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Abstract. Clouds play a key role in Earth's energy budget and water cycle. Their response to global warming contributes the

largest uncertainty to climate prediction. Here, by performing an empirical orthogonal function analysis on 42 years of

reanalysis data of global cloud coverage, we extract an unambiguous trend and El Niño-Southern Oscillation-associated

modes. The trend mode translates spatially to decreasing trends in cloud coverage over most continents and increasing trends

over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trends in10
cloud coverage over land. Our results suggest potential stress on the terrestrial water cycle and changes in the energy

partition between land and ocean, all associated with global warming.

1 Introduction

Clouds cover more than 60 % of the Earth’s surface. They play a critical role in the global water cycle (Bengtsson, 2010) and

act as the primary energy gatekeepers for the climate system by reflecting incoming solar radiation and blocking outgoing15

terrestrial radiation (Stephens et al., 2012). Overall, clouds cool the surface at a rate of approximately 20 W m-2 (Stephens et

al., 2012).

One of the most pressing needs in climate prediction is to clarify whether and how global warming impacts clouds on a

global scale and to delineate the mechanisms at play (Zelinka et al., 2020). A common practice for addressing this question

consists of analyzing cloud feedbacks that can either amplify (positive feedback) or dampen (negative feedback) surface20

warming. However, estimating the overall cloud feedback is a challenging task since the net radiative effect depends on the

type, geographical location, vertical extent, lifetime, and optical properties of clouds (Chen et al., 2000). So far, estimations

of clouds' responses to the warming trend is inconclusive (Aerenson et al., 2022; Forster et al., 2021). To partly address this

issue, we explore the influence of climate change on global cloud coverage, which is, of course, one of the most crucial

cloud factors.25

Previous works that examined tendencies in cloud coverage under a warmer climate show substantial discrepancies among

them (Gettelman and Sherwood, 2016; Ceppi et al., 2017; Zelinka et al., 2020). Even estimations for the same cloud type

vary between studied periods, locations, datasets, and models (e.g., Norris and Evan, 2015; Zhou et al., 2016; Zelinka et al.,

2017; Karlsson and Devasthale, 2018). Key factors in these discrepancies are related to data uncertainties due to
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measurement errors in observational datasets, on one hand (Chepfer et al., 2014), and the unsatisfactory representation of30
clouds in climate models, on the other (Stevens and Bony, 2013). For example, long-term surface observations, such as

cloud coverage from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS, Freeman et al., 2017) and the

Extended Edited Cloud Reports Archive (EECRA, Hahn and Warren, 1999; Hahn et al., 2012), suffer from non-uniform

sampling, changes in the synoptic-code format and stations, and limited coverage (e.g., Eastman et al., 2011; Aleksandrova

et al., 2018). On the other hand, long-term satellite records, such as cloud coverage from the International Satellite Cloud35

Climatology Project (ISCCP, Rossow and Schiffer, 1999), the Pathfinder Atmospheres–Extended dataset (PATMOS-X,

Heidinger et al., 2014), and the cloud component in the European Space Agency’s (ESA) Climate Change Initiative (CCI)

programme (Cloud_cci, Stengel et al., 2017), suffer from changing view geometries and orbit drifts (e.g., Evan et al., 2007;

Norris and Evan, 2015). Attempts to fix some of these issues in satellite observations lead to corrected products that may

suffer from a removal of actual cloud tendencies at a global scale (e.g., Norris and Evan, 2015; Norris et al., 2016). In fact,40

these corrected products show significant discrepancies between linear trends in their cloud coverage (Norris and Evan,

2015). As for climate models, the representation of clouds in a coarse-grid resolution is subordinate to the small-scale

parameterization schemes employed, accounting in a limited way for the full range of scales involved therein (Zelinka et al.,

2016; Zelinka et al., 2020).

