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Abstract. Clouds play a key role in Earth's energy budget and water cycle. Their response to global warming contributes the 

largest uncertainty to climate prediction. Here, by performing an empirical orthogonal function analysis on 42 years of 

reanalysis data of global cloud coverage, we extract clear trend and ENSO-associated modes. The trend mode translates 

spatially to a decreasing trend in cloud coverage over most continents and an increasing trend over the tropical and subtropical 

oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud coverage over land. Our results 10 

suggest potential stress on the terrestrial water cycle and changes in the energy partition between land and ocean, all associated 

with global warming. 

1 Introduction 

Clouds cover more than 60 % of the Earth’s surface. They play a critical role in the global water cycle (Bengtsson, 2010) and 

act as the primary energy gatekeepers for the climate system by reflecting incoming solar radiation and blocking outgoing 15 

terrestrial radiation (Stephens et al., 2012). Overall, clouds cool the surface at a rate of approximately 20 W m-2 (Stephens et 

al., 2012). 

One of the most pressing needs in climate prediction is to clarify whether and how global warming impacts clouds on a global 

scale and to delineate the mechanisms at play (Zelinka et al., 2020). A common practice for addressing this question consists 

of analyzing cloud feedbacks that can either amplify (positive feedback) or dampen (negative feedback) surface warming. 20 

However, estimating the overall cloud feedback is a challenging task since the net radiative effect depends on the type, 

geographical location, vertical extent, lifetime, and optical properties of clouds (Chen et al., 2000). So far, estimations of 

clouds' responses to the warming trend are inconclusive (Aerenson et al., 2022; Forster et al., 2021). To partly address this 

issue, we explore the influence of climate change on global cloud coverage, which is, of course, one of the most crucial cloud 

factors. 25 

Previous works that examined trends in cloud coverage under a warmer climate show substantial discrepancies among them 

(Gettelman and Sherwood, 2016; Ceppi et al., 2017; Zelinka et al., 2020). Even estimations for the same cloud type vary 

between studied periods, locations, datasets, and models (Zhou et al., 2016; Norris et al., 2016; Karlsson and Devasthale, 2018; 

Zelinka et al., 2017). Important factors leading to these discrepancies are related to data uncertainties due to measurement 
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errors in observations on the one hand (Chepfer et al., 2014), and the unsatisfactory representation of clouds in climate models 30 

on the other (Stevens et al., 2013). For example, surface observations suffer from non-uniform sampling and station migrations 

(Warren et al., 2007; Eastman et al., 2011), while satellite records suffer from changing view geometries and orbit drifts (Evan 

et al., 2007; Norris and Evan, 2015). While attempts are being made to correct some of these issues, the corrected products 

may remove actual cloud tendencies at a global scale (Norris and Evan, 2015; Norris et al., 2016). As for climate models, the 

representation of clouds on a coarse grid resolution is subordinate to the small-scale parameterization schemes employed, 35 

attempting to account for the full range of scales involved therein (Zelinka et al., 2016; Zelinka et al., 2020). 

Besides the uncertainties tied to observations and modeling, the sensitivity of clouds to temperature patterns (Zhou et al., 2016) 

and other large-scale climate drivers (Gulev et al., 2021) can also lead to discrepancies between estimations of cloud coverage 

trends over different periods and regions. One example is found in the El Niño-Southern Oscillation (ENSO), a dominant mode 

of climate variability with seasonal-to-interannual time scales, traditionally emerging over the Tropical Pacific Ocean (Neelin 40 

et al., 1998). Through the strong coupling between the Pacific Ocean and the atmosphere above, ENSO's impact goes beyond 

the Pacific (Taschetto et al., 2020) and modulates global temperatures and cloud features (Davey et al., 2014; Yang et al., 

2016). Thus, the ENSO signal often stands out as a major driver of variability in climate records, blurring the global-warming 

related trend, and even biasing its magnitude on decadal time scales (Compo and Sardeshmukh, 2010) due to the ENSO's low-

frequency variability (Hope et al., 2017). Similarly, other large-scale climate phenomena, such as the Atlantic Multi-decadal 45 

Oscillation and the Pacific Decadal Oscillation, are natural climate variability candidates that perturb global temperatures 

(Deser et al., 2010) and cloud coverage (Li et al., 2021). Therefore, they may introduce additional bias into global-warming 

related trends. 

