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Abstract. The influence of individual meteorological factors on different airborne pollutants has been massively conducted. 10 

However, few studies have considered the effect of temporal scales on the extracted pollutant-meteorology association. Based 

on Convergent Cross Mapping (CCM), we compared the influence of major meteorological factors on PM2.5, PM10 and O3 

concentrations in 2020 at the 3h and 24h scale respectively. In terms of the extracted dominant meteorological factor, the 

consistence between the analysis at 3h and 24h scale was relatively low, suggesting a large difference even from a qualitative 

perspective. In terms of the mean ρ value, the effect of temporal scale on PM (PM2.5 and PM10)-Meteorology association was 15 

consistent, yet largely different from the temporal-scale effect on O3. Temperature was the most important meteorological 

factor for PM2.5, PM10 and O3 across China at both 3h and 24 scale. For PM2.5 and PM10, the extracted PM-temperature 

association at the 24h scale was stronger than that at the 3h scale. Meanwhile, for summer O3, due to strong reactions between 

precursors, the extracted O3-temperature association at the 3h scale was much stronger. Due to the discrete distribution, the 

extracted association between all pollutants and precipitation was much weaker at the 3h scale. Similarly, the extracted PM-20 

wind association was notably weaker at the 3h scale. Due to precursor transport, summertime O3-wind association was stronger 

at the 3h scale. For atmospheric pressure, the pollutant-pressure association was weaker at the 3h scale except for summer, 

when interactions between atmospheric pressure and other meteorological factors were strong. From the spatial perspective, 

pollutant-meteorology association at 3h and 24h was more consistent in those heavily polluted regions. This research suggested 

that temporal scales should be carefully considered when extracting natural and anthropogenic drivers for airborne pollution. 25 

1 Introduction 

Since 2013, PM2.5 induced haze events increased dramatically across China (Chen et al., 2020a; Wang et al., 2021a). To address 

this issue, a series of emission-cut policies were released and strictly implemented, leading to significantly reduced PM2.5 

concentrations at the national scale (Wang et al., 2021b; Wang et al., 2022; Xiao et al., 2020). Conversely, with the 

improvement of PM2.5 pollution, a soaring ground ozone level was observed since 2013, making composite airborne pollution 30 
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a rising challenge (Gong et al., 2017; Zheng et al., 2018). Against this background, a comprehensive understanding of their 

characteristics and driving factors is key for effectively predicting and managing composite airborne pollutants (Chen et al., 

2018, 2019a, 2019c, 2020a). 

 

The major influential factors for airborne pollutants are human factors, which closely relates to their compositions and 35 

formation (Cheng et al., 2017; Zhan et al., 2017), and meteorological factors, which closely relates to their dispersion (Chen 

et al., 2020; Guo et al., 2020; Zhang et al., 2020). Given the strong negative effects of airborne pollution on public health 

(Kelly et al., 2015; Gao et al., 2017; Yin et al., 2020) and crop yields (Zhou et al., 2018; Xu et al., 2021), massive studies have 

been conducted on the human and meteorological attribution of composite airborne pollution. For meteorological influencing 

factors, Yang et al. (2021) studied 284 major cities in China based on daily scales and found that PM2.5 was mainly affected 40 

by wind, temperature and rainfall, while O3 was mainly affected by temperature, relative humidity and sunshine duration. 

Wang et al. (2018) established 12 joint regression models and analyzed that the leading meteorological factors of PM2.5 

pollution in Zhejiang were temperature and wind speed based on the hour-scale data. For emission influencing factors, Wang 

et al. (2018) found that the emission influencing factor of PM2.5 pollution in Zhejiang was NO2 based on the analysis of hour-

scale data. Zhai et al. (2019) estimated the correlation between PM2.5 concentration and meteorological factors at the 10-day 45 

scale,found that the variation trend of PM2.5 and SO2, NO2 and CO was consistent , also SO2 emission-control was the main 

driving factor for PM2.5 variations. Despite massive studies conducted, notable inconsistence of dominant meteorological and 

anthropogenic drivers for airborne pollutants was observed between findings from previous studies. In addition to the variation 

of seasons and geographical locations, the temporal resolution of data sources can be another major reason for the distinct 

outputs. However, the influence of temporal scales in the attribution of airborne pollution has rarely been investigated.   50 

 

