1 Impact of HO₂ aerosol uptake on radical levels and O₃

2 production during summertime in Beijing

- 3 Joanna E. Dyson¹, Lisa K. Whalley^{1,2}*, Eloise J. Slater^{1,a}, Robert Woodward-Massey¹,
- 4 Chunxiang Ye³, James D. Lee^{4,5}, Freya Squires^{4,b}, James R. Hopkins^{4,5}, Rachel E. Dunmore⁴,
- 5 Marvin Shaw^{4,5}, Jacqueline F. Hamilton⁴, Alastair C. Lewis^{4,5}, Stephen D. Worrall⁶, Asan
- 6 Bacak⁷, Archit Mehra^{8,c}, Thomas J. Bannan⁸, Hugh Coe^{8,9}, Carl J. Percival¹⁰, Bin Ouyang¹¹, C.
- Nicholas Hewitt¹¹, Roderic L. Jones¹², Leigh R. Crilley¹³, Louisa J. Kramer¹⁴, W. Joe. F.
- 8 Acton¹⁴, William J. Bloss¹⁴, Supattarachai Saksakulkrai¹⁴, Jingsha Xu^{14,d}, Zongbo Shi¹⁴, Roy
- 9 M. Harrison^{14,e}, Simone Kotthaus^{15,16}, Sue Grimmond¹⁵, Yele Sun¹⁷, Weiqi Xu¹⁷, Siyao
- 10 Yue^{17,18,19}, Lianfang Wei^{17,19}, Pingqing Fu^{17,18}, Xinming Wang²⁰, Stephen R. Arnold²¹,
- 11 Dwayne E. Heard¹*
- 12 [1] School of Chemistry, University of Leeds, LS2 9JT, UK.
- 13 [2] National Centre of Atmospheric Science, University of Leeds, LS2 9JT, UK.
- 14 [3] College of Environmental Sciences and Engineering, Peking University, Beijing, 100871,
- 15 China.
- 16 [4] Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of
- 17 York, Heslington, York, YO10 5DD, UK.
- 18 [5] National Centre of Atmospheric Science, University of York, Heslington, York, YO19 5DD,
- 19 *UK*.
- 20 [6] Aston Institute of Materials Research, School of Engineering and Applied Science, Aston
- 21 University, Birmingham, B4 7ET, UK.
- 22 [7] Turkish Accelerator and Radiation Laboratory, Ankara University Institute of Accelerator
- 23 Technologies, Atmospheric and Environmental Chemistry Laboratory, Gölbaşi Campus,
- 24 Ankara, Turkey.
- 25 [8] Centre of Atmospheric Sciences, School of Earth and Environmental Sciences, University
- of Manchester, Manchester, M13 9PL, UK.
- 27 [9] National Centre for Atmospheric Sciences, University of Manchester, Manchester, M13
- 28 *9PL, UK.*

- 29 [10] Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
- 30 [11] Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK.
- 31 [12] Department of Chemistry, University of Cambridge, Cambridge, UK.
- 32 [13] Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
- 33 [14] School of Geography, Earth and Environmental Sciences, University of Birmingham,
- 34 Birmingham, B15 2TT, UK.
- 35 [15] Department of Meteorology, University of Reading, Reading, UK.
- 36 [16] Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France.
- 37 [17] State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric
- 38 Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
- 39 China.
- 40 [18] Institute of Surface-Earth System Science, School of Earth System Science, Tianjin
- 41 University, Tianjin 300072, China.
- 42 [19] Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany.
- 43 [20] State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry,
- 44 Chinese Academy of Sciences, Guangzhou, 510640, China.
- 45 [21] School of Earth and Environment, University of Leeds, LS2 9JT, UK.
- 46 anow at: The Hut Group, Unit 1 Icon Manchester, Manchester Airport, WA15 0AF, UK.
- 47 bnow at: British Antarctic Survey, Cambridge, CB3 0ET, UK.
- 48 cnow at: Chaucer, Part of Bip Group, 10 Lower Thames Street, London, EC3R 6ENdnow at:
- 49 Beijing Hanzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou
- 50 *310023*, China.
- 51 ealso at: Department of Environmental Sciences, Faculty of Meteorology, Environment and
- 52 Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
- *Correspondence to: <u>D.E.Heard@leeds.ac.uk</u>, <u>L.K.Whalley@leeds.ac.uk</u>

Abstract The impact of heterogeneous uptake of HO₂ onto aerosol surfaces on radical concentrations and the O₃ production regime in Beijing summertime was investigated. The uptake coefficient of HO₂ onto aerosol surfaces, γ_{HO_2} , was calculated for the AIRPRO campaign in Beijing, Summer 2017, as a function of measured aerosol soluble copper concentration, $[Cu^{2+}]_{eff}$, aerosol liquid water content, [ALWC], and particulate matter concentration, [PM]. An average γ_{HO_2} across the entire campaign of 0.070 \pm 0.035 was calculated, with values ranging from 0.002 to 0.15, and found to be significantly lower than the value of γ_{HO_2} = 0.2, commonly used in modelling studies. Using the calculated γ_{HO_2} values for the Summer AIRPRO campaign, OH, HO2 and RO2 radical concentrations were modelled using a box-model incorporating the Master Chemical Mechanism (v3.3.1), with and without the addition of γ_{HO_2} , and compared to the measured radical concentrations. Rate of destruction analysis showed the dominant HO₂ loss pathway to be HO₂ + NO for all NO concentrations across the Summer Beijing campaign with HO₂ uptake contributing < 0.3 % to the total loss of HO₂ on average. This result for Beijing summertime would suggest that under most conditions encountered, HO₂ uptake onto aerosol surfaces is not important to consider when investigating increasing O₃ production with decreasing [PM] across the North China Plain. At low [NO], however, i.e. < 0.1 ppb, which was often encountered in the afternoons, up to 29% of modelled HO_2 loss was due to HO_2 uptake on aerosols when calculated γ_{HO_2} was included, even with the much lower γ_{HO_2} values compared to γ_{HO_2} = 0.2, a results which agrees with the aerosolinhibited O₃ regime recently proposed by Ivatt et al., 2022. As such it can be concluded that in cleaner environments, away from polluted urban centres where HO2 loss chemistry is not dominated by NO but where aerosol surface area is high still, changes in PM concentration and hence aerosol surface area could still have a significant effect on both overall HO2 concentration and the O₃ production regime. Using modelled radical concentrations, the absolute O_3 sensitivity to NO_x and VOC showed that, on average across the summer AIRPRO campaign, the O₃ production regime remained VOC-limited, with the exception of a few days in the afternoon when the NO mixing ratio dropped low enough for the O₃ regime to shift towards NO_x-limited. The O₃ sensitivity to VOC, the dominant regime during the summer AIRPRO campaign, was observed to decrease and shift towards a NO_x sensitive regime both when NO mixing ratio decreased and with the addition of aerosol uptake. This suggests that if $[NO_x]$ continues to decrease in the future, ozone reduction policies focussing solely on NO_x reductions may not be as efficient as expected if

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

[PM] and, hence, HO₂ uptake to aerosol surfaces, continues to decrease. The addition of aerosol uptake into the model, for both the γ_{HO_2} calculated from measured data and when using a fixed value of γ_{HO_2} = 0.2, did not have a significant effect on the overall O₃ production regime across the campaign. While not important for this campaign, aerosol uptake could be important for areas of lower NO concentration that are already in a NO_x-sensitive regime.

1 Introduction

Climate change and air quality are two significant environmental issues faced by society today with the drive to net zero emissions by 2050 becoming increasingly important to remain consistent with the long-term anthropogenic temperature warming outcome of below 1.5 °C as set out by the Paris Agreement in 2016. Increasing anthropogenic emissions have caused not only an increase in atmospheric warming, but also a deterioration in atmospheric air quality: a concern due to both short and long term negative health effects seen as a product of poor air quality such as respiratory and cardiovascular diseases and cancer (Brauer et al., 2016; Gakidou et al., 2017), in addition to a variety of negative effects on the environment such as increased soil acidification and the ensuing damage to vegetation and crop yield as a by-product of increasing acidity of rain (Forster et al., 2007).

Ambient air pollution has become a serious issue globally, specifically in large urban areas effected by anthropogenic emission sources. Due to rapid industrialisation, Chinese megacities in particular face significant environmental and health challenges from the decline in air quality following urbanisation, with areas such as the Beijing-Tianjin-Hebei area in the North China Plain (NCP) suffering from seasonal extreme pollution episodes as a consequence (Wang, 2021; Jin et al., 2016). In terms of human health, the most important pollutants in many regions are ground level O₃, NO_x (NO₂ and NO) and particulate matter. Nitrogen dioxide (NO₂) can be directly emitted into the atmosphere from high temperature combustion sources or can be formed via the reaction of nitrogen monoxide (NO) with an oxidising species in the troposphere, such as HO₂, leading to the formation of hydroxyl radical (OH) (Ye et al., 2017). Ozone, while vital in the stratosphere to protect the earth from harmful UV radiation and excessive planetary heating, is toxic to both plant and human life at ground level and can react with NO to form NO₂. Particulate matter is emitted anthropogenically and biogenically and can play a role in the warming and cooling of the atmosphere due to the ability of aerosols to absorb or scatter IR radiation depending on their composition. High levels of particulate matter, NO_x

and tropospheric O₃ in areas of low atmospheric mixing lead to photochemical smog and the reduction of visibility characteristic of extreme pollution episodes.