To avoid these potential obstacles, we analyze modes of variability in global cloud coverage by performing an Empirical 

Orthogonal Function (EOF) decomposition on 42 years (1979–2020) of ERA5 data (Hersbach et al., 2020); see Sec. 2. To set 50 

the stage and to have a well-studied reference, we analyze the global Skin Temperature (ST) together with the Total Cloud 

Cover (TCC). ST, in ERA5, is the theoretical temperature of the Earth’s surface required to satisfy the surface energy balance, 

and TCC is the part of a grid box covered by clouds. 

2 Materials and Methods 

1.1 Dataset 55 

This study uses the 42 years (1979–2020) of monthly Atmospheric data from the European Centre for Medium-Range Weather 

Forecasts Reanalysis, Version 5 (ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, Hersbach et al., 

2020), with a horizontal resolution of 0.25 °. ERA5 has been validated as the most reliable reanalysis dataset for climate trend 

assessment (Gulev et al., 2021). The cloud cover in ERA5 is calculated using thermodynamic conditions that are optimally 

constrained by state-of-the-art observations, providing uniformly sampled, long-term data of high-quality estimates (Hersbach 60 

https://doi.org/10.5194/acp-2022-817
Preprint. Discussion started: 19 December 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

et al., 2019). In particular, the calculated TCC was shown to be in good agreement with the spatiotemporal characteristics of 

measured cloud coverages (Yao et al., 2020). 

1.2 Data Processing 

Apart from the calculation of the Oceanic Niño Index (ONI), the entire analysis is based on annual data and anomalies. The 

annual data is calculated as a simple average of monthly data for each calendar year. The annual anomaly is the deviation of 65 

the annual data from the mean over 1979–2020. For the ONI calculation, we used the monthly ST anomaly. It is calculated as 

the deviation of the monthly ST-value from the mean of each given month over 1979–2020. 

Near-Surface Relative Humidity (RHNS) is defined here as the Relative Humidity (RH) at 950 hPa over the ocean and at 50 

hPa above surface over land. This estimation is based on the RH-values at 23 pressure levels (200, 225, 250, 300, 350, 400, 

450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, and 1000 hPa). The oceanic and continental 70 

grid boxes are identified by a Land-Sea Mask (LSM, the fraction of land, as opposed to the ocean or inland waters, in a grid 

box) from ERA5. A grid box with an LSM-value ≤ 0.2 is considered oceanic, and its RHNS value is given as the RH at 950 

hPa. A grid box with a LSM-value larger than 0.2 is considered continental, and its RHNS value is calculated using the values 

at the adjacent pressure levels by a pressure-difference weighted linear interpolation. The pressure values at those layers are 

calculated by monthly surface pressure data from ERA5. 75 

1.3 Area and TCC Weighting 

Since the area of each 0.25 ° by 0.25 ° grid box, as used in this study, depends on latitude, we performed an area weighting for 

all spatial averages. The area of each grid box is calculated as the product of arc lengths at the corresponding latitude and 

longitude by regarding the Earth as an oblate spheroid with a radius of 6378.137 km at the equator and 6356.752 km at the 

poles. In addition, we performed a TCC weighting to account for the spatial dependence of cloud coverage when assessing 80 

cloud-related processes. The weights are given in Fig. 1c. 

1.4 EOF Analysis 

EOF analysis is a decomposition approach that is widely used in meteorology and oceanography (Lorenz, 1956; Preisendorfer 

and Mobley, 1988). It decomposes any given spatiotemporal field into a set of independent EOF modes in the spatial domain 

whose temporal variations are encoded by the corresponding Principal Components (PCs). With the proper interpretations, 85 

these independent modes can provide important clues about the physics and dynamics of the investigated system (Schnur et 

al., 1993; Dunkerton, 1993; Dror et al., 2021). More specifically, EOFs and PCs come in pairs and are ordered by the 

corresponding variance that is explained by each given mode. The number of EOF-PC pairs is determined by the temporal 

dimension of the input data (42 for the annual ST and TCC anomalies considered here).  

In this study, we used area-weighted data for the EOF analysis of annual ST and TCC anomalies to isolate the main drivers of 90 

global surface temperature and cloud coverage. The area weighting is required in order to lessen the contribution of smaller-
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size grid boxes (Baldwin et al., 2009). Once the EOF analysis is performed on the area-weighted ST and TCC data, the final 

EOF modes presented in the main text are rescaled by dividing them by the corresponding area weights. The underlying EOF 

analysis is performed using the Python library, eofs (Version 1.4.0, https://github.com/ajdawson/eofs, Dawson, 2016). 