In recent years, the research on pollutant-meteorology has been massively conducted since 2013 (Chen et al., 2020), yet some 

gaps remained.  Due to the lack of high temporal-resolution data, previous studies were mainly conducted at the daily scale 

and many scholars may believe that the application of high-temporal-resolution data leads to a better extraction of pollutant-

meteorology association. To fill this gap, we employed the data of major airborne pollutants, including PM2.5, PM10 and O3, 55 

meteorological factors and some precursors across China with a temporal resolution of 3h and 24h respectively. By comparing 

the major drivers for airborne pollutants extracted using data sources with different temporal resolution, the role of temporal 

scales in the attribution of composite airborne pollution can be comprehensively understood. This research aims for an 

improved understanding of the mechanisms how different factors may affect airborne pollutants under various temporal scales 

and sheds useful light on a better management of composite airborne pollution through more effective emission-cut. 60 
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2 Methodology 

2.1 Data sources 

Per-3h meteorological data across China for January- December 2020 were obtained from the China Meteorological 

Administration. The meteorological variables used in this study included temperature, precipitation, wind direction, wind speed 

and atmospheric pressure, which were closely related to PM2.5, PM10 (Chen et al., 2020a) and O3 concentrations (Chen et al., 65 

2020b). For cities with more than one observation station, the average of records from multiple stations was employed. For a 

multi-scale comparison, the 24h meteorological data were produced by conducting average operation on the 3h meteorological 

data. The previous studies have proved that pollutant-meteorology association presented notable seasonal variations and thus 

if CCM has been conducted based a whole year, the p value was not significant at many cases and thus the comparison cannot 

be conducted. Therefore, in this research, we considered the experiments based on seasonal data respectively. For analyzing 70 

seasonal variations of pollutant-meteorology association, December, January, February were set as winter, March, April, May 

as Spring, June, July, August as Summer, September, October, November as Autumn.  

 

Hourly concentration data of PM2.5, PM10 and O3 during the same period were obtained from China National Environmental 

Monitoring Center, CNEMC. The meteorological data were matched according to cities and air pollutant stations, and the 75 

nearest station corresponding to each air pollution monitoring station was selected as its surrounding meteorological conditions. 

A total of 101 cities were successfully matched. For cities with more than one observation station, the average of records from 

multiple stations was employed. To match the temporal scale of meteorological data, the per-3h and per-24h pollutant data 

were produced by conducting average operation on the hourly concentration data. 

2.2 Advanced Causation Model 80 

Since 2013, when PM2.5 pollution was observed across China, research on airborne pollution has been massively conducted. 

Amongst a diversity of topics, research on the meteorological influences on major airborne pollutants (e.g., PM2.5 and O3) has 

received growing emphasis. However, the major challenge for extracting and comparing the influence of individual 

meteorological factors lies in the complicated inner-interactions between multiple meteorological factors, which cause large 

uncertainties when applying traditional correlation analysis (Chen et al., 2020a). To address this issue, we employed an 85 

advanced causation model, Convergent Cross Mapping (CCM), to quantify the influence of each meteorological factor on 

PM2.5, PM10 and O3. By removing the influence of disturbing factors, CCM (Sugihara et al., 2012) is capable of extracting 

reliable coupling between two variables in complicated ecosystems. CCM calculates the causal influence of the variable A on 

the target variable B as the ρ value, ranging from 0 to 1. Like the correlation coefficient, the ρ value can be used for comparing 

the influencing between multiple variables on the target variable.  90 
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Thanks to its advantage in effectively extracting the asymmetric, bidirectional association between two variables and 

identifying mirage correlation in complicated ecosystems with a diversity of variables, we have massively employed CCM to 

evaluate the influence of multiple meteorological factors on PM2.5 (Chen et al., 2017, 2018), O3 (Cheng et al., 2019; Chen et 

al., 2020b) and NPP (Gao et al., 2022) and achieved reliable outputs. Based on a multi-model comparison experiment, our 95 

recent research (Chen et al., 2022) proved that CCM was the most suitable model for causation inference in complicated 

atmospheric environment. CCM is specifically designed to deal with the nonlinear relationship between two variables and is 

fully suitable for the nonlinear relationship between atmospheric factors. Compared with other mainstream statistical models, 