The concentration of pollutants and trace gases in the troposphere is controlled not only by emission levels but also by the oxidation capacity of the atmosphere which is determined largely by the concentration of the hydroxyl radical (OH) and the closely coupled hydroperoxyl (HO₂) radical, referred to collectively as HO_x radicals. Known for their role in chemical oxidation processes in the atmosphere, OH and HO₂ are vital species when considering climate change and air pollution. The OH radical is the main daytime tropospheric oxidant, with a major role as a source of ground level ozone (O₃) (Levy, 1971) and as a sink for both atmospheric pollutants, such as methane, and other radical species. The OH radical also has a role in the formation of secondary pollutants including secondary organic aerosols (SOAs) formed via the oxidation of volatile organic compounds (VOCs). OH and HO₂ radicals are closely linked, due to the recycling of HO₂ to give OH, either via the reaction with NO or CO, with the dominant loss pathway of HO₂ in polluted regions being the reaction with NO to form OH (for example, as shown in Beijing by Slater et al., 2020; Whalley et al., 2021). As such, understanding the sources and sinks of both OH and HO₂ within the troposphere is crucial to fully understand the concentration and distribution of trace atmospheric species associated with climate change and poor air quality. Observed HO₂ concentrations from field measurements frequently can-not be fully explained

Observed HO₂ concentrations from field measurements frequently can-not be fully explained by atmospheric chemistry models which often have a tendency to over-predict HO₂ in low NO_x conditions (Kanaya et al., 2007; Commane et al., 2010; Whalley et al., 2010; Whalley et al., 2021; Slater et al., 2020; Sommariva et al., 2004). Following the ClearfLo campaign in London 2012, zero-dimensional modelling showed an over-prediction of HO₂ by up to a factor of 10 at low NO_x which was attributed to uncertainties in the degradation mechanism of complex biogenic and diesel-related VOC species at low NO_x (Whalley et al., 2018). Over-prediction of HO₂ is also commonly thought to be due, in part, to lack of understanding of HO₂ uptake onto aerosol surfaces. A 2014 modelling study by Xue et al., 2014 focussing on the transport, heterogeneous chemistry and precursors of ground level ozone in Beijing, Shanghai, Guangzhou and Lanzhou, identified HO₂ uptake as a source of uncertainty when considering ozone production, with uptake onto aerosols having the largest effect on HO₂ concentration in Beijing where aerosol loadings were the highest.

150 While the impact of HO_2 uptake on HO_x concentrations has been calculated to vary from ~10-40 % (Jacob, 2000; Whalley et al., 2010; Whalley et al., 2021; Slater et al., 2020; Mao et al., 151 2010; Li et al., 2019; Li et al., 2018) globally, often a single value of γ_{HO_2} = 0.2 is used within 152 153 models, as recommended by Jacob, 2000. Previous experimental studies report uptake coefficients which span several orders of magnitude, however, and vary largely based on the 154 155 state of the aerosol and whether transition metal ion catalysis is involved. For dry inorganic salt aerosols values as low as γ_{HO_2} < 0.002 have been reported (Cooper and Abbatt, 1996; 156 Taketani et al., 2008; George et al., 2013) increasing to up to γ_{HO_2} = 0.2 for aqueous aerosols 157 158 (Thornton and Abbatt, 2005; Taketani et al., 2008; George et al., 2013). Previous experimental studies report much higher $\gamma_{HO_2} > 0.4$ for Cu-dopped aqueous aerosols (Thornton and Abbatt, 159 160 2005; Mozurkewich et al., 1987; Taketani et al., 2008; George et al., 2013; Lakey et al., 2016). Recently, larger values of γ_{HO_2} have been measured experimentally from samples taken offline 161 at Mt. Tai (0.13-0.34) and Mt. Mang (0.09-0.40) in China by Taketani et al., 2012, while 162 another study in Kyoto, Japan, directly measured γ_{HO_2} values under ambient conditions from 163 0.08 to 0.36 (Zhou et al., 2020). With $\gamma_{HO_2} > 0.1$, HO₂ concentrations can be significantly 164 influenced particularly in areas of low [NO] and/or high aerosol loadings (Lakey et al., 2015; 165 166 Matthews et al., 2014; Mao et al., 2013; Zhou et al., 2021; Martinez et al., 2003). 167 Following multiple policies implemented across China in response to the poor air quality "crisis", a number of studies have reported a decrease in NO_x and PM_{2.5} emissions in China 168 (Jin et al., 2016). Liu et al., 2017 reported NO_x (NO₂ + NO) emissions over 48 Chinese cities 169 to have decreased by 21 % in the period of 2011-2015, supported by observed declines in NO_x 170 171 emissions reported by other studies (Krotkov et al., 2016; Liu et al., 2016; Miyazaki et al., 172 2017; Van Der A et al., 2017). Ma et al., 2016b reported a mean annual decrease in PM_{2.5} of 0.46 µg m⁻³ between 2008-2013, while Lin et al., 2018 reported an average decrease of 0.65 173 µg m⁻³ yr⁻¹ between 2006-2010 increasing to a decline of 2.33 µg m⁻³ yr⁻¹ for the period of 174 175 2011-2015. In contrast to the observed decrease in NO_x and $PM_{2.5}$ emissions, several studies have reported increasing O₃ levels. Ma et al., 2016a reported a maximum daily average 8h 176 mean (MDA8) increase in O₃ concentrations of 1.13 ppb yr⁻¹ for the period between 2003-2015 177 178 at a rural site north of Beijing while satellite observations suggested ground level ozone had 179 increased ~7% for the period between 2005-2010 (Verstraeten et al., 2015). A recent study by 180 Silver et al., 2018 also observed a significant increase in O₃ concentrations with median MDA8 increasing at a rate of 4.6 µg m⁻³ yr⁻¹ across China. 181

A 2018 modelling study using the regional model GEOS-Chem by Li et al., 2018 suggested the increase in O₃ across China between 2013-2017 could be attributed to the decrease in PM_{2.5}, with changes in PM_{2.5} being a more important driver of increasing O₃ trends than NO_x and VOC emissions for the period studied. It was proposed that a decrease in PM_{2.5} emissions had led to a decrease in loss of HO₂ via aerosol uptake resulting in an increase in HO₂ concentration, and a proportional increase in the loss of HO₂ via NO leading to NO₂ which, when photolyzed, forms O₃ leading to an increase in O₃ (Li et al., 2018). However, analysis of measured radical budget from a field campaign in the North China Plain in Summer 2014 with a calculated γ_{HO_2} of 0.08 ± 0.13 , showed no evidence for a significant impact of HO₂ heterogeneous chemistry on radical concentrations in North China Plain, concluding that reduced HO2 uptake was unlikely to therefore be the cause of increasing O₃ levels in the North China Plain (Tan et al., 2020). Using a novel parameterisation developed by Song et al., 2020 in the framework of the resistor model to take into account the influence of aerosol soluble copper, aerosol liquid water content and particulate matter concentration on HO₂ uptake, and the Multiphase Chemical Kinetic box model (PKU-MARK) to assess the impact of HO₂ uptake on the O₃ budget for Wangdu Campaign in 2014, Song et al., 2022 concluded that HO₂ heterogeneous processes could decrease the O₃ production rates by up to 6 ppbv hr⁻¹, particularly in the morning VOClimited regime.

In this study, the new parameterisation introduced by Song et al., 2021, hereafter referred to solely as the Song parameterisation, coupled with measured data from the Summer AIRPRO campaign in Beijing 2017 was used to calculate a time series of the HO₂ uptake coefficient, which was then used to investigate the impact of heterogeneous uptake of HO₂ onto aerosol surfaces on the HO₂ radical budget in Summertime Beijing using the Master Chemical Mechanism and the impact on the O₃ regime. We will test the hypothesis that reduced HO₂ uptake due to a reduction in PM_{2.5} concentration is a significant driver of the recent increase in ozone concentrations in China.

2 Experimental

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

2.1 Campaign overview and site description

As part of the Atmospheric Pollution and Human Health (APHH) in a Chinese Megacity programme, the University of Leeds took simultaneous measurements of OH, HO₂, RO₂ and OH reactivity (k_{OH}), in addition to measurements of HCHO and photolysis rates, during two

- field campaigns at an urban site in Winter 2016 and Summer 2017 in Beijing, with the aim to
- 214 study the chemical and physical processes governing gas and particle pollution and
- 215 meteorological dynamics in the Beijing region and the links between the two (Shi et al., 2019;
- Slater et al., 2020; Whalley et al., 2021). The two field campaigns in Beijing were part of the
- 217 AIRPRO (The integrated study of AIR pollution PROcesses in Beijing) project within the
- 218 APHH programme, described fully by Shi et al., 2019.
- For the summer AIRPRO campaign, the official science period was from 23rd May 2017 to the
- 220 22nd June 2017, with observations taking place at the Institute of Atmospheric Physics (IAP)
- 221 within the Chinese Academy of Sciences, located between the third and fourth ring roads in
- 222 central Beijing within 100 m of a major road, making local traffic emission sources an
- important source of pollution during measurement period. All instrumentation for the campaign
- was located at this site, housed within nine shipping containers surrounding a meteorological
- 225 tower. Further details of the instrumentation and measurement site can be found in Shi et al.,
- 226 2019. A detailed description of the University of Leeds Fluorescence Assay by Gas Expansion
- 227 (FAGE) instrument used to make the measurements of OH, HO₂ and RO₂ radicals discussed in
- further sections can be found in Section 1.1 of Supplementary Information.