Besides the uncertainties tied to observations and modeling, the sensitivity of clouds to temperature patterns (Zhou et al.,45
2016) and other large-scale climate drivers (Manaster et al., 2017; Gulev et al., 2021) can also lead to discrepancies between

estimations of cloud coverage trends over different periods and regions. One example is found in the El Niño-Southern

Oscillation (ENSO), a dominant mode of climate variability with seasonal-to-interannual time scales, traditionally emerging

over the Tropical Pacific Ocean (Neelin et al., 1998). Through the strong coupling between the Pacific Ocean and the

atmosphere above, ENSO's impact goes beyond the Pacific (Taschetto et al., 2020) and modulates global temperatures and50

cloud features (Davey et al., 2014; Yang et al., 2016). Thus, the ENSO signal often stands out as a major driver of variability

in climate records, blurring the global-warming related trend, and even biasing its magnitude on decadal time scales (Compo

and Sardeshmukh, 2010) due to the ENSO's low-frequency variability (Hope et al., 2017). Similarly, other large-scale

climate phenomena, such as the Atlantic Multi-decadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO), are

natural climate variability candidates that perturb global temperatures (Deser et al., 2010) and cloud coverage (Li et al.,55

2021). Therefore, they may introduce additional bias into global-warming related trends.

Despite the challenges, recent advancements in assimilation techniques and computing power have led to the production of

high-quality reanalysis data. The latest version is the 5th generation of Atmospheric Reanalysis data from the European

Centre for Medium-Range Weather Forecasts (ERA5), which offers uniformly sampled, long-term data of the atmosphere

(Hersbach et al., 2019). To investigate the dominant processes that affect cloud coverage and examine the details both in the60

spatial and temporal domains, we analyze modes of variability in global cloud coverage by performing an Empirical

Orthogonal Function (EOF) decomposition on 42 years (1979–2020) of ERA5 data (Hersbach et al., 2020); see Sec. 2. To

evaluate the extent to which ERA5 captures climate variability and set the stage with fields having a well-studied reference,



3

we analyze the global Surface air Temperature (ST, the air temperature at 2 meters above the surface) together with the Total

Cloud Cover (TCC, the part of a grid box covered by clouds).65

2 Materials and Methods

2.1 Datasets

The study uses two datasets and a temperature-based Niño index: (1) 42 years (1979–2020) of monthly atmospheric data

from ERA5 (Hersbach et al., 2020), which include ST, TCC, Land-Sea Mask (LSM), dew point temperature at 2 m (Td2m),

and Surface Pressure (SP) at single levels (Hersbach et al., 2023a), as well as Relative Humidity (RH), Specific Humidity70

(SH), Temperature (T), vertical velocity (ω), U-wind component (U), V-wind component (V), wind Divergence (Div),

Potential Vorticity (PV), and Relative Vorticity (RV) at 23 standard pressure levels (1000, 975, 950, 925, 900, 875, 850, 825,

800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 225 and 200 hPa) (Hersbach et al., 2023b). The original

horizontal resolution of all ERA5 data is 0.25 °; (2) 18 years (2003–2020) of daily Cloud Fraction (CF) data observed by the

MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite75
(https://search.earthdata.nasa.gov/search?q=MYD08_D3, Platnick et al., 2003), with a horizontal resolution of 1 °; and (3)

44 years (1978–2021) monthly Niño-3.4 index from the National Oceanic and Atmospheric Administration center for

Weather and Climate Prediction

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml).

ERA5 is a state-of-the-art reanalysis dataset and has been validated as the most reliable one for climate trend assessment80

(Gulev et al., 2021). In ERA5, the cloud fields are calculated using prognostic equations based on assimilated meteorological

(thermodynamic and dynamic) variables that are optimally constrained by observations (Hersbach et al., 2023a). The TCC is

then calculated as a diagnostic parameter based on the prognostic cloud cover field using a generalized cloud overlap

assumption based on a stochastic cloud generator. This assumption means that the degree of overlap between two cloudy

layers becomes more random as the vertical distance between the layers increases; see more details in Barker (2008). The85

calculated TCC has been shown to essentially capture the spatiotemporal characteristics of measured cloud coverage on

climatic (Yao et al., 2020) and weather scales (Binder et al., 2020).

