1	Supporting Information for
2	Comment on "Climate consequences of hydrogen emissions" by Ocko and
3	Hamburg (2022)
4	Lei Duan ^{1,2,*} and Ken Caldeira ^{1,3}
5	¹ Carnegie Institution for Science, Stanford, California, USA.
6	² Orca Sciences LLC, Kirkland, Washington, USA.
7	³ Breakthrough Energy LLC, Kirkland, Washington, USA.
8	*Correspondence to: Lei Duan (leiduan@carnegiescience.edu)
9	
10	
11	
12	Text S1 to S2
13	Figure S1 to S15
14	Table S1 to S4
15	
16	

17 Text S1. Solutions with a continuous emission to *tp*

- 18 Warwick et al. (2022) considered a continuous emission scenario to the time *tp*. In our analytic
- 19 solutions, considering a continuous unit emission scenario to time *tp* where:

20
$$\begin{cases} f_{H_2}(t) = 1 \text{, if } t \leq \text{tp} \\ f_{H_2}(t) = 0 \text{, if } t > \text{tp} \end{cases}$$
(S1)

21 Radiative forcing can be represented as:

22
$$\widehat{R_{H_2}}(t) = \int_0^{\min(t,tp)} R_{H_2}(t-\tau) d\tau$$
(S2)

23 Radiative forcing is thus:

$$R_{H_{2},cont}(t) = \frac{A_{CH_{4}}^{*}a_{CH_{4}}\tau_{H_{2}}\tau_{CH_{4}}\left(\tau_{H_{2}}e^{-\frac{t}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{H_{2}}}}-1\right)-\tau_{CH_{4}}e^{-\frac{t}{\tau_{CH_{4}}}}\left(e^{\frac{tp}{\tau_{CH_{4}}}}-1\right)\right)\right)}{\tau_{H_{2}}-\tau_{CH_{4}}}$$

$$+\frac{A_{0_{3}}a_{0_{3}}\tau_{H_{2}}\tau_{0_{3}}\left(\tau_{H_{2}}e^{-\frac{t}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{H_{2}}}}-1\right)-\tau_{0_{3}}e^{-\frac{t}{\tau_{0_{3}}}}\left(e^{\frac{tp}{\tau_{0_{3}}}}-1\right)\right)\right)}{\tau_{H_{2}}-\tau_{0_{3}}}$$

$$+\frac{A_{H_{2}0}a_{H_{2}0}\tau_{H_{2}}\tau_{H_{2}0}\left(\tau_{H_{2}}e^{-\frac{t}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{H_{2}}}}-1\right)-\tau_{H_{2}0}e^{-\frac{t}{\tau_{H_{2}0}}}\left(e^{\frac{tp}{\tau_{H_{2}0}}}-1\right)\right)\right)}{\tau_{H_{2}}-\tau_{H_{2}0}}$$

$$(S3)$$

27
$$CAGWP_{H_{2}}(H)$$

28
$$= \frac{A_{CH_{4}}^{*}a_{CH_{4}}\tau_{H_{2}}\tau_{CH_{4}}\left(\tau_{H_{2}}^{2}e^{\frac{-H}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{H_{2}}}}-1\right)-\tau_{CH_{4}}^{2}e^{\frac{-H}{\tau_{CH_{4}}}}\left(e^{\frac{tp}{\tau_{CH_{4}}}}-1\right)+tp(\tau_{CH_{4}}-\tau_{H_{2}})\right)}{\tau_{CH_{4}}-\tau_{H_{2}}}$$
29
$$+\frac{A_{O_{3}}a_{O_{3}}\tau_{H_{2}}\tau_{O_{3}}\left(\tau_{H_{2}}^{2}e^{\frac{-H}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{H_{2}}}}-1\right)-\tau_{O_{3}}^{2}e^{\frac{-H}{\tau_{O_{3}}}}\left(e^{\frac{tp}{\tau_{O_{3}}}}-1\right)+tp(\tau_{O_{3}}-\tau_{H_{2}})\right)}{\tau_{O_{3}}-\tau_{H_{2}}}$$
(S4)

$$30 \qquad + \frac{A_{H_2O}a_{H_2O}\tau_{H_2}\tau_{H_2O}\left(\tau_{H_2}^2 e^{\frac{-H}{\tau_{H_2}}} \left(e^{\frac{tp}{\tau_{H_2}}} - 1\right) - \tau_{H_2O}^2 e^{\frac{-H}{\tau_{H_2O}}} \left(e^{\frac{tp}{\tau_{H_2O}}} - 1\right) + tp(\tau_{H_2O} - \tau_{H_2})\right)}{\tau_{H_2O} - \tau_{H_2}}$$

Note that this equation differs slightly from that given in Warwick et al. (2022), which included a
minor mistake in integration bounds.