CCM was advantageous of identifying unique pollutant-meteorology association in local areas while maintaining general 

characteristics of pollutant-meteorology association across China. Furthermore, CCM generated meteorology-pollutant 100 

association were highly consistent with prior-knowledge. In this regard, for this research, we also employed CCM to quantify 

and compare the influence of temperature, precipitation, wind speed, wind direction and atmospheric pressure on PM2.5, PM10 

and O3 concentrations. CCM automatically considers all possible interaction forms and lag effects between the time series of 

two variables, which effectively reduces the influence of interference and avoids the influence of other factors. CCM is highly 

automatic to remove the uncertainty of manual setting and only the setting of several parameters is required: E (number of 105 

dimensions), τ (time lag) and b (number of nearest neighbors). For this research, τ, E, and b were set as 2 days, 3 and 4 

according to previous studies (Chen et al., 2018; 2020b). 

 

Based on the rarely employed 3h meteorological data sources, we compared the effects of temporal scales on the extracted 

pollutant-meteorology causation. Acknowledged, due to the data limitation at the 3h scale, which did not include humidity and 110 

sunshine duration, we could simply consider a limited number of meteorological factors (Temperature, Precipitation, Wind 

Speed, Wind Direction and Atmospheric Pressure), which was less than our previous studies based on meteorological data at 

the 24h scale, while some meteorological factors (e.g., humility and sunshine duration) were missed in this research. However, 

since we compared the same set of these major meteorological factors at both 3h and 24h scale, the calculated consistence and 

difference could effectively reveal the potential effects of different temporal scales on the quantitative (the detailed ρ value) 115 

and qualitative (the dominant meteorological factor) findings of pollutant-meteorology association. Despite the limitation of 

number of meteorological factors, it caused limited influence on the temporal effects on pollutant-meteorology association. 

This is because CCM simply considers the causality between the target variable and one influencing variable, and removes the 

influence from other variables (Sugihara et al., 2012; Chen et al., 2020). Another limitation of this data was that this data set 

simply included one year’s data and thus the inter-annual variation of temporal effects on pollutant-meteorology association 120 

could not be revealed. For this research, we majorly revealed the existence of strong temporal effects on pollutant-meteorology 

association, which can be fully supported by the one-year data with four seasons (four complete time series with more than 90 

records (24h scale) and 720 records (3h scale)Meanwhile, the temporal variation of temporal effects on pollutant-meteorology 

association and its influencing factors should be further investigated in future studies, when the long time series data sets of 

3h meteorological data become available. 125 
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3 Results 

3.1 The comparison of dominant meteorological factors for PM2.5, PM10 and O3 across China at 3h and 24h scale 

Based on CCM, we calculated the dominant meteorological factors for seasonal O3 (Table 1), PM2.5 (Table 2) and PM10 (Table 

3)concentrations at the 3h and 24h respectively. By comparing the extracted pollutant-meteorology association, we calculated 130 

the number of cities with the same meteorological factor at different temporal scales (Table 4). For all three airborne pollutants, 

the dominant meteorological factor at the 3h and 24h scale was the same in only around a third of cities, indicating the temporal 

scale played a large role in the analysis of pollutant-meteorology association. From the seasonal scale, the consistence between 

dominant meteorological factors extracted at 3h and 24h in autumn and winter was higher than that in spring and summer. 

This phenomenon indirectly suggested that meteorological influences on airborne pollutants were stronger in autumn and 135 

winter, and thus the role of dominant meteorological factor was highlighted.  

 

Table 1 inserted here. 

 

Table 2 inserted here. 140 

 

Table 3 inserted here. 

 

At the 3h scale, for O3, the number of cities with precipitation as the dominant influencing factor was largest in winter, while 

the number of cities with temperature was largest in spring, summer and autumn; For PM2.5 and PM10, the number of cities 145 

with temperature was largest in all seasons. As a comparison, at the 24h scale, for O3, PM2.5 and PM10, the number of cities 

with temperature as the dominant influencing factor was largest in spring, which was consistent with previous studies (Wang 

et al., 2018; Yang et al., 2021), summer and autumn while the number of cities with precipitation was largest in winter.  

 

Table 4 inserted here. 150 

 

For both the 3h and 24h scale, we could see temperature and precipitation exerted strong influences on O3, PM2.5 and PM10 in 

the majority of cities. However, the consistence of dominant factors between two temporal scales remained less than 50%. 