2.2 Data Processing

Apart from the calculation of the Oceanic Niño Index (ONI, Glantz and Ramirez, 2020), Near-Surface Relative Humidity

(RHNS), and RH at 2 meters (RH2m, used in the Supporting Material), the entire analysis is based on annual data and90

anomalies. The annual data is calculated as a simple average of monthly data for each calendar year. The annual anomaly is

the deviation of the annual data from the mean over 1979–2020. ONI is calculated as the 3 month running mean of the

monthly Niño-3.4 index. The details about the RH2m calculation appears in the SI.
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RHNS is calculated here as RH at 950 hPa over the ocean and at 50 hPa above surface over land. Ocean is identified as grid

boxes with a LSM-value no larger than 0.2 and land is identified as grid boxes with a LSM-value larger than 0.2. For each95

land grid box, its RHNS-value is estimated based on a pressure-difference weighted linear interpolation given by the

following equation:

RHNS−land =
|P1 − SP| × RHP2 + |P2 − SP| × RHP1

|p1 − p2|

where P1 and P2 are the adjacent standard pressure levels that contain the pressure level of 50 hPa smaller than the local SP.

2.3 Area and TCCWeighting

Since the area of each 0.25 ° by 0.25 ° gridbox, as used in this study, depends on latitude, we performed an area weighting100

for all spatial averages. The area of each grid box is calculated as the product of arc lengths at the corresponding latitude and

longitude by regarding the Earth as an oblate spheroid with a radius of 6378.137 km at the equator and 6356.752 km at the

poles. In addition, we performed a TCC weighting to account for the spatial dependence of cloud coverage when assessing

cloud-related processes. The TCC weights are given in Fig. 2c).

2.4 EOF Analysis105

EOF analysis is a linear decomposition method of multivariate signals that is widely used in meteorology and oceanography

(Lorenz, 1956; Preisendorfer and Mobley, 1988), aiming at extracting spatial modes (i.e., patterns) of variability and study

their time-evolution. It decomposes any given spatiotemporal field into a set of orthogonal independent EOF modes in the

spatial domain whose temporal variations are encoded by the corresponding Principal Components (PCs). With the proper

interpretations, these linearly independent modes can provide useful clues about the physics and dynamics of the110

investigated system; see e.g. Schnur et al. (1993), Dunkerton (1993) and Dror et al. (2021). More specifically, EOFs and PCs

come in pairs and are ordered by the corresponding variance that is explained by each given mode. The number of EOF-PC

pairs is here determined by the temporal dimension; 42 in total for the annual ST and TCC anomalies considered in this

study.

In this study, we used area-weighted data for the EOF analysis of annual ST and TCC anomalies to isolate the main drivers115
of global surface air temperature and cloud coverage. The area weighting is adopted in order to lessen the contribution of

smaller-size grid boxes (Baldwin et al., 2009). Once the EOF analysis is performed on the area-weighted ST and TCC data,

the final EOF modes presented in the main text are rescaled by dividing them by the corresponding area weights. The

underlying EOF analysis is performed using the Python library, eofs (Version 1.4.0, https://github.com/ajdawson/eofs,

Dawson, 2016).120
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3 Results

First to set the stage and to explore modes and sensitivities in the ERA5 TCC dataset as compared to direct measurements

we conducted an area-weighted EOF analysis on annual TCC anomalies and compared it with the observed CF from MODIS;

see Fig. 1. To mimic the MODIS CF observations, we resampled ERA5 TCC data to a grid with a horizontal resolution of 1

° and considered only a subset of data between 60 °S to 60 °N during 2003–2020. The subset of ERA5 TCC captures well125

the leading modes of the MODIS CF, and about 60 % of the total variance (Spearman's ρ = 0.77; see Supplementary Text 1).