The corresponding equations for continuous emissions of CO_2 and CH_4 to time tp can be represented as:

35
$$R_{CO_2,cont}(t) = A_{CO_2} \left(a_0 t p + \sum_{i=1}^3 a_i \tau_i e^{-\frac{t}{\tau_i}} \left(e^{\frac{tp}{\tau_1}} - 1 \right) \right)$$
(S5)

36
$$R_{CH_4,cont}(t) = (1 + f_1 + f_2)A_{CH_4}\tau_{CH_4}e^{-\frac{t}{\tau_{CH_4}}}\left(e^{\frac{tp}{\tau_{CH_4}}} - 1\right)$$
(S6)

37 And CAGWP for continuous emissions of CO_2 and CH_4 to time tp is:

38
$$CAGWP_{CO_2}(H) = \frac{A_{CO_2}}{2} \left(a_0 tp(2H - tp) + \sum_{i=1}^3 2a_i \tau_i \left(tp - \tau_i e^{-\frac{H}{\tau_i}} \left(e^{\frac{tp}{\tau_i}} - 1 \right) \right) \right)$$
(S7)

39
$$CAGWP_{CH_4}(H) = (1 + f_1 + f_2)A_{CH_4}\tau_{CH_4}\left(tp - \tau_{CH_4}e^{-\frac{H}{\tau_{CH_4}}}\left(e^{\frac{tp}{\tau_{CH_4}}} - 1\right)\right)$$
(S8)

40 Text S2. CAGWP components from analytic solutions

- 41 In this section, we show equations calculating the three components used in Ocko and Hamburg
- 42 (2022), which are denoted as CAGWP here. These equations are derived based on analytic
- 43 solutions as discussed in the main text and are considered for continuous emissions scenarios.
- 44 The physical meanings of these equations are explained in Warwick et al. (2022).
- 45 The first component $(CAGWP_{i_1})$ represents radiative forcing caused by chemical perturbations
- 46 to radiative forcing during the emission period *tp*:

47
$$CAGWP_{i_1}(H) = \frac{A_i a_i \tau_{H_2} \tau_i \left(\tau_{H_2} \left(\left(1 - e^{-\frac{tp}{\tau_{H_2}}} \right) - tp \right) - \tau_i \left(\left(1 - e^{-\frac{tp}{\tau_i}} \right) - tp \right) \right)}{\tau_i - \tau_{H_2}}$$
(S1)

48 Where A_i is the scaling factor that converts molar mass of species *i* (i.e., CH₄, O₃, or H₂O) to

49 $W m^{-2}$, a_i is the factor representing the impact of remaining hydrogen in the atmosphere on the

50 atmospheric molar mass of different species, τ_i is the lifetime of different species, τ_{H_2} is the

- 51 lifetime of H_2 , and tp is the emission period.
- 52 The second component $(CAGWP_{i_2})$ represents the chemical perturbation to radiative forcing at 53 timescale *H* resulting from the emitted species remaining in the atmosphere following the end of 54 the emission period:

55
$$CAGWP_{i_{2}}(H) = \frac{A_{i}a_{i}\tau_{H_{2}}^{2}\tau_{i}\left(1-e^{\frac{tp}{\tau_{H_{2}}}}\right)\left(\tau_{H_{2}}\left(e^{-\frac{tp}{\tau_{H_{2}}}}-e^{-\frac{H}{\tau_{H_{2}}}}\right)+\tau_{i}e^{-\frac{tp}{\tau_{H_{2}}}}\left(e^{\frac{tp}{\tau_{i}}}-\frac{H}{\tau_{i-1}}\right)\right)}{\tau_{i}-\tau_{H_{2}}}$$
(S2)

56 The third component $(CAGWP_{i_3})$ is the decay of radiative forcing generated during continuous 57 emission period *tp*:

58
$$CAGWP_{i_{3}}(H) = \frac{A_{i}a_{i}\tau_{H_{2}}\tau_{i}^{2}e^{-\frac{H\tau_{H_{2}}+tp(\tau_{i}+\tau_{H_{2}})}{\tau_{i}\tau_{H_{2}}}\left(e^{\frac{H}{\tau_{i}}}-e^{\frac{tp}{\tau_{i}}}\right)\left(\tau_{H_{2}}e^{\frac{tp}{\tau_{i}}}\left(1-e^{\frac{tp}{\tau_{H_{2}}}}\right)-\tau_{i}e^{\frac{tp}{\tau_{H_{2}}}}\left(1-e^{\frac{tp}{\tau_{i}}}\right)\right)}{\tau_{i}-\tau_{H_{2}}}(S3)$$

