the criticism being raised from
the reviewer and now show the scatter plot in Fig. 1 b, but with model-specific ALRF values derived as
average from the output of all kernels. To avoid making Fig. 1 even more busy, we account for the inter-
kernel spread across ALRF by adding the standard deviation in Table 1. We further added a comment
on method Section 2.1 L192 ff. Albeit there are difference in the relationship of the inter-model spread
in AA and ALRF across CMIP6 models, we emphasise that our results are not sensitive to the choice of
kernels. The classification as either weak or strong-AA models remains unaffected, and the AA-ALRF
relationship increases even for other kernels than the previously chosen HadGEM3 kernel. Thereby, the
attribution of weak/strong-AA models to equally weak/strong-ALRF models is still valid. The newly
added comment proves that point, and is important for the credibility of our results.

Figure R 2: As Fig. 1 b of the manuscript, but with different kernels to derive the ALRF.

Reviewer Point P 0.5 — L205, 251 use of years of 2010–2014. Can you justify the use of these
model years to match the observation? It’s understood coupled model years are nominal but what
guarantees a comparison done here, between a single realization of nature of limited length and
multiple model years, is proper? Very handwavy to ”assume” they’re ”roughly the same”.

Reply: We thank the reviewer for pointing to our insufficient elaboration on time comparison here. This
comment is most valid for the limited data comparison at 6-hourly time resolution and concerns mostly
the evaluation of model data based on very recent MOSAiC data (2019–2020). We have been considered
using data from CMIP6 scenarios to expand the simulation period to the years following the historical
simulations. However, this was again limited by the availability of data: Only three models in Table 1
of the manuscript provide the required diagnostics for simulation scenarios ongoing from 2014, which
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was not an option. We were still highly interested in comparing climate models against the valuable
data conducted during the MOSAiC expedition. It is true that the time shift between 2000–2014 and
2019–2020 raises questions about the validity of the comparison. To prove that it is still valid to treat
this periods as part of the same climate state, we show for the three models with scenario output the
time series comparison between 2000–2014 and 2019–2020 in Fig. R 3. We use scenario outputs from
the highest emission scenario SSP585 as boundary of the range of scenarios for 2019–2020. Even for this
highest scenario, the 2019–2020 time series lies within the inter-annual range of the 2000–2014 period,
and for most of the year, within the range of inter-annual standard deviation. Even though we cannot
show this comparison for each model used in our study, we argue that the correspondence between
2000–2014 and 2019–2020 time series from the highest emission scenario justifies our comparison in
Section 2.2 We added a comment in L233 ff.

Figure R 3: Comparing time series for surface-based temperature inversion δT for for MOSAiC
conduction time (2019–2020; SSP585 scenario in CMIP6), and for historical data 2000–2014, which
we compare to the MOSAiC radiosonde data in Section 3.2 of the manuscript. Those models that
facilitate the comparison are CNRM-CM6-1, MIROC6, and MRI-ESM2-0.

Reviewer Point P 0.6 — L261 The identification of different ”regimes” looks an interesting
approach to me. However, I found the description of the method too brief here. I’d suggest
showing the relevant results such as the EOFs, as well as the associated PCs and eigenvalues. I
think this method, like the other data and methods in this paper, is worth more careful/critical
reasoning and more thorough discussion.

Reply: For this part of the study, we have used the concept of atmospheric circulation regimes (e.g.,
Hannachi et al., 2017) to characterise the large-scale circulation in terms of a few preferred states. This
concept provides a framework for understanding low-frequency variability due to transitions between
different regimes. In addition, Palmer (1993, 1999) introduced a dynamical paradigm for climate change
which suggests, that a weak external forcing does not change the structure and number of atmospheric
regimes, but instead changes the frequency of occurrence of the regimes. Since then, many studies have
analysed the atmospheric circulation within this concept (see extended review by Hannach et al., 2017).
To follow the reviewer’s advise, we extended the description of the method for the determination of the
regimes in section 2.5: L300 ff.