1.5 ONI 95 

ONI is defined as the 3-month running mean of sea surface temperature anomaly over the Niño3.4 region (5° N–5° S and 170° 

W–120° W). It provides a common measure of the state of ENSO (Glantz and Ramirez, 2020). Large positive ONI-values 

indicate strong warm phases of ENSO (El Niño, the unusual increase in sea surface temperature over the central and Eastern 

tropical Pacific Ocean), whereas large negative ONI-values correspond to strong cold phases of ENSO (La Niña, the cold 

counterpart of El Niño). Here, to link EOF modes for ST and TCC with known physical processes, such as ENSO, we calculate 100 

the ONI as the area-weighted mean of monthly ST anomalies over the Niño3.4 region. 

1.6 Spearman's Correlation Coefficient (Spearman's ρ) 

Spearman's ρ is a nonparametric statistical measure of the strength of a monotonic relationship between two ranked variables. 

Spearman's ρ ranges between -1 and 1, while 0 implies an absence of correlation, and proximity to +/-1 ρ-values implies a 

stronger monotonic relationship. In this study, we calculate Spearman's ρ between different variables to measure their 105 

correlation. Since we are after correlations of interest in both negative and positive directions, we performed a two-tailed t-test 

with a 95 % confidence interval (p-values < 0.05) to assess the statistical significance. For the computation of Spearman's ρ 

and p-values, we used the Python library, SciPy (Version 1.5.2, https://scipy.org/). 

3 Results 

Figures 1a and 1c show the geographical distributions of annual mean ST and TCC data, averaged over the period 1979–2020. 110 

It reveals the nearly uniform temperature gradient towards the poles and the expected patterns of high cloud coverage over the 

tropics and marine mid-latitudes and the extremely low cloud coverage over the deserts. Figures 1b and 1d plot the area-

weighted global mean of annual ST and TCC data; see Sec. 2. The observed increasing ST trend represents clear evidence of 

global warming (Eyring et al., 2021). In contrast, the evident lack of a consistent trend in TCC suggests that perturbations 

other than a warming climate might dominate the TCC variability. 115 

To identify and isolate the main underlying drivers in the observed variations, we perform an area-weighted EOF analysis on 

annual ST and TCC anomalies; see Sec. 2. The results reveal Spatio-temporal fields sufficient for identifying modes of 

variability driven by distinct physical processes. For each analyzed variable, these results exhibit spatial patterns captured by 

EOF modes, whose temporal variations are encoded by the corresponding PC (Lorenz, 1956). By analyzing the PC's time-

variability, we are able to find correspondences between the EOF modes and known climate phenomena (Preisendorfer and 120 

Mobley, 1988). Notably, unlike EOF modes, physical processes are not necessarily orthogonal, and variations caused by one 
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physical process could be split into different EOF modes, a phenomenon known as signal leakage (Richman, 1986). However, 

this issue is negligible for the dataset at hand, in particular for the dominant EOF modes of ST and TCC discussed below; see 

fig. S1 and Supplementary Text 1. 

To set the stage, we first present our findings for the global surface temperature. Figure 2 shows the two dominant EOF modes 125 

of the annual ST anomaly along with their PCs. Recall that a given PC encodes the temporal variability captured by the 

corresponding EOF mode, whose spatial features specify, in turn, the magnitude and direction of the PC over each region. For 

the dataset at hand, the leading EOF mode of ST (EOF1, Fig. 2a) accounts for 28.3 % of the total variance and distills a 

consistent warming trend (PC1, Fig. 2b) over nearly all continents and most oceans (red shades in Fig. 2a). Its PC evolves 

almost synchronously with the annual global mean ST (black curve in Fig. 2b). 130 

This leading EOF mode reveals some regional features of the recent warming climate, such as the most significant warming 

being over the Arctics (Serreze and Barry, 2011), the nearly twice larger warming rate over land than over the ocean (Byrne 

and O’Gorman, 2018), and the feeble warming or even cooling signal over parts of the North Atlantic Ocean, the southeast 

Pacific Ocean, and the Southern Ocean (Keil et al., 2020; Heede and Fedorov, 2021; Bintanja et al., 2013). These features 

highlight that regional feedbacks can modify the warming pattern and lead to non-uniform warming. 135 