59 As in Ocko and Hamburg (2022), the overall CAGWP for each species i under given period tp

60 and timescale *H* is:

$$61 CAGWP_i(H) = CAGWP_{i_1}(H) + CAGWP_{i_2}(H) + CAGWP_{i_3}(H) (S4)$$

62 And CAGWP for emissions of hydrogen is:

63
$$CAGWP_{H_2}(H) = (1 + f_1 + f_2)CAGWP_{CH_4}(H) + CAGWP_{O_3}(H) + CAGWP_{H_2O}(H)$$
 (S5)

- 64 Comparisons between our newly derived equations and equations used in Ocko and Hamburg
- 65 (2022) are shown in Figure S11. In addition, we tested our solutions by calculating the following
- 66 cases:
- 67 **Case 1:** set tp = 2 and H = 2, which represents CAGWP at year 2 for a 2-year emission;
- 68 Case 2: set tp = 1 and H = 2, which represents CAGWP at year 2 for a 1-year emission;
- 69 Case 3: set tp = 1 and H = 1, which represents CAGWP at year 1 for a 1-year emission.
- For a linear system, CAGWP for case 1 should equal the sum of CAGWP for case 2 and case 3.
- 71 Equations from our analytic solutions give the same numerical values for the above cases,
- 72 indicating robustness of our conceptual solutions.

Figure S1. Ratios of climate impact. Same as Figure 1, but showing ratios of the climate impact of methane and hydrogen to carbon dioxide emissions. While the residence time of hydrogen is substantially shorter than that of methane, hydrogen emissions result in an increase in methane concentration that decay on the methane time scale. Thus, while the effects of methane and hydrogen differ in magnitude, the temporal pattern of response is similar in both cases.

Figure S2. Climate impact from emissions of different species. Similar to Figure 1, but for 1 ppb
increase scenarios. Note that CH₄ generates substantially more climate impacts and has a y-axis
scale that is 24 times the y-axis of H₂ and CO₂.

Figure S3. Impact of considering decayed CH₄ to CO₂. In contrast to our central cases where
CH₄ decays over time, here we consider the conversion of decayed CH₄ to CO₂, which has a
longer lifetime and adds a long-term climate impact to the warming potential of methane.

87 Figure S4. Climate impact from different hydrogen lifetimes. Radiative forcing and the global

- 88 mean temperature response from emission of hydrogen under different scenarios. Solid line
- 89 shows results under our central case, and shaded area represents results considering different

90 hydrogen lifetimes (i.e., 1.4 years and 2.5 years).

92 Figure S5. Contributions of methane and hydrogen to hydrogen warming potentials. Here we 93 show contributions of hydrogen and methane to increases in radiative forcing and global mean 94 temperature response between the low and high leakage cases. Our results show that additional 95 leakages of methane (3 % in the high leakage case vs. 1 % in the low leakage case) contribute 96 more warming to blue hydrogen, with hydrogen leakages (10 % in the high leakage case vs. 1 % 97 in the low leakage case) playing a less important role. Results showing contributions for per 98 percentage increase in leakage rate are plotted in Figure S15.

Figure S6. Factors influencing radiative forcing. Same as Figure 2, but considering radiative
forcing changes associated with different parameters. These include: considering different
hydrogen lifetimes (1.4 years or 2.5 years), include methane leakage for the avoided CO₂
emissions, and considering the conversion of the decayed methane to CO₂. The last two factors
have substantial impacts on the climate impact of fossil fuels and the net climate impact of clean
hydrogen, whereas hydrogen lifetime shows only a minor impact on our results.

Figure S7. Factors influencing temperature response. Same as Figure S6, but considering
temperature instead of radiative forcing.

- 110 Figure S8. Uncertainty of avoided CO₂ amount. Radiative forcing and global mean temperature
- 111 response under different assumptions of the avoided CO₂ amount per kg hydrogen consumption.
- 112 Solid line represents results for our central case (11 kg) and shaded area represents results under

alternative assumptions (i.e., 5 kg and 15 kg).

Figure S9. Uncertainty of the climate response function. Same as Figure 3, but combining the

Figure S10. Comparisons of different metrics. Ratios of the time-integrated relative radiative forcing (CGWP) and ratios of the global mean temperature response (GTP) are compared under continuous emission scenarios. The solid lines are the ratios of the time-integrated radiative forcing shown in Figure 2 panel e and f, and dashed lines are the ratios of the temperature changes shown in Figure 3 panel e and f.

