
Author’s response to RC1

The authors combine CMIP6 model output with reanalysis data, observations and LES model
results to investigate the inter-model spread in Arctic amplification (AA) and the Arctic lapse-
rate feedback (ALRF). When sorting models into models with stronger and weaker AA and ALRF,
strong AA/LRF models better match reanalysis trends in heat advection, whereas weak AA/ALRF
better match observed present-day inversion strength. The presented data and work is interesting
and relevant to important research questions, but I have a few major concerns on how the model-
observation analysis is carried out.

Reply: We thank Reviewer 1 for very constructive and helpful comments on our manuscript. We have
addressed the concerns which have helped us to improve our manuscript. Our responses are listed below.

Major

Reviewer Point P 0.1 — The authors do not investigate the role of internal variability for
model results. Investigating only one ensemble member per model without regard for the ensemble
spread might not do justice to models – even a clear mismatch with observations does not rule out
that the model in question is consistent with the observed trend or phenomenon (see e.g. Notz,
2015)

Reply: The reviewer raises an important point. Firstly, we haven’t been clear enough in elaborating
on the use of different ensemble members within CMIP6. We use the entire data set (all available
ensemble members), but as ensemble means over all realisations per model – this way, each model
carries equal weight in the CMIP6 distribution, and we exclude the chance of accidentally choosing a
model realisation that deviates substantially from the entire population The reviewer still is right, we do
not account for internal variability by using ensemble means, we merely exclude the chance of catching
an outlier among the realisations. We want to state that while internal variability is an important and
very interesting point, unfortunately there are only few models with enough members to engage in a
deeper study: Only four models have more than 30 realisations which could be considered enough for
such an analysis. Six other models on the other hand only have only one realisation, more than half
only 2–3. Since we noticed that this topic has not been addressed properly in our manuscript, we added
a paragraph in the methods section (L134 ff) and thank the reviewer for pointing it out.

Reviewer Point P 0.2 — Important conclusions rely on small subsets of the analysed models,
comparing only the top and bottom three models in terms of AA/ALRF. For the weak AA group,
these are clear outliers in the CMIP ensemble, and two of the three are different versions of the
same model. Would the results remain the same (just with weaker signals) if models 4-8/24-28
were used instead?

Reply: It is an important question that the reviewer asks here. Firstly, it is exactly that, we chose
CMIP6 models at the respective edges of the range of simulated past AA. This is to ensure a clear
signal in the comparison and to allow for an attribution to either weak and strong-AA models (we added
a comment in the method section L146 and following). Since we don’t take the classic approach of
an emergent constraint where statistically strong relationships across model simulations of past/future
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and the observable current climate are used, we instead agreed on a number of models that represent
an either weak or strong-AA cluster (split by the observed value of AA, also added now in Fig. 1 and
explained in the text L151 and L420 and following). Unfortunately, some comparisons required a high
temporal resolution of the model output (L140 ff in the manuscript). The model-data comparison at 6-
hourly time resolution in particular included only 12 models with all required diagnostics in total (Section
3.2-3.4 concerning stability and vertical temperature structures). This has lead us to the compromise
of choosing 3 models at the respective edge of AA distribution (model 5, 6, 10 for weak, and 25, 28,
29 for strong), as the inclusion of more models would rather represent the inter-model mean.

However, we strongly agree with the point being raised. To demonstrate that the comparison is
still valid, we added model 11 to the weak-AA, and model 21 to the strong-AA ensemble to extend
the individual range. This has no effect on the key messages of Section 3.2-3.4, the results remain the
same (e.g. shown for MOSAiC in Fig. R 1). We added a paragraph on the sensitivity of model choice
on the results in the discussion part L734 ff. In addition, the model-to-data comparison is explained
more thoroughly in Section 3.2, adding a supporting Figure to the Appendix, and further commenting
on statistical representatives of the results that rely on sparse high-resolution model diagnostics.