To characterize the reduced state space, we show here the spatial structure of the five leading
EOFs over the North-Atlantic-Eurasian region (Fig. R 4a, 57.5% explained variance) and over the North-
Pacific region (Fig. R 4 b, 54.5% explained variance) based on ERA5 daily mean SLP anomaly fields
for the extended winter season (DJFM). The leading EOFs resemble the well-known teleconnection
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a) b)

Figure R 4: a) Left from top to bottom: Five leading EOFs over the North-Atlantic-Eurasian region
for DJFM, based on ERA5 daily mean SLP anomalies for DJFM, explaining 17.5%,14.3%,11.5%,
8.9%, 5.4%. b) Left from top to bottom: Five leading EOFs over the North-Pacific region for
DJFM, based on ERA5 daily mean SLP anomalies for DJFM, explaining 16.3%, 13.7%, 11.0%,
7.2%, 6.6% of the total variance respectively. Right from top to bottom: Corresponding time-series
of principal components (normalized), the red line represents running mean values over 10 years.

patterns such as the North-Atlantic Oscillation (North-Atlantic EOF1), Scandinavia pattern (North-
Atlantic EOF2), East Atlantic pattern (North-Atlantic EOF3), Pacific/North American pattern (North-
Pacific EOF1), West Pacific pattern (North-Pacific EOF2).

Reviewer Point P 0.7 — L290 What’s the basis of using this proxy as a quantitative measure
of the energy transport? How can the TOA-only perspective differentiate atmospheric vs. oceanic
transports? How is equilibrium verified, so that horizontal transport can be inferred from vertical
energy flux?

Reply: We thank the reviewer for commenting on the derivation of the transport term and acknowledge
that the method has not been explained sufficiently at this point. In addition, we understand that it is
useful to exclude the ocean signal while looking at atmospheric processes. Therefore, we now present the
transport term as contribution from the atmosphere, and as divergence term wihtin an energy budget
framework: Following previous works of e.g., (Nakamura and Oort, 1988; Trenberth, 1997; Serreze et al.,
2007) we can consider the energy budget of an atmospheric column that extends from the surface to
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the TOA. For each column, the tendency in energy storage within an atmospheric column Ea can be
estimated as

∂Ea

∂t
= Ra +QH −∇ · F⃗a, (1)

with net atmospheric radiation budget Ra, the sum of turbulent heat fluxes at the surface QH, and the
convergence of the horizontal atmospheric energy transport −∇ · F⃗a. In the long-term and large-scale
energy budget, we can further neglect the storage tendency under assumption of steady state (Serreze
et al., 2007; Linke and Quaas, 2022). We use this simplified energy budget framework to estimate the
horizontal convergence of energy transport indirectly, i.e., residual of the budget equation. According
to the reviewers comment, we expanded the method description in Section 2.6, specifically clarifying
that we exclusively consider the atmospheric transport (convergence), and further commenting on the
equilibrium criteria. Both results and discussions are updated accordingly.

Reviewer Point P 0.8 — L305 and Figure 9, concerning the use of satellite OLR records, it
should be noted that various issues had been documented on how wrong it could be to take a non-
SI-traceable radiation record as the ground-truth of ”observed” long-term trends. For example:
Trishchenko et al. https://doi.org/10.1029/2002JD002353
Wong et al. https://doi.org/10.1175/JCLI3838.1
The OLR trending itself would be worth a full section if not a paper by itself. Before its correctness
is established, it is very questionable to use this result as a model discrimination metric.

Reply: It is an important point being raised how to define the ground-truth of our data set. We want
to comment on the credibility of the AVHRR climate data record: It is well known that suboptimal
radiometric calibration of the AVHRR thermal channels might lead to inconsistencies, then source
of discrepancies in Arctic cloud detection and radiation fluxes at the surface (Zygmuntowska et al.,
2012). Prior to the production of the satellite record, every PM sensor was cross-calibrated with
well-behaved sensors. The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) served as spectral reference for the visible wavelengths and the Infrared Atmospheric
Sounding Interferometer (IASI) for the thermal channels (Stengel et al., 2020). This resulted in an
improvement of the retrieved cloud parameters (Sus et al., 2018; McGarragh et al., 2018) in terms of
precision, accuracy and stability (Stengel et al., 2017). Specifically to the Arctic, the AVHRR cloud
record has not shown any scale-dependent bias upon validation with coincident measurements at four
high-latitude ground sites (Vinjamuri et al., 2023). The accuracy of the cloud record is a key factor
because the cloud properties are input for the derivation of the broadband fluxes (Henderson et al.,
2013). The resulting accuracy in AVHRR-derived OLR amounts to ± 3Wm−2 against observations of
the Geostationary Earth Radiation Budget (GERB) radiometer on board the Meteosat Second Generation
(MSG-2) satellite (Christensen et al., 2016). This value is within GERB’s calibration limits for radiation
at TOA (Clerbaux et al., 2009). In relative terms, the average long-term bias of AVHRR-derived
outgoing LW fluxes against CERES amounts to −2.7% (Stengel et al., 2020). In addition, using the
same algorithm for the broadband fluxes, but applied at CloudSat, CALIPSO, and MODIS measurements
instead, Kay and L’Ecuyer (2013) quantify an average bias against the Clouds and the Earth’s Radiant
Energy System (CERES) Energy Balanced and Filled (EBAF) record (Kato et al., 2018; Loeb et al.,
2018) of the order of 4-5Wm−2. Consequently, the present AVHRR record has been used for the
analysis of Arctic cloud radiative forcing (Lelli et al., 2023) and feedback (Philipp et al., 2020).