- 124 Figure S11. Comparisons between results from our newly derived equations and those used in
- 125 Ocko and Hamburg (2022). Time-integrated radiative forcing (CAGWP defined in this analysis)

Figure S12. Similar to Figure 1 but for 100-year timescale.

134 Figure S15. Similar to Figure S5 but showing increases in climate impact for per percentage

increase in the methane and hydrogen leakage rate.

Table S1. Radiative forcing, absolute global warming potential (AGWP), absolute global

138	temperature	change potential	(AGTP), a	nd their ratios	for 1 kg pu	lse emission	of hydrogen,
-----	-------------	------------------	-----------	-----------------	-------------	--------------	--------------

139	methane,	and carbon	dioxide unde	r different ti	imescales (i	.e., 20,	100, and 500) years).
-----	----------	------------	--------------	----------------	--------------	----------	--------------	-----------

Ti	me horizon		20	100	500
	RF	10 ⁻¹⁵ W m ⁻²	15.17	0.01	0.00
Hydrogen (H ₂)	AGWP	10 ⁻¹⁵ W m ⁻²	818.78	986.26	986.43
	AGTP	10 ⁻¹⁵ K	13.18	1.03	0.20
	RF	10 ⁻¹⁵ W m ⁻²	46.25	0.05	0.00
Methane (CH ₄)	AGWP	10 ⁻¹⁵ W m ⁻²	2426.52	2971.65	2972.27
	AGTP	10 ⁻¹⁵ K	38.68	3.11	0.61
Carbon diarida	RF	10 ⁻¹⁵ W m ⁻²	1.27	0.87	0.60
(CO ₂)	AGWP	10 ⁻¹⁵ W m ⁻²	30.35	111.61	391.55
	AGTP	10 ⁻¹⁵ K	0.73	0.59	0.53
	RF	Unitless	11.94	0.02	4.39E-17
Ratio of H ₂ to CO ₂	AGWP	Unitless	26.97	8.84	2.52
	AGTP	Unitless	18.02	1.74	0.38
Dette of CIL to	RF	Unitless	36.39	0.06	1.67E-16
	AGWP	Unitless	79.94	26.63	7.59
	AGTP	Unitless	52.87	5.26	1.15

Table S2. Radiative forcing, absolute global warming potential (CAGWP), absolute global

temperature change potential (AGTP), and their ratios for 0.01 kg yr ⁻¹ continuous emissio	ns of
---	-------

143	hydrogen,	methane,	and carbon	dioxide u	under different	t timescales	(i.e., 20,	100, and	500 years).
-----	-----------	----------	------------	-----------	-----------------	--------------	------------	----------	-------------

Time horizon			20	100	500
	RF	10 ⁻¹⁵ W m ⁻²	818.78	986.26	986.43
Hydrogen (H ₂)	CAGWP	10 ⁻¹⁵ W m ⁻²	10204.07	87233.27	481801.74
	AGTP	10 ⁻¹⁵ K	390.55	619.83	822.23
	RF	10 ⁻¹⁵ W m ⁻²	2426.52	2971.65	2972.27
Methane (CH ₄)	CAGWP	10 ⁻¹⁵ W m ⁻²	30812.46	262161.26	1451060.68
	AGTP	10 ⁻¹⁵ K	1159.75	1866.75	2477.35
Carbon diarida	RF	10 ⁻¹⁵ W m ⁻²	30.35	111.61	391.55
(CO ₂)	CAGWP	10 ⁻¹⁵ W m ⁻²	327.65	6204.51	110166.33
	AGTP	10 ⁻¹⁵ K	13.41	64.04	289.99
	RF	Unitless	26.97	8.84	2.52
Ratio of H ₂ to CO ₂	CAGWP	Unitless	31.14	14.06	4.37
	AGTP	Unitless	29.12	9.68	2.84
Datia of CII to	RF	Unitless	79.94	26.63	7.59
	CAGWP	Unitless	94.04	42.25	13.17
	AGTP	Unitless	86.47	29.15	8.54

Table S3. Radiative forcing, absolute global warming potential (AGWP), absolute global

146 temperature change potential (AGTP), and their ratios for 1 kg consumption of green and blue

- 147 hydrogen, and corresponding avoided CO₂ emissions under different timescales (i.e., 20, 100,
- 148 and 500 years).