Figure R 1: As Fig. 4 b in the manuscript, with the addition of model 11 and 21 to CMIP6/w and
CMIP6/s subsets, respectively. In each panel, the left box plots show the original subsets with
three models, and the right box plots show the subsets with 4 models, respectively.

Reviewer Point P 0.3 — The definition of AA as a difference dTArctic-dTglobal rather than a
ratio dTArctic/dTglobal is surprising to me. Wouldn’t one expect most mechanisms driving AA to
act in a multiplicative rather than additive way? Similarly, the choice of the reference period is
unclear to me. If no observations from the reference period are used, why not choose an earlier
reference period (PI or at least 1850-1880 historical) to maximize the signal?

Reply: We thank the reviewer for bringing up these points, which we have discussed in the preparation
of the study also internally. To address the first point of defining AA: There are different metrics which
can be used to describe the difference in temperature change between the northern high latitudes and
the global (or mid-latitude / tropical) mean to quantify AA. There are several studies that apply different
metrics, e. g., the difference between present and base climate (like us; e.g., Francis and Vavrus, 2015,
the ratio, or ratio between linear trends (Johannessen et al., 2016; Kobashi et al., 2013). Indeed the
ratio is an established metric, as the reviewer suggests, but there is no fundamental information it
carries that the difference would not carry. The reason for choosing the difference is a practical one.
When using the ratio of anomalies (e.g., here for the temperature) the denominator may approach small
numbers down to zero. In the period of interest, for some model realisations, it turned out that global
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warming is rather close to 0 (e.g. model 13 realisation r20i1p1f2 with 0.11K global warming), so the
ratio estimator may be arbitrarily inflating the model spread. A consequence in our study is that when
using the ratio metric, the correlation between ALRF and AA degrades to r = 0.66, instead of 0.86 as
in Figure 1. We consider the LRF a stable metric to quantify AA as it has essentially the same physical
basis: The feedback contributes to slight cooling on global average in the time period of interest, but
strong warming in the Arctic, both of which is a result of the effect of strong vs. limited mixing abilities
in the tropics vs. Arctic on the vertical redistribution of the warming. In the Arctic, this imposes the
key feature of bottom-heavy warming, which is AA. Thereby, we chose the difference definition: first,
it reduces the problem with small global-warming in some model runs, and second, we can make use of
the stronger ALRF-AA relationship by classifying strong/weak AA models also as strong/weak ALRF
models, by extension. We now added this explanation in Section 2.1. (L185 ff).

To address the second point of time framing: In our first analyses we did consider the entire time
series of historical simulations. However, there are two main periods which are identified to have AA,
and both occur in the 20th century: in the 1920–1940s, and at the end of the 20th century continuing
into the 21st century (Davy et al., 2018 and references therein). We added this important information
at the beginning of the introduction, and in the methods L189 ff. In addition, in Section 3.5, we actually
address changes in the reference period (relative frequency of circulation regimes) in ERA5 data. This
type of comparison is only feasible with reanalysis data, which starts from 1950. This has led us to
adapt the reference time period. Another important point is that large changes in the global surface
temperature (simulated and observed) have started to occur since the second half of the 20th century.
This leads to the result that excluding the first century of historical simulations imposes no large impact
on the order of models 1-31 which are sorted by the degree of AA. Short message: It does not matter for
the outcome of this study if 1850–2014 or 1950–2014 is used, but it allows for the inclusion of Section
3.5, and it addresses the second (and stronger) period of identified AA.

Minor

Reviewer Point P 0.4 — l 22 ff and elsewhere in the manuscript: Now that the work is done,
I feel that the manuscript would be stronger by focusing on what has been achieved rather than
what the authors want to achieve.

Reply: The last paragraph was omitted and L11-12 added ”...to provide different perspectives on AA
and the Arctic LRF.” instead.