2.2 Determination of aerosol soluble copper concentration through ICP-

230 MS Analysis

229

240

- The soluble copper ion concentration was determined by analysing the effluent extracted from
- 232 quartz filter samples taken daily for the entire campaign using Inductively Coupled Plasma
- 233 Mass Spectrometry (ICP-MS). A 6 cm² punch from each large quartz filter PM_{2.5} sample was
- cut and put in a 15 mL extraction tube and extracted with 10 mL ultrapure water (18.2 $M\Omega$
- cm) under ultrasonication for 60 minutes at below 35 °C. The sample was then shaken by a
- 236 temperature-controlled shaker at 4 °C for 3 hours at approximately 60 cycles min⁻¹. After
- filtering through a filter syringe, 8 mL of effluent was transferred to a new 15 mL metal free
- 238 tube, and 2 mL of 10% HNO₃ was added to make a 10 mL 2% HNO₃ extract solution which
- was then analysed to determine the soluble copper ion concentration using ICP-MS.

2.3 MCM v3.3.1 box model description

- 241 The Master Chemical Mechanism (MCMv3.3.1) is a near-explicit mechanism which describes
- 242 the gas-phase degradation of a series of primary emitted VOC's in the troposphere. The

mechanism considers the degradation of 143 VOC's and contains ~17000 elementary reactions of 6700 species (Whalley et al., 2013).

The model was constrained to measurements of NO, NO₂, O₃, CO, HCHO, HNO₃, HONO, PAN, H₂O vapour, temperature, pressure, $j(O^1D)$, j(HONO), $j(NO_2)$, $j(CINO_2)$, j(HOCI), $j(CIONO_2)$ and specific VOC species measured using GC-FID (gas chromatography with flame ionisation) and PTR-ToF-MS (proton-transfer reaction time of flight mass spectrometry). The measured species were input into the model at a time resolution of 15 minutes, with species measured at a higher time resolution averaged up to 15 minutes and those measured at a lower time resolution interpolated to give a value every 15 minutes. The full list of all species constrained in the model is shown in Table 1.

Type	Species					
Gas-phase	NO, NO ₂ , O ₃ , CO, HNO ₃ , HONO, H ₂ O, SO ₂ , ClNO ₂ , HOCl					
inorganic species						
Gas-phase	HCHO, PAN, CH ₄ , C ₂ H ₆ , C ₂ H ₄ , C ₃ H ₈ , C ₃ H ₆ , isobutane, butane, C ₂ H ₂ ,					
organic species	trans-but-2-ene, but-1ene, Isobutene, cis-but-2-ene, 2-Methylbutane,					
	pentane, acetone, 1,3-butadiene, trans-2-pentene, cis-2- pentene, 2-					
	methylpetane, 3-methypetane, hexane, isoprene, heptane, benzene,					
	toluene, nonane, decane, undecane, dodecane, o-xylene, CH3OH,					
	CH ₃ OCH ₃ , 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene,					
	ethylbenzene, CH ₃ CHO, C ₂ H ₅ OH, α-pinene, limonene,					
	isopropylbenzene, propylbenzene, m-xylene, p-xylene, 1,2,3-					
	trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene.					
Photolysis rates	$j(O^1D), j(HONO), j(NO_2), j(CINO_2), j(HOCl), j(CIONO_2)$					
Other	Mixing height, aerosol surface area					

 Table 1. Full description of measured species during Summer AIRPRO campaign constrained within the model

- The different model scenarios referred to in this study are described in full below:
 - 1. MCM_base: The base model run constrained to species described in Table 1.
 - 2. **MCM_gamma:** The base model including heterogeneous HO_2 uptake onto aerosols with γ_{HO_2} calculated from parameterisation developed by Song et al., 2020.
 - 3. **MCM_SA:** The base model including heterogeneous HO₂ uptake, this time with γ_{HO_2} fixed at 0.2, as commonly used within models and recommended by Jacob, 2000.

2.4 Calculation of L_N/Q and absolute O₃ sensitivity

- 262 First introduced by Kleinman et al., 1997, L_N/Q is the ratio of radical loss via NO_x to total
- primary radical production and is used as a means of determining O₃ production sensitivity to
- VOCs and NO_x (Kleinman, 2000; Kleinman et al., 1997; Kleinman et al., 2001). This method
- 265 was then built on by Sakamoto et al., 2019 who included loss of peroxy radicals
- 266 (XO₂=HO₂+RO₂) onto aerosol surfaces within the calculation of O₃ sensitivity.
- 267 The only source of tropospheric O₃ is by the reaction of peroxy radicals with NO, while the
- 268 main source of XO₂ species is via the reaction of OH with VOCs.

$$XO_2 + NO \rightarrow XO + NO_2 \tag{R 1}$$

$$OH + VOC + O_2 \rightarrow XO_2 + products$$
 (R 2)

269 The O₃ production rate in the troposphere is therefore:

$$P(O_3) = k_{HO_2 + NO}[HO_2][NO] + k_{RO_2 + NO}[RO_2][NO]$$
(1)

- 270 where k_{HO_2+NO} and k_{RO_2+NO} are the bimolecular rate constants for the reaction of HO₂ and
- 271 RO_2 with NO.

261

The production rate of OH, HO₂ and RO₂ radicals, Q, must equal the loss rate:

$$Q = L_P + L_N + L_R \tag{2}$$

- where L_P is the loss rate of radicals onto aerosol particles, L_N is the loss rate of radicals via
- reaction with NO_x species and L_R is the loss rate of radicals via radical-radical reactions to give
- peroxides.

$$L_P = k_{HO_2 \, uptake}[HO_2] + k_{RO_2 \, uptake}[RO_2] = k_P[XO_2] \tag{3}$$

$$L_N \approx k_{NO_2 + OH}[NO_2][OH] \tag{4}$$

$$L_{R} = 2(k_{HO_{2}+HO_{2}}[HO_{2}]^{2} + k_{RO_{2}+HO_{2}}[HO_{2}][RO_{2}])$$
 (5)

- where $k_{HO_2 uptake}$ is the rate constant for the loss of HO₂ onto aerosol surfaces, $k_{RO_2 uptake}$ is
- 277 the rate constant for the loss of RO₂ onto aerosol surfaces, k_{NO_2+OH} is the bimolecular rate
- constant for the reaction of NO₂ with OH, $k_{HO_2+HO_2}$ is the bimolecular rate constant for the
- self-reaction of HO₂ and $k_{RO_2+HO_2}$ is the bimolecular rate constant for the reaction of RO₂ with
- 280 HO_2 .
- For radical loss onto aerosol surfaces, the rate constant is given as a function of the reactive
- uptake coefficient, γ_{XO_2} , aerosol particle surface area (cm² cm⁻³) and mean thermal velocity

- (cm s⁻¹), given by $v = \sqrt{8RT/\pi M}$ with R, T and M as the gas constant, the absolute temperature
- and the molar mass of species respectively.

$$k_{radical\,uptake} = \frac{\gamma_{XO_2} \times SA \times \nu}{4} \tag{6}$$

- According to the method described in Sakamoto et al., 2019, the ratio of radical loss to NO_x to
- primary O₃ production including radical loss via aerosol uptake, $\frac{L_N}{o}$ is defined as follows:

$$\frac{L_N}{Q} = \frac{1}{1 + \left(\frac{(2k_R[XO_2] + k_P)k_{OH+VOC}[VOC]}{(1 - \alpha)k_{HO_2+NO}[NO]k_{NO_2+OH}[NO_2]}\right)}$$
(7)

- where k_{OH+VOC} is the bimolecular rate constant for the loss of OH via reaction with VOCs and
- 288 (1α) is the fraction of XO₂ that is HO₂.
- 289 The relative sensitivity of O₃ production to NO_x and VOCs is described by:

$$\frac{\delta lnP(O_3)}{\delta ln \ [NO_x]} = (1 - \chi) \left(\frac{1 - \frac{3}{2} \frac{L_N}{Q}}{1 - \frac{1}{2} \frac{L_N}{Q}} \right) + \chi (1 - 2 \frac{L_N}{Q})$$
(8)

$$\frac{\delta lnP(O_3)}{\delta ln\left[VOC\right]} = (1 - \chi) \left(\frac{\frac{1}{2}\frac{L_N}{Q}}{1 - \frac{1}{2}\frac{L_N}{Q}}\right) + \chi \frac{L_N}{Q}$$
(9)

where $\chi = \frac{L_P}{L_P + L_R}$. The O₃ regime transition point, where $\frac{\delta lnP(O_3)}{\delta ln [NO_x]} = \frac{\delta lnP(O_3)}{\delta ln [VOC]}$, is given by $\frac{L_N}{Q_{trans}}$.

$$\frac{L_N}{Q_{trans}} = \frac{1}{2}(1 - \chi) + \frac{1}{3}\chi \tag{10}$$

- 291 Absolute O₃ sensitivity was introduced by Sakamoto et al., 2019, and allows for the assessment
- of how reduction in O₃ precursors could contribute to reduction in P(O₃) by integrating over
- 293 time and area. The absolute sensitivity of O_3 production to VOC and NO_x is then described by:

Absolute
$$P(O_3) = \frac{\delta P(O_3)}{\delta \ln [X]} = P(O_3) \frac{\delta P(O_3)}{\delta \ln [X]}$$
 (11)

where is [X] is NO_x or VOC.