Figure 1 shows the three dominant EOF modes and PCs of the annual ERA5 TCC and MODIS CF anomalies. The very

similar explained variances (as indicated in the title of the EOF panels of Fig. 1) as well as spatial patterns in EOFs

(Spearman's ρ = 0.84, 0.83, and 0.75 for the 1st, 2nd, and 3rd EOFs, respectively), and temporal evolution of the PCs

(Spearman's ρ = 0.99, 0.89, and 0.88 for the 1st, 2nd, and 3rd PCs, respectively) suggest that although the ERA5 TCC is by130

definition simulated, the underlying model characteristics and assimilation techniques are able to reproduce essential

variations of cloud coverage when compared to observations.

Figure 1: The three dominant EOF modes and their corresponding PCs of the annual cloud coverage anomaly (unit: %) from

ERA5 (a–f) and MODIS (g–l) during 2003–2020. (a, g) The scaled leading EOF mode (EOF1, amplified by the standard135

deviation of its PC). (b, h) The standardized leading PC (PC1, divided by its standard deviation). (c, i) The scaled second

EOF mode (EOF2). (d, j) The standardized second PC (PC2). (e, k) The scaled third EOF mode (EOF3). (f, l) The

standardized third PC (PC3). The values inside the title’s parentheses of panels (a), (c), (e), (g), (i) and (k) indicate the

explained variances. The red and blue bars in panels (b), (d), (f), (h), (j) and (l) highlight the positive and negative PC values,

respectively.140
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On the strength of this observation, we extend the study period to 1979 – 2020 based on ERA5 data with a horizontal

resolution of 0.25 °. Figures 2a) and 2c) show the geographical distributions of annual mean ST and TCC data. It reveals the

nearly uniform temperature gradient towards the poles and the expected patterns of high cloud coverage over the tropics and

marine mid-latitudes and the extremely low cloud coverage over the deserts. Figures 2b) and 2d) plot the area-weighted

global mean ST and TCC data; see Sec. 2. The increasing ST trend represents clear signature of global warming (Eyring et145

al., 2021). In contrast, the lack of a consistent trend in TCC suggests that perturbations other than a warming climate might

dominate the global TCC variability. For example, the break in the trend around the year 2000 can be attributed to the trend

in the maritime clouds over the tropical Atlantic and the western part of tropical Pacific (see fig. S1 and Supplementary Text

2) and is likely to be associated with the previously reported phase change of AMO and PDO at the 2000s (Hong et al.,

2022).150

Figure 2: Climatological mean maps and the annual global means (area-weighted) of ST (unit: °C) and TCC (unit: %)

during 1979–2020. (a) A global map of the climatological mean of ST. (b) Time series of the annual global mean of ST. (c)

A global map of the climatological mean of TCC. (d) Time series of the annual global mean of TCC.

To identify and isolate the main underlying drivers in the variations, we perform again an area-weighted EOF analysis on155

annual ST and TCC anomalies. The results reveal spatio-temporal fields sufficient for identifying modes of variability driven

by distinct physical processes. By analyzing the PC's time-variability, we are able to find correspondences between the EOF

modes and known climate phenomena (Preisendorfer and Mobley, 1988). Notably, unlike EOF modes, physical processes
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are not necessarily orthogonal, and variations caused by one physical process could be split into different EOF modes, a

phenomenon known as signal leakage (Richman, 1986). However, this issue is negligible for the dataset at hand, in particular160

for the dominant EOF modes of ST and TCC discussed below; see fig. S2 and Supplementary Text 3.

To set the stage, we first present our findings for the global surface air temperature. Figure 3 shows the two dominant EOF

modes of the annual ST anomaly along with their PCs. Recall that a given PC encodes the temporal variability captured by

the corresponding EOF mode, whose spatial features specify, in turn the magnitude and direction of the PC over each region.

For the dataset at hand, the leading EOF mode of ST (EOF1, Fig. 3a) accounts for 32.5 % of the total variance and distills a165

consistent warming trend (PC1, Fig. 3b) over nearly all continents and most oceans (red shades in Fig. 3a). Its PC evolves

almost synchronously with the annual global mean ST (black curve in Fig. 3b).