This may be attributed to the fact that the extraction of dominant meteorological factor amongst several factors was relatively 

qualitative and thus some subtle differences between different meteorological factors could not be revealed. Therefore, we 155 
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further presented the detailed comparison of the influence of individual meteorological factors on O3, PM2.5 and PM10 at 3h 

and 24h respectively.  

3.2 The comparison of quantified influence of different meteorological factors on PM2.5, PM10 and O3 across China at 

3h and 24h scale 

The detailed distribution of influence of individual meteorological factors on O3, PM2.5 and PM10 concentrations are presented 160 

in Figure 1. Generally, meteorological influences on airborne pollutants presented a consistent trend between the 3h and 24h 

scale, characterized with a generally similar violin shape. According to Figure 1, the violin shape and range of 3h pollutant-

meteorology was much sharper than the 24h pollutant-meteorology, indicating the 3h temporal scale was more sensitive to 

reveal the variation of pollutant-meteorology interactions. As shown in Table 5, similar to the number of dominant 

meteorological factors, the mean of calculated ρ value across China also proved that temperature exerted a much stronger 165 

influence on PM2.5, PM10 and O3 than other factors. Furthermore, according to the violin shape of different pollutants, we found 

that the pattern of PM2.5-Meteorology and PM10-Meteorology was generally consistent and largely different from the pattern 

of O3-Meteorology, indicating that meteorological influences on particulate matters and gaseous pollutants were different. The 

major difference of pollutant-meteorology interactions at 3h and 24h was explained as follows: 

 170 

Table 5 inserted here. 

 

Figure 1 inserted here. 

 

For all three airborne pollutants, temperature exerted a strongest influence across China in all seasons in terms of the largest 175 

mean ρ. For PM2.5 and PM10, the calculated influence of temperature at 24h scale was consistently larger than that at the 3h 

scale. This may be attributed to the fact that the secondary reactions of the precursors of PM were relatively mild (Chen et al, 

2016, 2020) and thus the temperature variation within 24h exerted a stronger influence than 3h temperature variation. 

Meanwhile, the influence of temperature on O3 presented a notable seasonal pattern. For the relatively cold season winter and 

spring, when O3 concentrations were relatively low, the influence of temperature at 24h scale was larger than that at the 3h 180 

scale. For summer, when O3 concentrations were the highest, the influence of temperature at 3h scale was much larger than 

that at the 24h scale. This is mainly attributed to the fact that the high temperature in summer was the major trigger for quick 

reactions between precursors and high O3 concentrations. Therefore, short-term variations of temperature could strongly 

influence O3 concentrations in summer (Cheng et al., 2018, 2019). 

 185 

For precipitation, since the distribution of precipitation in a day’s time is not unified, and there may be no precipitation in 

many 3h slots, the mean ρ of precipitation across China at the 3h scale was weaker than that at the 24h scale. As a comparison, 

at the 24 scale, the occurrence of precipitation was significantly enhanced and thus the influence of precipitation on airborne 
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pollutants was much stronger. Across China, the precipitation intensity showed obvious seasonal variations, and most regions 

may have the maximum value in summer and minimum value in winter. Accordingly, the calculated ρ of precipitation on 190 

PM2.5, PM10 and O3 at 24h scale was remarkably larger than that at 3h scale.  

 

Previous studies (Chen et al., 2017, 2018, 2020) proved that wind played a notable influence on PM. Similar to precipitation, 

the daily distribution of wind is not unified, and there may be calm wind conditions in many 3h slots. Therefore, the mean ρ 

of wind direction and wind speed on PM2.5 and PM10 at 24h scale was notably larger than that at the 3h scale. Wind-O3 195 

interactions presented notable seasonal patterns. In the less-polluted Spring and Winter, the mean ρ of wind direction and wind 

speed at the 24h scale was larger than that at the 3h scale. In summer, when O3 concentrations were relatively high, the mean 

ρ of wind direction and wind speed at the 3h scale was larger.  

 

Atmospheric pressure mainly affects the transport and accumulation of pollutants by indirectly influencing other 200 

meteorological factors (e.g. wind and precipitation). Therefore, large uncertainties existed in the extracted pressure-pollutant 

causation. Generally, for PM2.5, PM10 and O3, the mean ρ of atmospheric pressure across China at the 3h scale was weaker 

than that at the 24h scale, except for summer, when the interactions between atmospheric pressure and other meteorological 

factors were strong.   