295

2.5 Description of the "Song parameterisation"

- A large uncertainty in determining the effect of HO₂ uptake onto the surface of aerosol particles
- 297 is the lack of understanding of the dependence of γ_{HO_2} on Cu (II)/transition metal ion

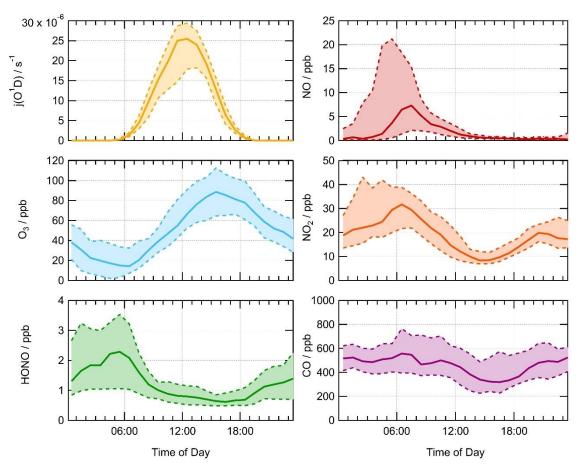
concentration within aerosols. Experimentally this dependence is quite well known from laboratory studies (Mozurkewich et al., 1987; Thornton and Abbatt, 2005; George et al., 2013; Mao et al., 2013), however the effective concentrations in ambient aerosols and the impact on γ_{HO_2} of aerosol liquid water concentration, [ALWC], has not been incorporated into models before. A novel parameterisation was developed by Song et al., 2020 in the framework of the resistor model to include the influence of aerosol soluble copper on the uptake of HO₂. The new parameterisation for the uptake coefficient of HO₂ onto aerosols, as given in Song et al., 2020, is as follows:

$$\frac{1}{\gamma_{HO_2}} = \frac{1}{\alpha_{HO_2}} + \frac{3 \times \nu_{HO_2}}{(4 \times 10^6) \times R_d H_{eff} RT \times \left(5.87 + 3.2 ln \left(\frac{ALWC}{[PM] + 0.067}\right)\right) \times [PM]^{-0.2} \times [Cu^{2+}]_{eff}^{0.65}}$$
(12)

where γ_{HO_2} is the uptake coefficient of HO₂ onto aerosols, α_{HO_2} is the mass accommodation coefficient of HO₂, ν_{HO_2} is the mean molecular speed in cm s⁻¹, R_d is the count median radius of the aerosol in cm, H_{eff} is the effective Henry's Law constant calculated from $H_{eff} = H_{HO_2} \left(1 + \frac{K_{eq}}{[H^+]}\right)$ where H_{HO_2} is the physical Henry's Law constant for HO₂ (i.e. 3900 (Thornton et al., 2008)) in M atm⁻¹, K_{eq} is the equilibrium constant for HO₂ dissociation (M), and $[H^+]$ is the hydrogen ion concentration within the aerosol calculated from the pH (M), R is the gas constant in cm³ atm K⁻¹ mol⁻¹ (i.e. 82.05), T is the temperature in K, [ALWC] is the aerosol liquid water content in μ g m⁻³ (which is related to the ambient relative humidity), [PM] is the mass concentration of PM_{2.5} in μ g m⁻³ and $[Cu^{2+}]_{eff}$ is the effective aerosol condensed-phase soluble copper (II) ion concentration in mol L⁻¹.

The Song parameterisation can reportedly be used for urban environmental conditions of aerosol mass concentrations between 10-300 μ g m⁻³; aqueous copper (II) concentrations of 10^{-5} –1 mol L⁻¹; and relative humidity between 40-90 %. However, for the Summer AIRPRO campaign data, the minimum [ALWC] supported by the parameterisation was 14μ g m⁻³, below which the parameterisation returned negative values for γ_{HO_2} . As such, despite the average calculated [ALWC] for the campaign being $6.9 \pm 10 \mu$ g m⁻³, a fixed value of 14μ g m⁻³ was used to calculate γ_{HO_2} across the entire campaign.

3 Results and Discussion


3.1 Overview of field observations during summer AIRPRO campaign Radical concentration measurements were taken throughout the official science period of the summer campaign, from 23/05/2017 to 22/06/2017, using the Fluorescence Assay by Gas Expansion technique. Alongside the radical observations and photolysis rate measurements made by the University of Leeds, there was a varied suite of supporting measurements operated by several universities and institutions. The supporting measurements used for the analysis and discussion in this study were provided chiefly by the Universities of York, Birmingham and Cambridge as detailed in Table 2.

Instrument	Species measured	University	Reference		
FAGE	OH, HO ₂ , RO ₂	Leeds	Whalley et al., 2010; Whalley		
			et al., 2021; Slater et al., 2020		
OH reactivity	OH reactivity	Leeds	Stone et al., 2016; Whalley et		
			al., 2021; Slater et al., 2020		
Spectral Radiometer	Photolysis rates	Leeds	Bohn et al., 2016		
Filter Radiometer	j(O¹D)	Leeds	Whalley et al., 2010		
Teledyne CAPS	NO_2	York	Smith et al., 2017		
TEI 42c	Total NO _y	York	Smith et al., 2017		
TEI 49i	O ₃	York	Smith et al., 2017		
Sensor box	СО	York	Smith et al., 2017		
DC-GC_FID	C ₂ -C ₇ VOCs and oVOCs	York	Hopkins et al., 2011		
GCxGC-FID	C ₆ -C ₁₃ VOCs and oVOCs	York	Dunmore et al., 2015		
BBCEAS	HONO	Cambridge	Le Breton et al., 2014		
TEI 42i	NO	Birmingham	-		
LOPAP	HONO	Birmingham	Crilley et al., 2016		
SMPS	Particle Size distribution	Birmingham	Wiedensohler et al., 2012		
High volume sampler	PM _{2.5} filter samples, Aerosol copper	IAP	-		

Table 2. Measurements taken by universities and institutions during the Beijing Summer AIRPRO campaign. These species are directly referred to in this chapter: full description of every instrument and measurement taken can be found in Slater, 2020. IAP: Institute of Atmospheric Physics, Beijing. Time resolution of all instruments was averaged up to or interpolated down to 15 minutes for modelling purposes with the exception of the $PM_{2.5}$ filter samples, of which there was only 1 sample taken a day.

The median average diurnals for important gas phase species (ppb) and $j(O^1D)$ (s⁻¹) measured during the summer campaign are shown in Figure 1. $j(O^1D)$ showed a maximum at solar noon peaking at 2.5×10^{-5} s⁻¹. The diurnal variation in both NO and NO₂ was very distinct, with a peak in NO at rush hour (~08:00) of ~ 8 ppb. NO decreased into the afternoon following this morning peak to a minimum of 0.3 ppb. The low values of NO mixing ratio observed in the afternoon were a result of high levels of O₃, peaking at 89 ppb at ~15:30, leading to increased titration of NO + O₃ to give NO₂, the diurnal of which can be seen to peak in the morning at ~ 32 ppb at 06:30, coinciding with peak in traffic emissions. Conversely O₃ mixing ratio was at a minimum of ~14 ppb during the morning traffic peak in NO. Due to the expected

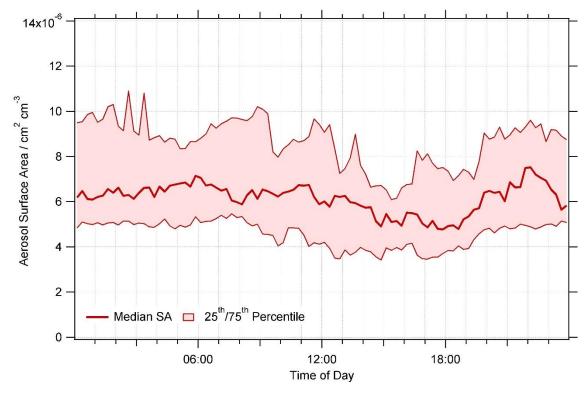
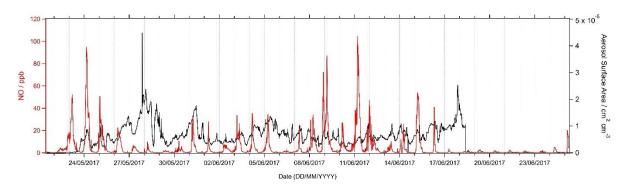

accumulation of HONO overnight, HONO mixing ratio is highest in the morning, peaking before 07:30 at \sim 7 ppb, after which HONO is lost rapidly via photolysis to give OH + NO. This study will use these measured observations to compare modelled and measured concentrations of OH, HO₂ and RO₂ radicals and investigate the effect of HO₂ uptake on radical concentrations.

Figure 1. Average median diurnal profile for measured j(O¹D) (s⁻¹), O₃ (ppb), HONO (ppb), NO (ppb), NO₂ (ppb) and CO (ppb) for the Summer AIRPRO campaign. The dashed lines with shaded regions represent the 25th/75th percentiles. Diurnals show 60 minute averages, taken over the entire measurement period.