However, we acknowledge the comment of the reviewer and add additional data sources as reference
to compare against CMIP6 models. The additional data records are the OLR flux from NOAA/NCEI
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from the High Resolution Infrared Radiation Sounder (HIRS) instruments on board the NOAA and
MetOp satellites, and ERA5 reanalyses. Additionally, we adapt the data record in Figure 9 of the
manuscript to display the anomaly of the OLR with respect to the first 15 years of the AVHRR record
(1983–1997). We apply this change since the main focus is the trend in OLR during recent decades,
which is more straightforward in the new plot version. We further consider CERES satellite data in the
absolute time series (not shown), which fits well the records derived for HIRS, AVHRR, and ERA5. Only
in the anomaly plot as now presented in the manuscript, CERES does not appear due to insufficient
time coverage (start 2000).

Reviewer Point P 0.9 — L380 ”significant”. Although significant differences are stated here and
at multiple other places (in this (Figure 4) and other figures), looking through these results, I am
not convinced there is indeed any strong difference between the compared groups, either between
”w” vs ”s” or between them and the observation (Mosaic). If the discriminations are based on such
weak evidence, I am not sure the observation used here provides any useful constraint as wished by
the authors, or any model evaluation result can be considered conclusive. Please critically review
and reason about this and other conclusions.

Reply: We thank the reviewer for pointing that out. In the specific case, and also in the two following
analyses including 6-hourly data, we partly omitted the word ”significance” since it implies the usage
of relevant statistical tests. We want to elaborate a bit more on the raised criticism of weak evidence:
It is true, primarily in the specifically mentioned case of comparing inversion data from models and
observations, we cannot rely on strong inter-model relationships to constrain the mediating process of
atmospheric stability. The motivation of constraining these highly-defining process to some extent with
recent sate-of-the-art climate models is however a tempting option. Connecting to our first reply of
this review, we rather show the full story rather than selecting some that match one line of evidence.
However, in reflection of all results presented in the conclusions, we focus on what is, from our view,
important and conclusive. This concerns two steps of the method: First, identifying model difference
where they are clear and consistent across the results, second, attributing co-located observations to
either one of the emerging categories (our proposed constraint).

We acknowledge the reviewers comment and elaborate more on data credibility. For the mentioned
case that concerns the discussed season of ONDJFM: We argue that the model discrimination (albeit
limited by data availability) is supported by there being no overlap in mean inversion strength across
the models: During ON for CMIP6/w/s: 4.6–5.8K / 1.8–3.5K, and during DJFM for CMIP6/w/s
7.6–10.6K / 5.8–6.9K, respectively. A paragraph is added in Section 3.1 L459. This attribution to
a specific model subset, not only in the subset average, but also for individual models, is true also
for Section 3.2 and 3.3, that use the same models. We further performed a two-sample Kolmogorov-
Smirnov test to compare the similarity of CMIP6/w and CMIP6/s distributions (addressed in the same
paragraph in Section 3.1). Thereby, we conclude that the first point of model categorisation is fulfilled.
Further, primarily during MOSAiC winter, the inversion distribution is most attributable to the range
of CMIP6/w models, which is why in the conclusion we highlight the outcome, supported by the two
following sections. The shared outcome of Section 3.1–3.3 is now more critically discussed in the
discussion.

We further more critically review each individual Section regarding model subset discrimination, and
constraints by observation, and further focus more specifically on the synergy of all Sections in the
conclusion.
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