The second component of ST variations (EOF2, Fig. 2c), accounting here for 11.1 % of the total variance, manifests itself as 

an ENSO-associated mode. This feature becomes strikingly apparent when comparing its PC (PC2, Fig. 2d) with the ONI, a 

common measure of ENSO (Glantz and Ramirez, 2020); see the black curve in Fig. 2d and Sec. 2. An episode of large positive 

values in PC2 coincides with large positive ONI-values, indicative of El Niño events. Analogously, episodes of large negative 

values for this PC2 coincide with large negative ONI-values, corresponding to La Niña events (Neelin et al., 1998). 140 

As expected, EOF2 for ST shows strong positive anomalies over the central and Eastern tropical Pacific and negative anomalies 

over the Western Pacific. Furthermore, beyond the Pacific Ocean, ST over areas with strong negative (e.g., North America and 

the adjacent North Atlantic Ocean) and positive (e.g., South Africa, parts of Asia, Australia, and a part of the Southern Ocean) 

anomalies also closely correlate to ENSO events. These findings are consistent with previous studies (Deser et al., 2010; Davey 

et al., 2014) and highlight ENSO as an essential driver of the global climate system (Taschetto et al., 2020).  145 

Overall, the EOF analysis for ST demonstrates that the global warming trend and ENSO are the dominant factors in surface 

temperature variability over the last 42 years. We turn next to our EOF results of global cloud coverage. Figure 3 presents the 

two dominant EOF modes and the corresponding PCs of the annual TCC anomaly. The first thing to note is that similarly to 

ST findings, a trend and an ENSO-associated mode are identified but in opposite order. The EOF1 for TCC (Fig. 3a) shows 

an ENSO-associated behavior with its PC (Fig. 3b), evolving almost in perfect synchrony with the ONI. While EOF2 (Fig. 3c) 150 

demonstrates a clear trend with its PC (Fig. 3d), which strongly correlates with the annual global mean ST (black curve in Fig. 

3d; Spearman's ρ = 0.86, p-value = 1.65×10-13, two-tailed t-test, see Sec. 2).  

This EOF1 for TCC shows that the global cloud coverage is greatly influenced by ENSO and accounts for 21.8 % of the total 

variance. It suggests that maritime Southeast Asia and the Western Pacific are anti-correlated with the PC and hence the ONI 

(blue shades in Fig. 3a). Consequently, the cloud coverage in regions of positive anomalies over the central to eastern Pacific 155 
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(red shades in Fig. 3a) will decrease during El Niño years and increase during La Niña years, and vice versa. Beyond the 

Pacific Ocean, the analysis reveals strong negative correlations over the tropical Atlantic Ocean and positive correlations over 

western Asia, part of South Africa, the Southern United States, and the adjacent North Pacific Ocean. The patterns revealed 

here are consistent with satellite observations for the ENSO forced precipitation tendency (Davey et al., 2014). Moreover, they 

agree well with previous studies showing similar ENSO-associated modes in cloud radiative effects and cloud coverage by 160 

simulations and corrected satellite records (Yang et al., 2016; Li et al., 2021). 

After decoupling the ENSO-associated mode from TCC, a clear trend mode (Fig. 3c) appears. This trend mode in TCC 

accounts for 14.4 % of the total variance and yields a PC evolving similarly to the one associated with the observed ST warming 

mode; see Fig. 2b. However, unlike the latter, whose warming pattern is expressed throughout the globe, patterns of TCC 

growth are observed over a major part of the ocean (red shades in Fig. 3c), while patterns corresponding to shrinking TCC 165 

occur over most of the continents (blue shades in Fig. 3c). More specifically, the tropical and subtropical oceans exhibit the 

most significant increasing trends; while for the continents, South and North America, the Congo Basin, most of Asia, Europe, 

and the poles exhibit a clear decreasing trend, the desert areas and the Indian subcontinent tend to display an increasing trend. 

The reported trends agree with some previously-made estimations using historical observations (Warren et al., 2007; Zhou et 

al., 2016; Norris et al., 2016). However, there is some contradiction with model-based future-climate prediction studies, which 170 

suggested a decrease in marine stratocumulus cloud coverage in warmer climate conditions (Forster et al., 2021; Zelinka et al., 

2016). 

Relying on the EOF analysis, we observe a clear signature of the warming climate on global cloud coverage. We explore next 

the thermodynamic drivers that could explain the observed TCC trend. In that respect, we assess the correlation between each 

ERA5 meteorological variable (207 in total) and TCC by calculating the corresponding Spearman's ρ for the annual data. 175 

Meteorological variables that are checked here include RH, Specific Humidity (SH), Temperature (T), U-wind component 

(U), V-wind component (V), vertical velocity (ω), wind divergence (Div), Potential Vorticity (PV), and Relative Vorticity 

(RV) at 23 pressure levels ranging from 200 to 1000 hPa, see Sec. 2. 