The majority of the Summer Beijing campaign occurred during a non-haze period, meaning PM_{2.5} concentrations remained below 75 µg m⁻³, only exceeding this on the 28/05, 31/05, 05/06, 07/06, 17/06 and 18/06/2017. The average median diurnal of PM_{2.5} surface area (cm² cm⁻³) is shown in Figure 2. PM_{2.5} surface area concentration was available at a higher resolution due to use of online particle sizers compared to filter samples taken daily to give PM_{2.5} mass concentration. PM_{2.5} surface area was then averaged up to a time resolution of 15 minutes to be used in the model. Online particle sizers were run without a drying inlet to ensure aerosol measurements were as close to real ambient size distributions as possible, and therefore

correction for hygroscopic growth was not necessary. No strong diurnal trend was seen, with an average across the campaign of 5.5×10^{-6} cm² cm⁻³, with a maximum surface area of 2.5×10^{-5} cm² cm⁻³.

Figure 2. Average median diurnal of $PM_{2.5}$ aerosol surface area (cm² cm⁻³) for Summer AIRPRO campaign. Data averaged up to 15 mins time resolution. The dashed lines with shaded regions represent the $25^{th}/75^{th}$ percentiles.

During haze periods in Beijing, it is expected that a strong correlation would exist between PM_{2.5} and NO_x, as seen in Winter Beijing AIRPRO campaign in 2016 (Slater et al., 2020). However, during the Summer campaign, no strong correlation between PM_{2.5} and NO_x was seen. The time series of NO (ppb) and PM_{2.5} (cm² cm⁻³) is shown in Figure 3. A correlation plot of PM_{2.5} aerosol surface area (cm² cm⁻³) versus NO and NO₂ mixing ratio (ppb) is shown in Figure 1 of Supplementary Information.

Figure 3. Time series of measured NO / ppb and $PM_{2.5}$ / $cm^2 cm^{-3}$ across entire summer AIRPRO campaign in Beijing.

3.2 Calculated γ_{HO_2} for summer AIRPRO campaign

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

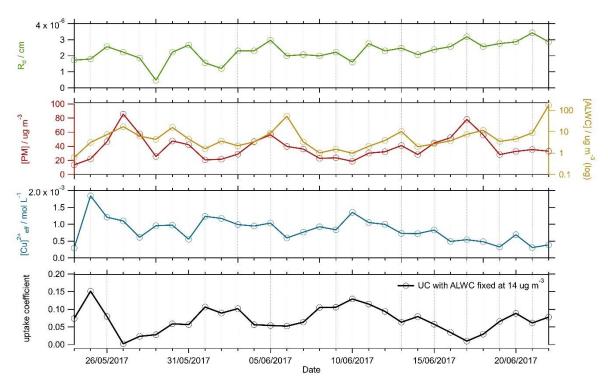
402

403

404

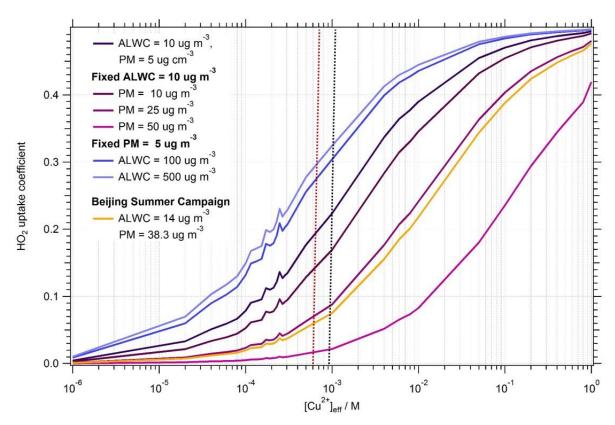
405

406


Measured values of [PM], copper (II) ion concentration and aerosol pH (used to calculate H_{eff} in equation 12), and values of [ALWC] estimated using the ISORROPIA-II thermodynamic equilibrium model (Fountoukis and Nenes, 2007) were input into the parameterisation at a time resolution of 1 day. PM_{2.5} mass concentration and Cu (II) ion concentration values were measured by extracting from filter samples offline with one filter sample taken every day. As such all measured values input into the parameterisation were averaged up to this time resolution. R_d was calculated from the measured aerosol size distribution across the entire campaign. A value of 0.5 was chosen for the mass accommodation coefficient, a_{HO_2} , to reflect values previously measured for copper doped inorganic salts (Thornton and Abbatt, 2005; George et al., 2013; Taketani et al., 2008) and to allow better comparison with results from Song et al., 2020. For summer AIRPRO campaign, the soluble copper ion concentration was measured by extracting Cu (II) ions from filter samples and analysing the effluent using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). As in Song et al., 2020, the total copper (II) mass concentration (ng m⁻³ converted to g m⁻³) was divided by the aerosol volume concentration (nm³ cm⁻³ converted to dm³ m⁻³) and the molar mass of copper (g mol⁻¹) to give the total copper molar concentration in the aerosol, $[Cu^{2+}]_{eff}$ (mol L⁻¹), which was then used in equation 12. The average values across summer AIRPRO campaign for parameters used in equation 12 are shown in Table 3.

Parameter	Average value across campaign
Temperature (K)	300
Relative humidity (%)	43
Aerosol pH	3
Count median radius (cm)	2.3×10 ⁻⁶
ALWC (μg m ⁻³) ^a	14
[PM] (µg m ⁻³)	38.3
[Cu ²⁺]eff (mol L ⁻¹)	0.0008
$[Cu^{2+}]_{eff}$ (ng m ⁻³)	4
a_{HO_2}	0.5 (fixed)

Table 3. Average values for summer AIRPRO campaign in Beijing, 2017 for parameters in equation 12. ^aThis was a fixed minimum value of ALWC for the parameterisation to be used for this data set, fully explained in Section 3.4. Cu (II) ion concentration is given in both mol L⁻¹ and ng m⁻³, due to mol L⁻¹ being used in equation 12 but ng m⁻³ being the more atmospherically relevant unit.

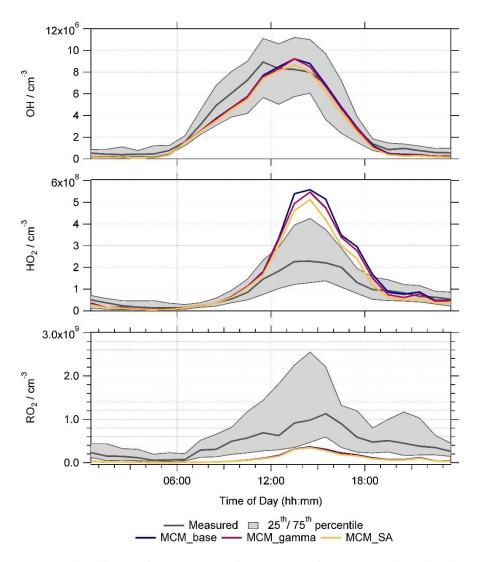

For the Beijing summer AIRPRO campaign, an average value of γ_{HO_2} = 0.07 ± 0.035 (1 σ) was calculated across the entire campaign, with values ranging from 0.002 to 0.15. The time series for the calculated γ_{HO_2} , R_d (cm), [PM] (μ g m⁻³), [ALWC] (μ g m⁻³) and [Cu²⁺]_{eff} (mol L⁻¹) is shown in Figure 4.

As fully described in Song et al., 2020 supplementary information, the uncertainty in the calculation of γ_{HO_2} using equation 12 comes mainly from the uncertainty in [ALWC] (~10-20 %, calculated using ISORROPIA-II (Fountoukis and Nenes, 2007)), the uncertainty in the mass accommodation coefficient (varying a_{HO_2} within the parameterisation from 0.1 to 1, increased the calculated γ_{HO_2} from 0.042 to 0.077. However, by a_{HO_2} = 0.5 this dependence has begun to plateau with γ_{HO_2} = 0.070 when a_{HO_2} =0.5), and the uncertainty of the model calculations used to formulate the parameterisation (~40 % as explained in Song et al., 2020). Uncertainties in measured parameters i.e. temperature, [PM], [Cu²⁺] and count median radius are due to associated instrumental error which are assumed small in comparison.

Figure 4. Time series of R_d (cm, orange), [PM] ($\mu g m^{-3}$, red), [ALWC] ($\mu g m^{-3}$, yellow) and [Cu²⁺]_{eff} (mol L⁻¹, blue), parameters used in equation 12 to calculate γ_{HO_2} (bottom panel). Each parameter has been averaged up to a time resolution of 1 day to match the lowest resolution measurement. The calculated γ_{HO_2} is shown in the bottom panel, for a fixed [ALWC] = 14 ug m⁻³ (solid black line).

To examine the effect within the Song parameterisation of [PM] and [ALWC] on γ_{HO_2} as a function of copper molarity, the uptake coefficient was calculated by varying the [Cu²⁺]_{eff} concentration within the parameterisation with alternatively fixed values of [PM] or [ALWC]. For a given value of [Cu²⁺]_{eff}, at fixed [ALWC] an increase in [PM] causes a decrease in the curvature of γ_{HO_2} vs [Cu²⁺]_{eff}, whereas at a fixed [PM], an increase in [ALWC] leads to an increase in γ_{HO_2} for a given [Cu²⁺]_{eff}. As shown in Figure 5, [AWLC] and [PM] have the greatest effect on γ_{HO_2} between [Cu²⁺]_{eff} = 10⁻⁵-10⁻¹M before the curve levels off towards the mass accommodation coefficient of 0.5, as input into the model. For context within the Beijing campaign, the curve of γ_{HO_2} vs [Cu²⁺]_{eff} was plotted in Figure 5 using the average values for the AIRPRO summer campaign fixed at [ALWC] = 14 ug m⁻³ and [PM] = 38.3 ug m⁻³. For the average AIRPRO summer campaign values, an increase [Cu²⁺]_{eff} has the most effect on γ_{HO_2} between [Cu²⁺]_{eff} ~10⁻³ -10⁻¹ M, with the average [Cu²⁺]_{eff} for the campaign being 8 × 10⁻⁴ M (values ranged from 3 × 10⁻⁴ to 2 × 10⁻³ M across campaign).