Figure 3: The two dominant EOF modes and their corresponding PCs of the annual ST anomaly (unit: °C) during 1979–

2020. (a) The scaled leading EOF mode (EOF1, amplified by the standard deviation of its PC). (b) The standardized leading170
PC (PC1, divided by its standard deviation). (c) The scaled second EOF mode (EOF2). (d) The standardized second PC

(PC2). The values inside the title’s parentheses of panels (a) and (c) indicate the explained variances. The black curves in

panels (b) and (d) are standardized annual global mean ST and ONI. The red and blue bars in panels (b) and (d) highlight the

positive and negative PC-values, respectively.

This leading EOF mode reveals some regional features of the recent warming climate, such as the most significant warming175

being over the Arctics (Serreze and Barry, 2011), the nearly twice larger warming rate over land than over the ocean (Byrne
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and O’Gorman, 2018), and the feeble warming or even cooling signal over parts of the North Atlantic Ocean, the southeast

Pacific Ocean, and the Southern Ocean (Keil et al., 2020; Heede and Fedorov, 2021; Bintanja et al., 2013). These features

highlight that regional feedbacks can modify the warming pattern and lead to non-uniform warming.

The second component of ST variations (EOF2, Fig. 3c), accounting here for 10.5 % of the total variance, manifests itself as180
an ENSO-associated mode. This feature becomes strikingly apparent when comparing its PC (PC2, Fig. 3d) with the ONI, a

common measure of ENSO (Glantz and Ramirez, 2020); see black curve in Fig. 2d) and Supplementary Text 4. An episode

of large positive values in PC2 coincides with large positive ONI-values, indicating a strong warm phase of ENSO; i.e. El

Niño events leading to an unusual increase in sea surface temperature over the central and Eastern tropical Pacific Ocean.

Analogously, episodes of large negative values for this PC2 coincide with large negative ONI-values, corresponding to185

strong cold phases of ENSO (La Niña events, the cold counterpart of El Niño) (Neelin et al., 1998).

As expected, EOF2 for ST shows strong positive anomalies over the central and Eastern tropical Pacific and negative

anomalies over the Western Pacific. Furthermore, beyond the Pacific Ocean, ST over areas with strong negative (e.g., North

America and the adjacent North Atlantic Ocean) and positive (e.g., South Africa, parts of Asia, Australia, and a part of the

Southern Ocean) anomalies also closely correlate to ENSO events. These findings are consistent with previous studies190

(Deser et al., 2010; Davey et al., 2014) and highlight ENSO as an essential driver of the global climate system (Taschetto et

al., 2020). Once more, these results ensure that ERA5 performs reasonably well in capturing climate variability during the

study period, and that the EOF analysis is effective at isolating the warming-associated mode from influence of other climate

perturbations.

Overall, the EOF analysis for ST demonstrates that the global warming trend and ENSO are the dominant factors in surface195

air temperature variability over the last 42 years.

We turn next to our EOF results of global cloud coverage. Figure 4 presents the two dominant EOF modes and the

corresponding PCs of the annual TCC anomaly. The first thing to note is that similarly to ST findings, a trend and an ENSO-

associated mode are identified but in opposite order. The EOF1 for TCC (Fig. 4a) shows an ENSO-associated behaviour

with its PC (Fig. 4b), evolving almost in perfect synchrony with the ONI. While EOF2 (Fig. 4c) demonstrates a clear trend200
with its PC (Fig. 4d), which strongly correlates with the annual global mean ST (black curve in Fig. 4d; Spearman's ρ = 0.88,

p-value = 3.28×10-14, two-tailed t-test).
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Figure 4: The two dominant EOF modes and their corresponding PCs of the annual TCC anomaly (unit: %) during 1979–

2020. (a) The scaled leading EOF mode (EOF1, amplified by the standard deviation of its PC). (b) The standardized leading205

PC (PC1, divided by its standard deviation). (c) The scaled second EOF mode (EOF2). (d) The standardized second PC

(PC2). The values inside the title’s parentheses of panels (a) and (c) indicate the explained variances. The black curves in

panels (b) and (d) are the standardized ONI and annual global mean ST, respectively. The red and blue bars in panels (b) and

(d) highlight the positive and negative PC values, respectively.