Reviewer Point P 0.5 — l. 65 ff: The impact of clouds on the vertical temperature profile has
not been introduced at this point in the manuscript.

Reply: That is true. We added a comment in L68 ff.

Reviewer Point P 0.6 — l 205: showing that 2019/2020 is equivalent to 2000-2014 using scenario
output would be stronger than just assuming it – strong changes have happened in the Arctic in
the early 21st century.

Reply: We thank the reviewer for pointing to our insufficient elaboration on time comparison here.
The comment is most valid for comparing the very recent and highly valuable MOSAiC data during
2019/2020 with the last years of historical simulations (2000–2014). Our choice of model data here
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is, again, somewhat a result of data availability, which is unfortunately limited in the 6-hourly time
resolution: Only three models from Table 1 of the manuscript provide the 6-hourly time resolution
also in the scenario simulations ongoing from 2014. However, we acknowledge that this alone cannot
justify a comparison here. We argue that our comparison is valid, and show a comparing time series
between scenario data (SSP585 as upper boundary of the range of scenarios) for 2019–2020 (MOSAiC
time frame) and historical data 2000–2014 for those models that provide both. Fig. R 2 shows that the
SSP585 time series lies within the inter-annual range of the 2000–2014 period, and for most of the year,
within the range of inter-annual standard deviation. Even though we cannot show this comparison for
each model used in our study, we argue that the correspondence between 2000–2014 and 2019–2020
time series from the highest emission scenario justifies our comparison in Section 3.2. We added a
comment in L233 ff.

Figure R 2: Comparing time series for surface-based temperature inversion ∆T for MOSAiC con-
duction time (2019–2020; SSP585 scenario in CMIP6), and for historical data 2000–2014, which
we compare to the MOSAiC radiosonde data in Section 3.2 of the manuscript. Those models that
facilitate the comparison are CNRM-CM6-1, MIROC6, and MRI-ESM2-0.

Reviewer Point P 0.7 — For the comparison with radiosondes, I would recommend coarsening
the radiosonde profiles to the vertical resolution of the models at least as a sensitivity test (same
for NSA).

Reply: Unfortunately, the suggested sensitivity test is complicated here, since the model diagnostics
are given on model levels. This would require interpolating the models profiles to common pressure
levels in order to coarsen the radiosonde profiles to a common vertical resolution. Our approach is to
keep each model on its instantaneous vertical resolution and derive the inversion as described in 2.2 and
2.3 of the manuscript. We now specify this approach in L227.

Reviewer Point P 0.8 — Section 2.4: Comparing March/April measurements with DJFM model
data – did you check that model data looks similar for March as for the entire winter season?

Reply: There might have been a misunderstanding due to an imprecise formulation on our side. We
compare the flight campaign data exclusively during March with model data during the same month
(not DJFM). We re-formulated the sentence ”The measurements presented here were performed during
March to ensure similar thermodynamic conditions compared to the extended winter season, DJFM.” to:
”Since the measurements presented here are available only for March, we restrict the model-observation-
comparison to this month.” (L269 ff).
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Reviewer Point P 0.9 — Do we expect the 1993 campaign to show the same climate state as
the 2019 campaign?

Reply: The reviewer is right, between 1993 and 2019, the climate state is different. However, the
comparing time period is 2000–2014, and the year-average of the aircraft campaigns lies within the range
of model data: avg(1993, 2013, 2019) ≈ 2008. We were still interested in the comparison without the
1993 campaign, but the results are similar. Only over ice, the inversion is slightly elevated and weaker (by
around 1K), which does not affect the conclusions, however. The warming effect by transforming from
sea ice to ocean is less, compared to the combination of all campaigns, which brings the observations
even closer to the CMIP6/w model ensemble. However, we prefer keeping as many data as possible for
the observational constraint: When including too little data, it becomes more illusive to which extend
our results are mediated by climate change or ambient meteorology. We thereby included the REFLEX
data to achieve a wider range of conditions.