Figure 5. Dependence of uptake coefficient, γ_{HO_2} on aerosol copper concentration, $[Cu^{2+}]_{eff}$ (M), showing the effect of varying [PM] with fixed [ALWC] and vice versa. Pink to purple lines show the effect on uptake coefficient of varying [PM] from 5-50 µg m⁻³ with a fixed [ALWC] of 10 g cm⁻³. Blue to dark blue lines show the effect on γ_{HO_2} of varying [ALWC] from 10-500 ug m⁻³ (much higher than typically seen atmospherically) with a fixed [PM] of 5 µg m⁻³. The yellow line shows the effect on the γ_{HO_2} of varying $[Cu^{2+}]_{eff}$, with [ALWC] and [PM] taken as the averages from the Beijing campaign, i.e. [ALWC] = 14 ug m⁻³ and [PM] = 38.8 ug m⁻³. Black dashed line indicates the average $[Cu^{2+}]_{eff}$ for Beijing summer campaign. Red dashed line indicates the average $[Cu^{2+}]_{eff}$ for the Wangdu campaign. Note that the [PM] and [ALWC] are both higher for Wangdu campaign compared to the Beijing campaign.


3.3 Box modelling results

3.3.1 Effect of calculated γ_{HO_2} on modelled AIRPRO Summer radical concentrations

As reported in Whalley et al., 2021, radical concentrations were high during the AIRPRO summer campaign with maximum measured concentrations of OH, HO₂ and RO₂ of 2.8×10^7 molecule cm⁻³, 1×10^9 molecule cm⁻³ and 5.5×10^9 molecule cm⁻³ on the afternoons of the 30th May, 9th June and 15th June respectively. The time series of measured OH, HO₂ and RO₂ for the entire summer campaign as measured by the Leeds FAGE instrument with MCM_base model outputs for OH, HO₂ and RO₂ can be found in Whalley et al., 2021. Using the MCM and the γ_{HO_2} calculated for the Summer Beijing campaign with the Song parameterisation, the

- effect of HO₂ uptake on the concentration of OH, HO₂ and RO₂ radicals was investigated and compared to the base model.
- The MCM_base model predicted radical concentrations are shown as average diurnal profiles
- compared to both the measured diurnals and the MCM_gamma model in Figure 6. A detailed
- description of the diurnal variation in measured and modelled OH, HO₂ and RO₂ radicals for
- 453 the summer Beijing campaign is given in Whalley et al., 2021, so only a brief summary will be
- 454 given here.
- The average diurnal profiles show that the MCM_base model can re-produce the measured OH
- 456 concentrations relatively well, however the modelled peak in OH is shifted to the afternoon
- with a peak at ~14:00 compared to the midday peak in the observations. In comparison, HO₂
- is over-predicted, particularly during the day with the exception being when NO was high from
- 9-12th June. Day-time HO₂ is over-predicted on average by MCM base by up to a factor of
- 460 ~2.9 with a peak in the diurnal at ~ 14:30. In-comparison, daytime RO₂ concentration is under-
- predicted on average by MCM_base by up to a factor of ~7.5, with a larger under-prediction
- in the morning between ~6:30-10:30 when NO levels were highest. At the peak of the RO₂
- diurnal, on average the concentration was under-predicted by MCM_base by a factor of ~2.7.
- While the MCM_base model is able to reproduce measured OH concentrations reasonably
- well, the inability of this model to reproduce HO₂ and RO₂ suggests missing key reactions. In
- Whalley et al., 2021, budget analysis highlighted a missing source of OH, in addition to a
- 467 missing RO₂ production reaction which could partially explain the under-prediction of RO₂ by
- 468 the MCM_base model. It was also suggested that the over-prediction of HO₂ could be due, in
- part, to the propagation rate of RO₂ to HO₂ being significantly slower than currently included
- in the model. This could be due to a lack of understanding of the rate of reaction of RO₂ with
- NO to produce different RO₂ species, i.e. $RO_2 + NO \rightarrow RO_2$, which would lead to propagation
- of RO₂ to different, more oxidised RO₂ species, competing with the recycling of RO₂ via RO₂
- 473 to give HO₂. It is also possible, that the overestimation in the propagation rate of RO₂ to HO₂
- could be due to a lack of RO₂ autoxidation pathways included within the model which could
- lead to the formation of highly oxygenated molecules as opposed to HO₂. The higher, measured
- 476 RO₂ concentrations could, therefore, suggest that the lifetime of total RO₂ is longer than
- 477 currently considered within the model.
- As stated in Section 3.2, for the Beijing summer AIRPRO campaign, values of calculated γ_{HO_2}
- varied ranging from 0.002 to 0.15, giving an average value of γ_{HO_2} = 0.07 ± 0.035 (1 σ) across

the campaign. These γ_{HO_2} values calculated on a daily time resolution, were added into the MCM_base model to give the MCM_gamma model. The average median diurnals of modelled OH, HO₂ and RO₂ (molecule cm⁻³) for MCM_base, MCM_gamma (with γ_{HO_2} ranging from 0.002-0.15) and MCM_SA (with γ_{HO_2} fixed at 0.2) are shown in Figure 6.

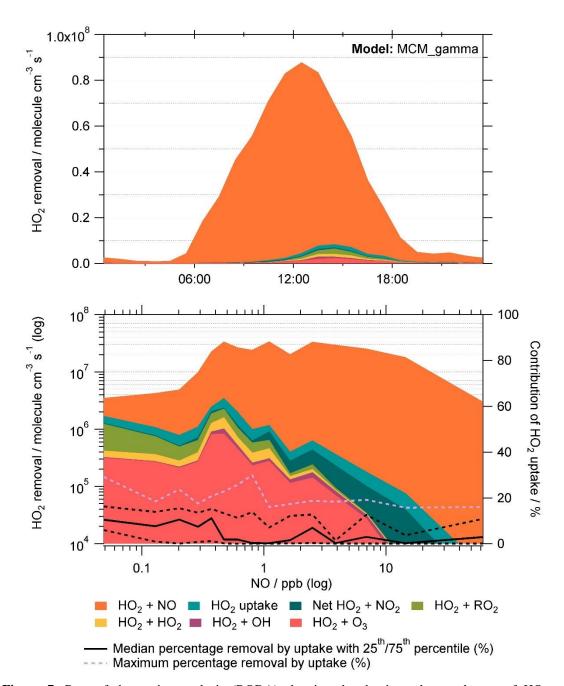


Figure 6. Average median diurnals for measured radical concentrations (grey) and modelled OH, HO₂ and total RO₂ radical concentrations in molecule cm⁻³ for MCM_base (blue), MCM_gamma (dark pink) and MCM_SA (yellow) model runs. All diurnal's are 60 minute averages, taken over the entire measurement period. Shaded grey regions represent the 25th/75th percentiles of measured radical data.

Due to a combination of the calculated uptake coefficient being smaller, on average, than usually used within models (i.e < 0.2), and the high NO_x levels, little effect on average radical diurnals was seen by adding in HO_2 aerosol uptake into the model. Figure 6 shows that the OH and RO_2 radical concentrations were not significantly affected on average across the campaign by the addition of aerosol uptake. The average median diurnal of HO_2 can be seen as slightly

489 decreased, i.e. the over-prediction of HO₂ is slightly less for MCM_gamma compared to 490 MCM_base, with the over-prediction decreasing from a factor of ~2.9 to ~2.4 at the 14:30 peak 491 in the diurnal. 492 Due to the recycling of RO₂ to HO₂ and then back to OH by NO, it is important to consider the 493 dependency of radicals on NO and whether the addition of the HO₂ uptake coefficient has an 494 effect on the model's ability to predict the dependency of radical concentrations on NO. The 495 dependency of measured/modelled OH, HO2 and RO2 on NO mixing ratio is discussed fully for the MCM_base model in Whalley et al., 2021, and is compared to MCM_gamma in Figure 496 497 2 of Supplementary Information. 498 To showcase any effect adding HO₂ aerosol uptake would have on HO₂ loss pathways as a 499 whole, and thereby make a judgement on the effect of decreased PM_{2.5} and hence HO₂ loss via 500 aerosol surfaces on the O₃ production within Beijing, a rate of destruction analysis (RODA) 501 was done for MCM_gamma. The loss pathways of HO₂ within MCM_gamma are shown in 502 Figure 7 as an average median diurnal and as a function of NO mixing ratio (ppb), in addition 503 to the percentage contribution of HO₂ uptake to the overall loss of HO₂ within the model.

504

Figure 7. Rate of destruction analysis (RODA) showing the dominant loss pathways of HO_2 within MCM_gamma shown as (a) a diurnal variation and (b) as a function of NO mixing ratio (ppb). Median removal of HO_2 by uptake (%) as a function of NO (ppb) is shown as solid black line in (b), with $25^{th}/75^{th}$ percentile shown as the black dashed lines. Maximum percentage removal by uptake for a given NO mixing ratio is shown as a lilac dashed line.