3.3 The spatial patterns of dominant meteorological factors for PM2.5, PM10 and O3 across China at 3h and 24h scale 205 

As shown in Figure 2, 3, 4, the influence of meteorological factors on airborne pollutants has obvious seasonal variations and 

presented some regional similarity. For PM2.5 (Figure 3) and PM10(Figure 4), the dominant meteorological factor for Northern 

China was mainly wind, especially the heavily polluted winter, while the dominant meteorological factor for Yangtze River 

Delta and was mainly precipitation at both 3h and 24h scale. The dominant meteorological factor in Shandong Peninsula in 

spring and autumn, southern China in summer, northern and coastal areas in autumn, and northeast China in winter are also 210 

consistent at different temporal scales. For O3 (Figure 2), especially the heavily polluted summer, temperature presented a 

prevailing role across the nation and was the dominant role for most cities. This output was consistent with our previous studies 

(Chen et al., 2018, 2019a), suggesting the general national trend of Pollutant-Meteorology association varied limitedly across 

temporal scales of research data, especially in those heavily polluted regions. Meanwhile, for those regions, where the airborne 

pollution was not severe and homogeneous, the temporal issues of meteorological influences on PM was notable and thus the 215 

dominant meteorological factor in these regions presented notable differences at 3h and 24h scale.  

 

Generally, the distribution of the dominant elements at the 24h scale was more heterogeneous than that at the 3h scale. Regions 

with higher PM (PM2.5 and PM10) concentrations received more influences from temperature at the 3h scale than that at the 

24h scale.  220 
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Figure 2 inserted here. 

 

Figure 3 inserted here. 

 225 

Figure 4 inserted here. 

4 Discussion 

Although previous studies (Tai et al., 2010; Hu et al., 2021b; Yousefian et al., 2021; Zhong et al., 2021) pointed out the 

difference of pollutant-meteorology association at different temporal scales, few studies have actually conducted the 

quantitative analysis due to the lack of data. This research suggested that the temporal effects on pollutant-meteorology 230 

association was significantly strong. While the obvious quantitative difference of the influence of individual factors on PM2.5, 

PM10 and O3 (as shown in Figure 1), we found a very low consistence between extracted dominant meteorological factors (the 

consistence was less than 50% for all pollutants), indicating strong temporal effects even from a qualitative perspective. Based 

on the comparison of extracted pollutant-meteorology association at the 3h and 24h, there were no fixed spatiotemporal 

patterns of pollutant-meteorology association across temporal scales. However, we got several interesting and useful findings 235 

as follows. Firstly, we found the temporal effects of meteorological influences on different PM (e.g., PM2.5 and PM) were 

similar, yet notably different from that on gaseous pollutants (e.g., O3). Secondly, there were notable difference of the temporal 

effects between different meteorological factors. The variation of pollutant-meteorology association for those factors with 

continuous observation record (e.g., Temperature) was notably different from those factors with discrete observation record 

(e.g. Precipitation) at 3h and 24h scale. Thirdly, the effects of temporal scales on pollutant-meteorology association varied 240 

significantly across seasons, characterized with notable difference between heavily polluted and less polluted seasons (e.g. 

The heavily polluted season for O3 and PM was winter and summer respectively) . Despite a complicate pattern, we found 

that the heavier the pollution, the stronger pollutant-meteorology association was. Consequently, in the heavily polluted season, 

the short-term (e.g., 3h) variation of specific meteorological factors (e.g. Temperature) exerted a stronger influence on PM and 

O3 than the daily variation. As a comparison, in the less polluted season, the daily accumulation of specific meteorological 245 

factors exerted a stronger influence on airborne pollutants than short-term (e.g., 3h) accumulation. While the general trend of 

pollutant-meteorology association was consistent with previous studies, the general ρ value was slightly smaller for this 

research. The underlying reason may be the reduced PM2.5 concentration in 2020 caused by the emission-cut during COVID-