This EOF1 for TCC shows that the global cloud coverage is greatly influenced by ENSO and accounts for 21.8 % of the total210

variance, similar as the results shown over 2003–2020 period; see Fig. 1. It suggests that maritime Southeast Asia and the

Western Pacific are anti-correlated with the PC and hence the ONI (blue shades in Fig. 4a), meaning the cloud coverage in

regions of positive anomalies over the central to eastern Pacific (red shades in Fig. 4a) has a tendency to increase during El

Niño years and to decrease during La Niña years. Beyond the Pacific Ocean, the analysis reveals strong negative correlations

over the tropical Atlantic Ocean and positive correlations over western Asia, part of South America, the Southern United215

States, and the adjacent North Pacific Ocean. The patterns revealed here are consistent with satellite observations for the

ENSO forced precipitation tendency (Davey et al., 2014). Moreover, they agree well with previous studies showing similar

ENSO-associated modes in cloud radiative effects and cloud coverage by simulations and corrected satellite records (Yang et

al., 2016; Li et al., 2021).
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After decoupling the ENSO-associated mode from TCC, an unambiguous trend mode (Fig. 4c) appears. This trend mode in220
TCC accounts for 14.4 % of the total variance and yields a PC evolving similarly to the one associated with the ST warming

mode; see Fig. 3b). However, unlike the latter, whose warming pattern is expressed throughout the globe, patterns of TCC

growth are shown over a major part of the ocean (red shades in Fig. 4c), while patterns corresponding to shrinking TCC

occur over most of the continents (blue shades in Fig. 4c). More specifically, the tropical and subtropical oceans exhibit the

most significant increasing trends; while for the continents, South and North America, the Congo Basin, most of Asia,225

Europe, and the poles exhibit a decreasing trend, the desert areas and the Indian subcontinent tend to display an increasing

trend.

By relying on the EOF analysis, we are able to identify an unambiguous signature of the warming climate on global cloud

coverage. We explore next the potential thermodynamic drivers that could explain the revealed TCC trend. In that respect,

we assess the correlation between each ERA5 meteorological variable (207 in total) and TCC by calculating the230

corresponding Spearman's ρ for the annual data in Fig. 5. Meteorological variables that are checked here including RH, SH,

T, U, V, ω, Div, PV, and RV at 23 standard pressure levels ranging from 1000 to 200 hPa; see Sec. 2.

Figure 5: The relationships between annual ERA5 meteorological variables and annual TCC during 1979–2020. (a)

Averaged Spearman's ρ (area-TCC-weighted) over land and ocean; ρ-values are shown for RH, SH, T, U, V, ω, Div, PV, and235

RV at 23 standard pressure levels from 1000 to 200 hPa, starting from near the surface on the left part of the section (light

color shades) to the upper atmosphere. (b) Map of the meteorological variables that best correlate with TCC, only

Spearman's ρ that are statistically significant at the level of 0.05 (p-value < 0.05, two-tailed t-test) are used.

Figure 5a) presents the average correlations over land (LSM > 0.2) and ocean (LSM ≤ 0.2); see Sec. 2. These results show

that RH, in most pressure levels, exhibits the strongest correlation with continental TCC, while for maritime TCC, RH and240

SH yield comparably strong correlations. A previous analysis based on satellite observations and other atmospheric

reanalysis datasets obtained similar conclusions (Koren et al., 2010). The geographical distribution of the meteorological

variables that best correlate with TCC, shown in Fig. 5b), further highlights RH as the strongest component over almost all

continents. Moreover, there is no single variable besides RH that correlates strongly with nearly all continental TCC; see Fig.