As shown in the RODA, the dominant loss pathway of HO_2 is $HO_2 + NO$ across the entire campaign (90 ± 14 % of total loss), followed by $HO_2 + RO_2$ (3.5 ± 8.1 % of total loss). This is expected due to high levels of NO_x in Beijing, especially during the day. As seen in the RODA diurnal, the $HO_2 + NO$ loss pathway peaks at midday following the morning peak in NO mixing ratio due to rush hour traffic. As NO mixing ratio decreases, the relative importance of other

loss pathways of HO₂ increases. At the lowest NO mixing ratio, i.e. < 0.1 ppb NO, the loss pathways of HO₂ within MCM_gamma with the largest contribution to total loss were HO₂ + NO (55 \pm 19 %), HO₂ + RO₂ (23 \pm 17 %) and HO₂ + O₃ (9.3 \pm 4.1 %). It is worth noting that as the NO mixing ratio decreases the relative importance of HO₂ removal by O₃ increases presumably due to the titration reaction of O₃ with NO decreasing (and hence higher observed [O₃]). This could be important when considering policy changes with NO_x pollution in China decreasing in recent years. The contribution of the various loss pathways of HO₂ to total HO₂ loss within MCM_gamma under low (< 0.1 ppb) and high (> 0.1 ppb) NO are compared in Table 4.

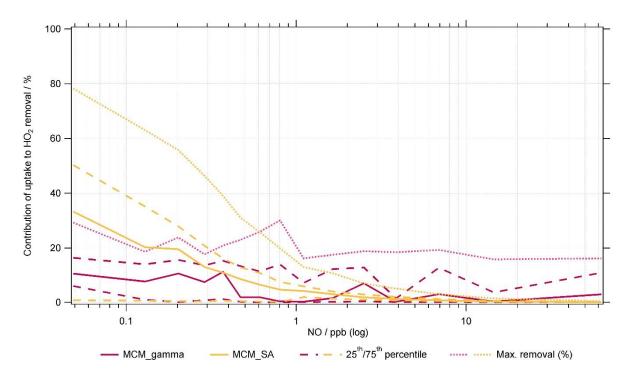
	HO ₂ +O ₃	НО2+ОН	HO ₂ +HO ₂	HO ₂ +RO ₂	Net HO ₂ +NO ₂	HO ₂ +NO	uptake
Low NO (< 0.1 ppb)	9.3 ± 4.1	0.1 ± 0.1	3.0 ± 1.8	23 ± 17	2.4 ± 3.0	55 ± 19	7.3 ± 7.3
High NO (> 0.1 ppb)	1.8 ± 2.3	0.2 ± 0.3	0.8 ± 1.3	2.0 ± 4.4	0.4 ± 1.2	93 ± 9.0	1.9 ± <0.01

Table 4. Average relative percentage contribution of individual HO₂ loss pathways to the total loss of HO₂ within MCM_gamma, averaged for days when NO was low, (< 0.1 ppb) and high (> 0.1 ppb). Net HO₂+NO₂ refers to HO₂+NO₂ \rightarrow HO₂NO₂ \rightarrow HO₂+NO₂ \rightarrow HO₂+NO₂.

Though there is not a strong dependence of HO_2 aerosol uptake loss pathway on NO mixing ratio for the calculated γ_{HO_2} (av. 0.07 ± 0.035) within MCM_gamma, it can be seen that at the lowest NO mixing ratios an average of ~7 % of total HO_2 loss is due to uptake, with a maximum at the lowest NO of ~29% (shown as lilac dashed line in Figure 7). This is a significant loss of HO_2 , especially on days where the NO mixing ratio is low and the aerosol surface area is high, highlighting that the uptake of HO_2 onto aerosols could be important, and will be increasingly so at lower NO.

3.3.2 Comparison to γ_{HO_2} fixed at 0.2

While the maximum γ_{HO_2} calculated using the Song parameterisation for the summer AIRPRO campaign was 0.15, to provide context with previous modelling studies, the commonly used fixed value of γ_{HO_2} = 0.2 was added into the MCM_base model to give the MCM_SA model. The average median diurnals of modelled OH, HO₂ and RO₂ (molecule cm⁻³) for MCM_base, MCM_gamma and MCM_SA are shown in Figure 6.

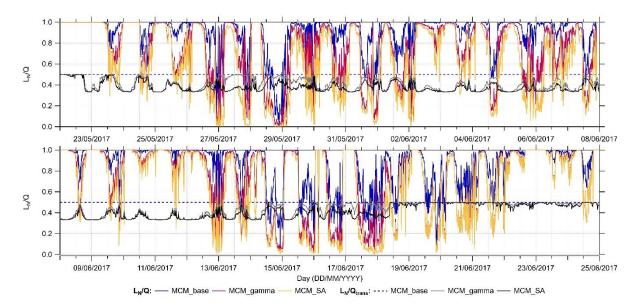

In comparison to calculated γ_{HO_2} in MCM_gamma, a fixed γ_{HO_2} = 0.2 had a more significant effect on radical concentrations. While the median diurnal shows that the RO₂ concentration was not significantly affected by the addition of HO₂ uptake, the over-prediction seen in the average median HO₂ concentration compared to the measurements at the 14:30 peak decreased

from a factor of ~2.9 in MCM_base to ~2.3. A plot of measured to modelling ratio of HO₂ as a function of aerosol surface area is shown in Figure 4 of Supplementary Information for both MCM_gamma and MCM_SA. OH radical concentrations were still relatively well reproduced with early afternoon OH concentrations predicted better though this is due to a shift in the modelled peak compared to the measured concentration peaking at midday. The ability of the model to reproduce the NO dependence of radical concentrations with the addition of γ_{HO_2} = 0.2 is discussed in Section 1.3 of Supplementary Information.

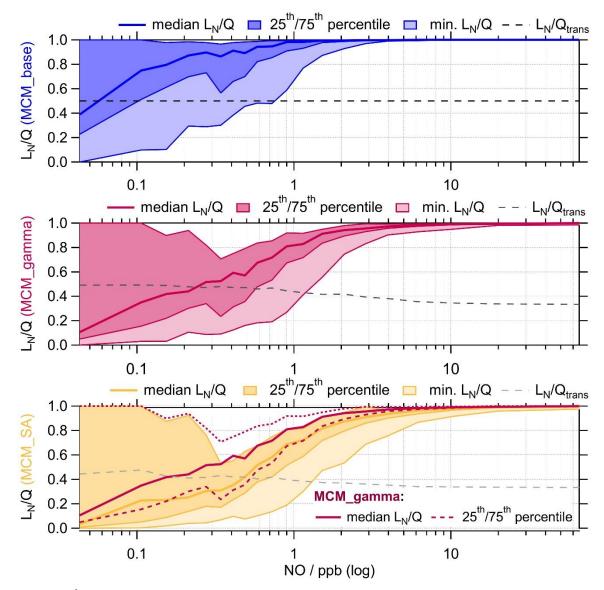
Analysis of the RODA for MCM_SA shows that with γ_{HO_2} = 0.2 HO₂ aerosol uptake is a significant contributor to total loss of HO₂ (8.1 ± 13 %, averaged for all NO mixing ratios). However, for all NO mixing ratios HO₂ + NO is still the dominant loss pathway (86 ± 18 %), as expected. At the lowest NO mixing ratios (i.e. < 0.1 ppb) an average of ~29 % of total HO₂ loss is due to uptake, with a maximum at the lowest NO of ~78%, shown in Figure 8. The contribution of the various loss pathways of HO₂ to total HO₂ loss within MCM_gamma under low (< 0.1 ppb) and high (>0.1 ppb) NO are compared in Table 5. The comparison of percentage contribution of HO₂ uptake to total HO₂ removal binned against NO mixing ratio (ppb) for MCM_gamma and MCM_SA RODA is shown in Figure 8.

	HO ₂ +O ₃	НО2+ОН	HO ₂ +HO ₂	HO ₂ +RO ₂	Net HO ₂ +NO ₂	HO ₂ +NO	uptake
Low NO (< 0.1 ppb)	6.9 ± 3.5	0.1 ± 0.1	1.7 ± 1.4	17 ± 14	1.6 ± 2.2	44 ± 24	29 ± 24
High NO (> 0.1 ppb)	1.8 ± 2.1	0.2 ± 0.2	0.6 ± 1.0	1.7 ± 3.8	0.4 ± 1.0	89 ± 13	6.5 ± 9.7

Table 5. Average relative percentage contribution of individual HO₂ loss pathways to the total loss of HO₂ within MCM_SA (fixed $\gamma_{HO_2} = 0.2$), averaged for days when NO was low, (< 0.1 ppb) and high (> 0.1 ppb). Net HO₂+NO₂ refers to HO₂+NO₂ \rightarrow HO₂NO₂ \rightarrow HO₂+NO₂ \rightarrow HO₂+NO₂.


Figure 8. Average percentage contribution of HO₂ uptake to total HO₂ removal within MCM_gamma (pink line, $\gamma_{HO_2} = 0.070 \pm 0.035$) and MCM_SA model (yellow line, $\gamma_{HO_2} = 0.2$) for Summer AIRPRO campaign plotted as a function of NO mixing ratio (ppb). Dashed lines represent the $25^{th}/75^{th}$ percentiles. Dotted lines represent maximum removal.