19. As explained in our previous studies (Chen et al., 2018), the higher PM2.5 concentration, the stronger meteorological 

influence on PM2.5 concentrations. Similar to our previous studies (Chen et al., 2017, 2018, 2022), we conducted the CCM 250 

analysis at the seasonal scale. This is because the large seasonal variation of pollutant-meteorology association may cause an 

insignificant output of CCM for an entire-year analysis, and cause large uncertainties.  
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This research suggested that the temporal scale played a complicated role and higher temporal-resolution did not guarantee a 

stronger pollutant-meteorology association. For instance, for hot seasons (e.g., summertime O3), the reaction between O3 255 

precursors was strong and quick, and thus the 3h resolution could better feature the influence of temperature on O3 

concentrations. Meanwhile, the secondary reaction for PM2.5 was relatively slow (Chen et al. 2016), and the daily variation of 

temperature and PM2.5 concentrations presented a stronger association than the hourly variation of temperature and PM2.5 

concentrations. Similarly, due to the discrete distribution, the daily influence of daily total precipitation on daily PM2.5 

concentrations was also notably stronger than the influence of 3h precipitation on 3h PM2.5 concentrations. Furthermore, this 260 

type of uncertainty was not predicable across regions. Given the complicated effects of temporal scales on pollutant-

meteorology association, scholars should properly choose the temporal-resolution of research data according to the aims, study 

sites, pollutant types and seasons. With the growing availability of long-term meteorological and pollutant data, multi-scale, 

instead of high-temporal-resolution, research is recommended to comprehensively understand the short- and long-term 

meteorological influences on different airborne pollutants.  265 

 

For future research, the temporal effects of influence of meteorological factors (e.g., Humidity, Boundary layer height) on 

airborne pollutants should also be explored with the availability of new data sources. On the other, this research proved the 

important role of temporal scales in quantifying the influence of meteorological factors on airborne pollutants. Similarly, when 

inferring the association between precursors (NO2, VOCs) and airborne pollutants, the temporal scales, which was rarely 270 

considered in previous studies, should also be comprehensively taken into account. The reaction rate between different 

precursors and the target pollutants in different regions and seasons could be better understood through multi-scale causation 

analysis. CCM is an ideal tool for quantifying the influence of individual meteorological factors on PM2.5 concentrations, as it 

can effectively remove the influence of other meteorological factors. Therefore, this research revealed a strong temporal effect 

on pollutant-meteorology association, from the perspective of the association of individual meteorological factors. However, 275 

admittedly, CCM is limited in establishing the overall effects of multiple meteorological factors on PM2.5 concentrations. 

Instead, other models, such as GAM (Generalized Additive Model), which work limited in extracting the association between 

PM2.5 and individual meteorological factors, are advantageous in extracting the overall influence of multiple meteorological 

factors on airborne pollutants (Gong et al., 2017; Zheng et al., 2018; Hu et al., 2021a). When such 3h meteorological data set 

become more easily available and includes a complete set of meteorological factors, we could also employ GAMs or CTMs 280 

to investigate the temporal effects on the combined effects of meteorological factors on airborne pollutants. 

5 Conclusion 

We employed CCM to compare the influence of major meteorological factors (Temperature, Precipitation, Wind Speed, Wind 

Direction and Atmospheric Pressure) on PM2.5, PM10 and O3 concentrations in 101 cities across China at the 3h and 24h scale. 
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The result revealed a strong effect of temporal scale on the pollutant-meteorology association from different perspective. In 285 

terms of the extracted dominant meteorological factor, the consistence between the analysis at 3h and 24h scale was relatively 

low (the consistence for all pollutants was less than 50%), suggesting a large difference even from a qualitative perspective. 

In terms of the mean ρ value, the effect of temporal scale on the influence of individual meteorological factors on Particulate 

Matter (PM2.5 and PM10) was consistent, which was largely different from the temporal-scale effect on gaseous pollutants. 

Temperature was the most important meteorological factor for PM2.5, PM10 and O3 across China at both 3h and 24 scale. For 290 

PM2.5 and PM10, the secondary reaction of which was relatively slow, the extracted PM-temperature association at the 24h 

scale was stronger than that at the 3h scale. Meanwhile, for summer O3, due to the quick and strong reactions between 

precursors, the extracted O3-temperature association at the 3h scale was much stronger than that at the 24h scale. Due to the 

discrete distribution, the extracted association between all pollutants and precipitation was much weaker at the 3h scale. 