Figure 4a presents the averaged correlations over land and ocean; see Sec. 2. It is evident that RH in most of the pressure levels 

yields the strongest correlation with continental TCC, while for maritime TCC, RH and SH yield comparably strong 180 

correlations. A previous analysis based on satellite observations and other atmospheric reanalysis datasets obtained similar 

conclusions (Koren et al., 2010). The geographical distribution of the meteorological variables that best correlate with TCC, 

shown in Fig. 4b, further highlights RH as the strongest component over almost all continents. Moreover, there is no single 

variable besides RH that correlates strongly with nearly all continental TCC; see Fig. S2 and Supplementary Text 2. As for the 

maritime TCC, it exhibits a diversity of variables dominated by relative and specific humidities. 185 

The RH correlation score shows a global peak over land (0.65±0.20) and a local peak over the ocean (0.43±0.22) slightly above 

the surface (925 hPa, the magenta arrow in Fig. 4a). RH, which, for a given pressure level, is a function of the specific humidity 

and the temperature, is a key parameter in determining cloud properties. Based on a parcel's theory describing convective cloud 

formation, the low-level RH will determine the likelihood of cloud formation and its extent. Moreover, low-level RH represents 
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a more localized process, while high-level RH-values are likely to be affected by processes such as cloud evaporation and 190 

long-distance water vapor transport (Bengtsson, 2010). Therefore, to further explore the links between TCC and RH, we 

introduce a hybrid RH variable denoted as the near-surface RH (RHNS), taking into account the terrestrial topography. RHNS 

is defined as RH at 950 hPa over the ocean, and the RH at a pressure level of 50 hPa less than the local surface pressure over 

land, see Sec. 2.  

Figure 5a shows the temporal trend in RHNS for the study duration (1979–2020) using ordinary least-square regression analysis 195 

(Wells and Krakiwsky, 1971). It shows a clear, consistent decreasing trend in RHNS over land at a rate of 1–2 % decade-1, as 

well as similar spatial patterns in these RHNS trends to those exhibited in the TCC trend mode. The larger decreasing rate of 

RHNS over the continents is expected due to the limited reservoir of water vapor and the larger warming rate over land; see 

Fig. 2a. Figure 5b shows a map of the correlation between RHNS and TCC, revealing a distinct contrast between the high 

correlation scores for most of the continents (apart from the Sahara) compared to the oceans. The distributions of the 200 

correlations (Fig. 5c) show the high and relatively narrow correlation spread over land. Moreover, the global mean correlation 

of TCC with RHNS shows the highest score of 0.69±0.18 over land.  

4 Discussion 

Surface temperature is likely to be the most explored variable with respect to climate change (Gulev et al., 2021). It is a direct 

measure of global warming on the most relevant level for most biological systems, and it characterizes the temperature interface 205 

between the ocean and land, and the atmosphere. As such, it sets boundary conditions for tropospheric processes. Clouds are 

at the heart of the water cycle and serve as the radiation modulators of the atmosphere (Bengtsson, 2010; Stephens et al., 2012). 

Though the overall effects on the fresh water and radiative budgets depend on cloud type and properties (Chen et al., 2000; 

Houze, 2014), the first variable to explore is the horizontal cloud extent, namely what fraction of the sky that is cloudy per 

each region on the globe. 210 

By performing EOF analysis on ERA5 data over 1979–2020, we showed that the two dominant modes of surface temperature 

and the total cloud coverage can be described as a trend and an ENSO tendency. The order of these modes is flipped; for the 

surface temperature, the trend leads the ENSO, while for cloud coverage, the trend follows the ENSO. 

We used the frequently-explored surface temperature data to set the stage and demonstrate the rich information that can be 

drawn from the modes. The temperature analysis yields a clear trend captured by the leading PC paired with an almost totally 215 

red EOF mode (i.e., dominated by positive anomalies) of known regional features (Serreze and Barry, 2011; Byrne and 

O’Gorman, 2018; Keil et al., 2020; Heede and Fedorov, 2021; Bintanja et al., 2013). The second mode reveals a rich pattern 

of ENSO weights and signs over the entire globe, highlighting the fact that ENSO is a key driver of the global climate system 

(Neelin et al., 1998; Taschetto et al., 2020). The cloud coverage analysis shows a clear ENSO mode followed by a trend mode 

in terms of variance decomposition. The complex sensitivity of cloud coverage to ENSO could partly explain why it is 220 
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challenging to find climate trends in clouds. The trend mode shows growth in cloud coverage with time over the tropical and 

subtropical oceans, while shrinking in cloud coverage is observed over most non-desert continents.  