S3 and Supplementary Text 5. As for the maritime TCC, it exhibits a diversity of best correlated variables dominated by RH,245
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SH, and PV. Such correlation differences over land and ocean may link to the different atmospheric conditions over land and

ocean, as well as to the different dynamics of continental clouds and maritime clouds.

The RH correlation score shows a global peak over land (0.65 ± 0.20) and a local peak over the ocean (0.43 ± 0.22) slightly

above the surface (925 hPa, the magenta arrow in Fig. 5a). RH, which, for a given pressure level, is a function of the specific

humidity and the temperature, is a key parameter in determining cloud properties. Based on a parcel's theory describing250

convective cloud formation, the low-level RH will determine the likelihood of cloud formation and its extent. Moreover,

low-level RH represent a more localized process, while high-level RH-values are likely to be affected by processes such as

cloud evaporation and long-distance water vapor transport (Bengtsson, 2010).

Therefore, to further explore the links between TCC and RH, we introduce a hybrid RH variable denoted as RHNS, taking

into account the terrestrial topography. RHNS is defined as RH at 950 hPa over the ocean, and the RH at a pressure level of255

50 hPa less than the local surface pressure over land; see Sec. 2.
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Figure 6: Trends in RHNS and correlations between annual RHNS and annual TCC. (a) A map of the temporal trend in annual

RHNS (unit: % decade-1, where % denotes the absolute rather than the fractional percentage change). (b) A map of

Spearman's ρ between RHNS and TCC. (c) Distribution (area-TCC-weighted) of the correlations presented in panel (b) over260

land and ocean. The distribution's mean and standard deviation are displayed in the box.

Figure 6a) shows the temporal trend in RHNS for the study duration (1979–2020) using ordinary least-square regression

analysis (Wells and Krakiwsky, 1971). It shows a consistent decreasing trend in RHNS over land at a rate of 1–2 % of relative

humidity per decade, as well as similar spatial patterns in these RHNS trends to those exhibited in the TCC trend mode. The

statistically significant RHNS trends and additional trend analysis of RH2m lead to similar conclusions, see fig. S4 and265
Supplementary Text 6. The larger decreasing rate of RHNS over the continents is expected due to the limited reservoir of

water vapor and the larger warming rate over land; see Fig. 3a, and is consistent with previous studies that suggest a

decreasing trend in surface air RH over land but only weak changes over ocean under a warmer climate (e.g., Byrne and

O’Gorman, 2018). Figure 6b shows a map of the correlation between RHNS and TCC, revealing a distinct difference between

the high correlation scores for most of the continents (apart from the Sahara) compared to the oceans. The distributions of270

the correlations (Fig. 6c) show the high and relatively narrow correlation spread over land. Moreover, the global mean

correlation of TCC with RHNS shows the highest score of 0.69 ± 0.18 over land.

4 Discussion

Surface air temperature is likely to be the most explored variable with respect to climate change (Gulev et al., 2021). It is a

direct measure of global warming on the most relevant level for most biological systems, and it characterizes the temperature275

interface between the ocean and land, and the atmosphere. As such, it sets boundary conditions for tropospheric processes.

Clouds are at the heart of the water cycle and serve as radiation modulators of the atmosphere (Bengtsson, 2010; Stephens et

al., 2012). Though the overall effects on the fresh water and radiative budgets depend on cloud type and properties (Chen et

al., 2000; Houze, 2014), the first variable to explore is the horizontal cloud extent, namely what fraction of the sky that is

cloudy per each region on the globe.280

By performing EOF analysis on ERA5 data over 1979–2020, we showed that the two dominant modes of surface air

temperature and total cloud coverage can be described as a trend and an ENSO tendency. The order of these modes is flipped;

for the surface air temperature, the trend leads the ENSO, while for cloud coverage, the trend follows the ENSO. We used

the frequently-explored surface air temperature data to set the stage and demonstrate the rich information that can be drawn

from the modes. The temperature analysis reveals a clear trend captured by the leading PC paired with an almost totally red285
EOF mode (i.e., dominated by positive anomalies) of known regional features (Serreze and Barry, 2011; Byrne and