Reviewer Point P 0.10 — l 385: do all models have similar inversion strengths in the reference
period?

Reply: We thank the reviewer for bringing more attention to this comparison. The models within
each subset do not have exactly the same strength, but both model groups show no overlap (weak-
AA models 7.55–10.62K, and strong-AA models 5.75–6.91K during DJFM on average). Thereby,
the subsets are clearly distinguishable, and the MOSAiC inversion average of 8.49K lies in the range of
CMIP6/w models. We added this important comment in L459 ff, and further elaborate on the statistical
representatives of the comparison, primarily during the season of highest interest which is DJFM.

Reviewer Point P 0.11 — l 407: what is the time frame covered by the Kahl (1990) study? Do
we expect it to be representative of 2020 conditions?

Reply: Agreed, the mentioned study should not be used in this argumentation here, especially since we
expect the inversion strength to decrease with time, which would explain stronger inversions observed
in the study of 1990. We drop the reference and adapted the text accordingly.

Reviewer Point P 0.12 — l 487: what significance level? How did you do the bootstrap analysis?

Reply: We now explain the bootstrap analysis more clearly in Section 2.5

Reviewer Point P 0.13 — Fig. 10 and related analysis: This shows data year-round, is there
a relevant seasonal cycle?

Reply: There are mild seasonal variations, however the two-state feature is evident throughout the
year. A cloudless atmosphere is thereby in approximate RAE, and cloudiness adds a heat source to
the boundary layer. This features confirms the results of Figure 2 of the manuscript, and is further in
line with previous findings (e.g., Pithan et al., 2014). An explicit evaluation of the seasonality was not
pursued here, as this plot is mostly an outlook and frame to the introducing Figure 2 (GCM results also
confirmed by LES simulations).

Reviewer Point P 0.14 — l. 564: Cronin and Jansen (2016) would be a good reference here.

Reply: Added here, and also in L602.
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Reviewer Point P 0.15 — l. 585–590: I think this is an important result deserving a stronger
emphasis in the paper, since entrainment has not received a lot of attention in this context so far.

Reply: The reviewer is right that this is a very interesting result. However, the results are meant to give
a final view and supplement to the introducing Figure 2 of the manuscript, rather than following the
model-to-OBS/reanalysis framework as the other sections. Therefore, we do not want to overemphasise
the point here. However, the implication is clear: entrainment warming due to the presence of clouds is
a considerably large heat source for the surface, and the presence of clouds might therefore reduce the
change in lapse rate in the lower boundary layer (as already suggested from climate models in Fig. 2).
This is an important result for understanding the LRF, and leaves room for deeper studies, not only due
to the under-representation of the role of clouds when studying the LRF. We motivate the importance
of clear vs. cloudy states in the discussion, but do not further dig into the results here, since this point
deserves a dedicated study on its own and would inflate our study at the moment, (rather, dedicated
studies are underway).

Reviewer Point P 0.16 — l. 592 “we compile a sizeable amount of observations” Here and
elsewhere in the paper: There is nothing to be said against impressing the reader with the large
array of observations you bring to the task in addition to CMIP and LES data, but in my view this
works better if you leave being impressed to the reader.

Reply: Changed in ”We have presented data from several Arctic-based observations and reanalyses in
conjunction with co-located CMIP6 model simulations to constrain various processes that mediate both
Arctic amplification and the Arctic LRF.” Also, the abstract is adapted according to the suggestion.

Reviewer Point P 0.17 — l. 687: I think a crucial point here is that CMIP6/s models generate
less warming for a given amount of sea-ice retreat. If this is correct, it should be stated more
explicitly.

Reply: It is actually the opposite: Weak-AA models have a stronger present-day inversion (over both
sea ice and open ocean), and when transforming from sea ice to open ocean, the expected warming of
the lower boundary layer is less compared to CMIP6/s. We now state this more clearly in point 1 of the
conclusions.
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