Because of the limited availability of water vapor sources over land, terrestrial clouds are more likely to be humidity-limited. 

Relative humidity measures how far a given specific humidity is from saturation per given temperature and pressure and is, 

therefore, a fundamental measure of cloud formation. In particular, relative humidity near the surface dictates the initial 225 

conditions of a rising air parcel. In a warming climate, over the continents, near-surface relative humidity is expected to decline 

(Byrne and O’Gorman, 2018) and is likely to affect cloud formation similarly. Over the warming oceans, for which the water 

vapor reservoir is not limited, enhanced evaporation can supply additional water vapor. Therefore, trends of near-surface 

relative humidity and their links to cloud coverage over the oceans are less distinct. 

Our results have several implications. The more optimistic one is that increased cloud coverage over the central belt of the 230 

oceans implies a possible negative cloud feedback to global warming. The total effect will subsequently depend on how the 

increased cloud coverage is distributed among cloud types and their properties. Nevertheless, as a first approximation, larger 

subtropical marine stratocumulus decks are likely to cause stronger cooling (Wood, 2012; Zelinka et al., 2017). In contrast, 

the consistent reduction in cloud coverage over land suggests an additional warming and larger stress on the freshwater supply 

that is already in shortage in many regions around the globe (Oki and Kanae, 2006). In particular, the decrease in cloud 235 

coverage over the Amazon and Congo Basins, which contain the largest rainforests and the most precious and vulnerable 

ecosystems on our planet, is especially disconcerting (Langenbrunner et al., 2019; Bush et al., 2011; Lenton, 2011). Moreover, 

such a contrast in cloud trends between land and ocean (Fig. 3c) suggests changes in the radiative energy partitioning between 

the two media that might ignite additional feedbacks and changes in the atmospheric circulation. 
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Figures S1–2 
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Figure 1: Climatological mean maps and the annual global means (area-weighted) of ST (unit: °C) and TCC (unit: %) during 390 

1979–2020. (a) A global map of the climatological mean of ST. (b) Time series of the annual global mean of ST. (c) A global 

map of the climatological mean of TCC. (d) Time series of the annual global mean of TCC. 
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Figure 2: The two dominant EOF modes and their corresponding PCs of the annual ST anomaly (unit: °C) during 1979–2020. 

(a) The scaled leading EOF mode (EOF1, amplified by the standard deviation of its PC). (b) The standardized leading PC 395 

(PC1, divided by its standard deviation). (c) The scaled second EOF mode (EOF2). (d) The standardized second PC (PC2). 

The black curves in panels b and d are standardized annual global mean ST and ONI. The red and blue bars in panels b and d 

highlight the positive and negative PC-values, respectively. 
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Figure 3: The two dominant EOF modes and their corresponding PCs of the annual TCC anomaly (unit: %) during 1979–400 

2020. (a) The scaled leading EOF mode (EOF1, amplified by the standard deviation of its PC). (b) The standardized leading 

PC (PC1, divided by its standard deviation). (c) The scaled second EOF mode (EOF2). (d) The standardized second PC (PC2). 

The black curves in panels b and d are the standardized ONI and annual global mean ST, respectively. The red and blue bars 

in panels b and d highlight the positive and negative PC values, respectively. 
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 405 

Figure 4: The relationships between ERA5 meteorological variables and annual TCC during 1979–2020. (a) Averaged 

Spearman's ρ (area-TCC-weighted) over land and ocean; ρ-values are shown for RH, SH, T, U, V, ω, Div, PV, and RV at 23 

pressure levels from 200 to 1000 hPa, starting from near the surface on the left part of the section (light color shades) to the 

upper atmosphere. (b) Map of the meteorological variables that best correlate with TCC, only Spearman's ρ that are statistically 

significant at the level of 0.05 (p-value < 0.05, two-tailed t-test) are used. 410 
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Figure 5: Trends in RHNS and correlations between RHNS and TCC. (a) A map of the temporal trend in annual RHNS (unit: % 

decade-1). (b) A map of Spearman's ρ between RHNS and TCC. (c) Distribution (area-TCC-weighted) of the correlations 

presented in panel b over land and ocean. The distribution's mean and standard deviation are displayed in the box. 
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