O’Gorman, 2018; Keil et al., 2020; Heede and Fedorov, 2021; Bintanja et al., 2013). The second mode reveals a rich pattern

of ENSO weights and signs over the entire globe, highlighting the fact that ENSO is a key driver of the global climate

system (Neelin et al., 1998; Taschetto et al., 2020). The cloud coverage analysis shows a clear ENSO mode followed by a
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trend mode in terms of variance decomposition. The trend mode shows growth in cloud coverage with time over the tropical290
and subtropical oceans, while shrinking in cloud coverage is revealed over most non-desert continents.

The reported trends in cloud coverage are consistent with several previous estimations that were based on long-term

observations and historical simulations. A few examples are the reported decreasing trend over land as revealed by surface

observations (Warren et al., 2007), and the general increasing trend detected over the tropics and eastern subtropics, by

analysis of satellite observations and historical simulations (Norris and Evan, 2015; Zhou et al., 2016; Norris et al., 2016).295

Another example is the analysis of the observed liquid water path from the Multisensor Advanced Climatology of Liquid

Water Path (MAC-LWP) dataset, which showed an increasing trend over most of the oceans (Manaster et al., 2017).

However, there are some contradictions between our findings and previously reported satellite observations, which show a

decreasing trend over most of the Congo Basin and increasing trend over most of the northeast tropical Atlantic over the last

decades (1983–2009) (Norris and Evan, 2015). Also, some model-based future-climate prediction studies suggest a decrease300

in marine stratocumulus cloud coverage in warmer climate conditions (Forster et al., 2021; Zelinka et al., 2016). This

discrepancy may stem from many reasons including the uncertainties related to long-term cloud observations (Norris and

Evan, 2015), the inaccuracies related to cloud simulations (Stevens and Bony, 2013), the limitations of the ERA5 data (e.g.,

the quality depends on the assimilated observations) (Hersbach et al., 2020), and the varying global warming patterns in the

future (Zhou et al., 2016; Gulev et al., 2021).305
The revealed opposing trends of continental and maritime cloud coverage highlight the land-ocean contrast under global

warming. The detailed analysis we presented of correlations between annual cloud coverage and thermodynamic variables

taken from ERA5 (207 in total) further suggests that the decreasing trend in relative humidity is the main driver of the

decreased trend in continental clouds cover. Because of the limited availability of water vapor sources over land, terrestrial

clouds are more likely to be humidity-limited. Relative humidity measures how far a given specific humidity is from310

saturation per given temperature and pressure and is, therefore, a fundamental measure of cloud formation. In particular,

relative humidity near the surface dictates the initial conditions of a rising air parcel. In a warming climate, over the

continents, near-surface relative humidity is expected to decline (Byrne and O’Gorman, 2018) and is likely to affect cloud

formation similarly. Over the warming oceans, for which the water vapor reservoir is not limited, enhanced evaporation can

supply additional water vapor and hence partly cancel changes in relative humidity due to temperature increasing. Therefore,315

trends of near-surface relative humidity and their links to cloud coverage over the oceans are less distinct.

Our results have several implications. The more optimistic one is that increased cloud coverage over the central belt of the

oceans implies a possible negative cloud feedback to global warming. The total effect will subsequently depend on how the

increased cloud coverage is distributed among cloud types and their properties. Nevertheless, as a first approximation, larger

subtropical marine stratocumulus decks are likely to cause stronger cooling (Wood, 2012; Zelinka et al., 2017). In contrast,320

the consistent reduction in cloud coverage over land suggests an additional warming and larger stress on the freshwater

supply that is already in shortage in many regions around the globe (Oki and Kanae, 2006). Moreover, such a contrast in
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cloud trends between land and ocean (Fig. 4c) suggests changes in the radiative energy partitioning between the two media

that could be responsible for igniting additional feedbacks and changes in the atmospheric circulation.
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