Similarly, the extracted PM-wind association was notably weaker at the 3h scale. Due to the transport of precursors, 295 

summertime O3-wind association was stronger at the 3h scale. For atmospheric pressure, the pollutant-pressure association 

was weaker at the 3h scale except for summer, when the interactions between atmospheric pressure and other meteorological 

factors were strong. From the spatial perspective, the influence of meteorological factors on airborne pollutants has obvious 

seasonal variations and presented some regional similarity, pollutant-meteorology association at 3h and 24h was more 

consistent at those heavily polluted regions. This research provides a comprehensive understanding for the effect of temporal 300 

scale on pollutant-meteorology association and sheds useful light on better extracting the natural and anthropogenic drivers 

for airborne pollution. 
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Figure 1: The violin chart of the ρ value of individual meteorological factors on PM2.5, PM10 and O3 across China at 3h and 24h scale. 
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Figure 2: The dominant meteorological factor for O3 concentrations across China at 3h and 24h scale. 
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Figure 3: The dominant meteorological factor for PM2.5 concentrations across China at 3h and 24h scale. 
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Figure 4: The dominant meteorological factor for PM10 concentrations across China at 3h and 24h scale. 385 
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Table 1: The number of cities with this meteorological factor as the dominant meteorological factor for O3. 386 

O3 
3h 24h 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Temperature 64 78 75 42 59 38 58 33 

Precipitation 15 9 8 43 21 18 15 47 

Atmospheric 

pressure 
7 5 4 3 8 8 4 3 

Wind Direction 6 4 5 1 8 23 14 7 

Wind Speed 9 5 9 12 5 14 10 11 
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Table 2: The number of cities with this meteorological factor as the dominant meteorological factor for PM2.5. 

PM2.5 
3h 24h 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Temperature 62 60 79 59 44 43 61 30 

Precipitation 7 9 8 19 22 19 14 35 

Atmospheric 

pressure 
12 8 4 2 3 8 6 5 

Wind Direction 12 12 8 6 22 16 13 13 

Wind Speed 8 12 2 15 10 15 7 18 
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Table 3: The number of cities with this meteorological factor as the dominant meteorological factor for PM10. 390 

PM10 
3h 24h 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Temperature 65 53 73 56 45 34 55 31 

Precipitation 19 11 13 24 20 34 20 36 

Atmospheric pressure 9 10 4 2 10 8 7 4 

Wind Direction 4 13 7 4 13 14 10 14 

Wind Speed 4 14 4 15 13 11 9 16 



20 

 

Table 4: The number of cities with the same dominant factor at both 3h and 24h scale. 

 spring summer autumn winter 

O3-meteorological elements 32 42 58 53 

PM2.5-meteorological elements 36 42 62 42 

PM10-meteorological elements 42 29 56 43 
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Table 5: The mean ρ of individual meteorological factors on PM2.5, PM10 and O3 across China. 

  Temperature Precipitation Atmospheric 

pressure 

Wind Direction Wind Speed 

  3h 24h 3h 24h 3h 24h 3h 24h 3h 24h 

O3 

Spring 0.213 0.283 0.050 0.140 0.058 0.070 0.028 0.048 0.030 0.042 

Summer 0.238 0.114 0.013 0.042 0.055 0.017 0.049 0.049 0.065 0.037 

Autumn 0.218 0.210 0.013 0.032 0.032 0.032 0.038 0.034 0.039 0.034 

Winter 0.133 0.198 0.100 0.191 0.058 0.035 0.045 0.058 0.052 0.062 

PM2.5 

Spring 0.095 0.128 0.027 0.059 0.030 0.034 0.018 0.048 0.015 0.030 

Summer 0.079 0.108 0.012 0.040 0.016 0.013 0.018 0.036 0.018 0.032 

Autumn 0.143 0.182 0.016 0.029 0.018 0.025 0.019 0.045 0.017 0.028 

Winter 0.120 0.140 0.045 0.090 0.020 0.035 0.027 0.044 0.045 0.064 

PM10 Spring 0.106 0.129 0.031 0.068 0.030 0.034 0.014 0.039 0.015 0.036 

Summer 0.081 0.125 0.012 0.049 0.022 0.016 0.019 0.030 0.016 0.028 

Autumn 0.158 0.220 0.016 0.041 0.022 0.045 0.021 0.040 0.021 0.041 

Winter 0.109 0.127 0.046 0.082 0.020 0.029 0.028 0.050 0.043 0.063 

 395 