Emission assumptions			1% hydrogen and 1% methane			10% hydrogen and 3% methane		
	Time horiz	zon	20	100	500	20	100	500
	RF	10 ⁻¹⁵ W m ⁻²	0.15	0.00	0.00	1.69	0.00	0.00
Green H ₂	AGWP	10 ⁻¹⁵ W m ⁻²	8.27	9.96	9.96	90.98	109.58	109.60
	AGTP	10 ⁻¹⁵ K	0.13	0.01	0.00	1.46	0.11	0.02
	RF	10 ⁻¹⁵ W m ⁻²	1.55	0.00	0.00	5.98	0.01	0.00
Blue H ₂	AGWP	10 ⁻¹⁵ W m ⁻²	81.80	100.01	100.03	316.12	385.30	385.38
	AGTP	10 ⁻¹⁵ K	1.31	0.10	0.02	5.05	0.40	0.08
	RF	10 ⁻¹⁵ W m ⁻²	13.98	9.60	6.58	13.98	9.60	6.58
Avoided CO ₂	AGWP	10 ⁻¹⁵ W m ⁻²	333.90	1227.72	4307.03	333.90	1227.72	4307.03
	AGTP	10 ⁻¹⁵ K	8.05	6.49	5.87	8.05	6.49	5.87
Ratio of	RF	Unitless	0.01	1.47E-05	4.03E-20	0.12	1.62E-04	4.43E-19
green H ₂ to avoided	AGWP	Unitless	0.02	0.01	2.31E-03	0.27	0.09	0.03
CO ₂	AGTP	Unitless	0.02	1.60E-03	3.51E-04	0.18	0.02	3.86E-03
Ratio of	RF	Unitless	0.11	1.81E-04	5.00E-19	0.43	6.70E-04	1.85E-18
blue H2 to avoided	AGWP	Unitless	0.24	0.08	0.02	0.95	0.31	0.09
CO ₂	AGTP	Unitless	0.16	0.02	3.53E-03	0.63	0.06	0.01

Table S4. Radiative forcing, absolute global warming potential (CAGWP), absolute global

temperature change potential (AGTP), and their ratios for 0.01 kg yr⁻¹ continuous consumption

- 152 of green and blue hydrogen, and corresponding avoided CO₂ emission under different timescales
- 153 (i.e., 20, 100, and 500 years).

Emission assumptions			1% hyc	lrogen and 1	% methane	10% hydrogen and 3% methane			
	Time horizon			100	500	20	100	500	
	RF	10 ⁻¹⁵ W m ⁻²	8.27	9.96	9.96	90.98	109.58	109.60	
Green H ₂	CAGWP	10 ⁻¹⁵ W m ⁻²	103.07	881.14	4866.68	1133.79	9692.59	53533.53	
	AGTP	10 ⁻¹⁵ K	3.94	6.26	8.31	43.39	68.87	91.36	
	RF	10 ⁻¹⁵ W m ⁻²	81.80	100.01	100.03	316.12	385.30	385.38	
Blue H ₂	CAGWP	10 ⁻¹⁵ W m ⁻²	1036.78	8825.42	48838.22	3992.67	34016.83	188168.02	
	AGTP	10 ⁻¹⁵ K	39.09	62.83	83.38	151.00	242.07	321.22	
	RF	10 ⁻¹⁵ W m ⁻²	333.90	1227.72	4307.03	333.90	1227.72	4307.03	
Avoided CO ₂	CAGWP	10 ⁻¹⁵ W m ⁻²	3604.19	68249.57	1211829.61	3604.19	68249.57	1211829.61	
	AGTP	10 ⁻¹⁵ K	147.54	704.40	3189.85	147.54	704.40	3189.85	
Ratio of	RF	Unitless	0.02	0.01	2.31E-03	0.27	0.09	0.03	
to	CAGWP	Unitless	0.03	0.01	4.02E-03	0.31	0.14	0.04	
CO ₂	AGTP	Unitless	0.03	0.01	2.60E-03	0.29	0.10	0.03	
Ratio of	RF	Unitless	0.24	0.08	0.02	0.95	0.31	0.09	
blue H2 to avoided	CAGWP	Unitless	0.29	0.13	0.04	1.11	0.50	0.16	
CO ₂	AGTP	Unitless	0.26	0.09	0.03	1.02	0.34	0.10	

155 **Reference**

- 156 Ocko and Hamburg: Climate consequences of hydrogen emissions, Atmos. Chem. Phys.
- 157 Discuss., 2022.
- 158 Warwick, Griffiths, Keeble, Archibald, and Pyle: Atmospheric implications of increased
- 159 Hydrogen use, AvaliableAt: https://assets, 2022.