3.3.3 Effect of γ_{HO_2} on the O₃ regime


 $\frac{L_N}{Q}$ was calculated for all model runs, MCM_base, MCM_gamma and MCM_SA using modelled [HO₂] and [RO₂] concentrations but measured values of [NO] and [NO₂], to investigate the effect on the O₃ regime of adding HO₂ aerosol uptake into the model. The time series of calculated $\frac{L_N}{Q}$ for all models, in addition to the regime transition point, $\frac{L_N}{Q_{trans}}$ for the entire campaign is shown in Figure 9.

When $\frac{L_N}{Q} < \frac{L_N}{Q_{trans}}$, this is defined as a NO_x-sensitive regime, meaning that small changes in NO_x will affect the rate of in situ O₃ production. This can be seen on a few days across the campaign, specifically in the afternoon, due to NO_x peaking in the morning due to traffic emissions before rapidly decreasing in the afternoon which pushes the O₃ regime on certain days from VOC-limited to NO_x-limited. However, for the majority of the campaign, the O₃ production regime is VOC-limited, for all models, meaning that O₃ production rates will not be significantly affected by small changes in NO_x.

Binning $\frac{L_N}{Q}$ against NO mixing ratio (ppb), in Figure 10, shows the change from VOC to NO_x-limited regime at very low NO mixing ratios for MCM_base, MCM_gamma and MCM_SA. As aerosol uptake is added the transition to NO_x-limited regime occurs at higher NO, with average median transition point occurring at ~ 0.2 ppb NO for MCM_gamma (average γ_{HO_2} = 0.070 ± 0.035) and at ~0.5 ppb NO for MCM_SA (fixed γ_{HO_2} = 0.2). This suggests that a reduction in PM (and therefore uptake of HO₂ onto aerosols) would delay the transition to a NO_x-sensitive regime until lower NO_x levels are reached. Therefore, any emissions policy aimed at reduced NO_x to decrease O₃ levels would not be as effective if PM is decreasing at the same time.

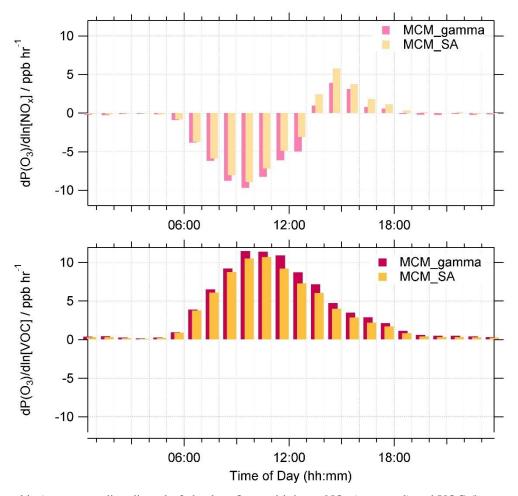


Figure 9. Time series of calculated $\frac{L_N}{Q}$ and $\frac{L_N}{Q_{trans}}$ values for MCM_base (blue), MCM_gamma (pink) and MCM_SA (yellow) models across the entire summer AIRPRO campaign. $\frac{L_N}{Q_{trans}}$ for MCM_gamma is shown as grey line, while $\frac{L_N}{Q_{trans}}$ for MCM_SA is the black line.

Figure 10. $\frac{L_N}{Q}$ for MCM_base (blue, top panel), MCM_gamma (pink, middle panel) and MCM_SA (yellow, bottom panel) binned against the log of measured NO mixing ratio for the entire summer AIRPRO campaign. $\frac{L_N}{Q_{trans}}$ for MCM_base (black dashed line) taken as 0.5 for entire range of NO mixing ratios. $\frac{L_N}{Q_{trans}}$ for MCM_gamma (dark grey dashed line) and MCM_SA (light grey dashed line) calculated using equation 10. $25^{th}/75^{th}$ percentiles and minimum $\frac{L_N}{Q}$ are plotted to show full spread of data for each model scenario.

The average median diurnal of absolute $P(O_3)$, $\frac{\delta P(O_3)}{\delta \ln{[X]}}$, for the MCM_gamma and MCM_SA over the entire campaign is shown in Figure 11. The time series of absolute $P(O_3)$, averaged up to a daily time resolution, across the entire measurement period can be found in Supplementary Information as SI Figure 5.

Figure 11. Average median diurnal of absolute O_3 sensitivity to NO_x (top panel) and VOC (bottom panel) in ppbV h⁻¹ for MCM_gamma (pink) and MCM_SA (yellow) across the entire summer AIRPRO campaign. MCM_gamma includes γ_{HO_2} calculated using the Song parameterisation (av. 0.070 ± 0.035) while MCM_SA includes γ_{HO_2} at a fixed value of 0.2. All diurnals are 60 minute averages.

As expected from $\frac{L_N}{Q}$ calculations, calculations of absolute O₃ production sensitivity showcase that for both MCM_gamma and MCM_SA, on average, the O₃ regime was VOC sensitive throughout the day with NO_x sensitivity increasing in the afternoons. On a few days, when low NO mixing ratio coincided with high SA, the O₃ regime can be seen shifting from VOC to NO_x limited. An example of this can be found in SI Figure 6, for the 17/06/2017 and 18/06/2017 when the average NO mixing ratio was 0.41 ± 0.50 ppb and the average SA was (8.4 ± 6.2) × 10^{-6} cm² cm⁻³. With an increase in γ_{HO_2} between MCM_gamma and MCM_SA, the sensitivity of O₃ regime to VOC decreased but sensitivity to NO_x increased. This effect could be important for areas where O₃ production regime is NO_x sensitive or less strongly VOC sensitive. With NO_x levels reportedly decreasing across China in recent years (Krotkov et al., 2016; Liu et al., 2016; Miyazaki et al., 2017; Van Der A et al., 2017), O₃ production regimes would be expected to move more towards NO_x-sensitive regimes in urban China. However, with concomitant

- reduction in PM (Ma et al., 2016b; Lin et al., 2018), this transition to a NO_x-sensitive regime may be delayed until lower NO_x levels are reached.
- Our result for the Beijing campaign are consistent with the results of Song et al., 2022 which concluded that for the conditions of the Wangdu campaign the addition of HO₂ uptake does not change the overall O₃ sensitivity regime throughout the campaign. However, the shift in O₃ sensitivity regime from VOC-limited to NO_x-limited from the consideration of HO₂ uptake could be important for areas with lower NO_x and high aerosol particle loading.

4 Conclusions

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

Using the Song parameterisation, the heterogeneous uptake coefficient of HO₂, γ_{HO_2} , was calculated for the summer AIRPRO campaign in Beijing, 2017 as a function of measured $[Cu^{2+}]_{eff}$, [ALWC] and [PM]. The calculated average $\gamma_{HO_2} = 0.070 \pm 0.035$ (ranging from 0.002) to 0.15 across the campaign) was significantly lower than the fixed value of γ_{HO_2} = 0.2 commonly used in modelling studies. This calculated value was similar, however, to values calculated for the Wangdu 2014 summer campaign in China (Tan et al., 2020; Song et al., 2020). Using the calculated γ_{HO_2} , the OH, HO₂ and RO₂ radical concentrations were modelled using the Master Chemical Mechanism, and compared to the measured campaign values, with and without the addition of HO₂ aerosol uptake. Due to the low calculated value of γ_{HO_2} , and the high levels of NO, rate of destruction analysis showed the dominant HO₂ loss pathway to be HO₂ + NO for all NO mixing ratios with HO₂ uptake not contributing significantly to the loss of HO₂ (< 2 %). However, at the lowest NO mixing ratios (i.e. < 0.1 ppb) HO₂ loss onto aerosols contributed up to a maximum of 29 % of the total HO₂ loss. Using the modelled HO₂ and RO₂ radical concentrations for model scenarios with and without HO₂ uptake, showed that on average the O₃ production regime was VOC-limited across the entire campaign with the exception of several days with low NO mixing ratio where the regime tended towards NO_xlimited, meaning that small changes in NO_x would not have a large effect on the O₃ production for this summer period in Beijing, however changes in HO₂ uptake could. While the addition of the calculated uptake coefficient did not change the overall O₃ regime across the campaign, with the O₃ production regime remaining strongly VOC-limited, the transition from a VOCsensitive to NO_x -sensitive O_3 regime occurs at higher NO_x . This means that for Beijing, where the O_3 production regime is strongly VOC-sensitive and NO_x levels are high, any policy looking to reduce O₃ via the reduction of NO_x needs to consider concurrent PM reduction policies which may affect HO₂ uptake. In cleaner environments, where NO_x levels are lower,

- but aerosol surface area is still high, lower values of γ_{HO_2} , i.e. less than 0.2, could have a more
- significant effect on both overall HO₂ concentration and the O₃ production regime.
- 631 Data availability. Data presented in this study can be obtained from authors upon request
- 632 (d.e.heard@leeds.ac.uk)
- 633 Author contributions. LKW, EJS, RWM, CY and DEH carried out the radical measurements.
- 634 LKW and EJS developed the model and JED performed the calculations. JDL, FS, JRH, RED,
- 635 MS, JFH, ACL, AM, SDW, AB, TJB, HC, BO, CJP, CNH, RLJ, LRC, LJK, WJFA, WJB, SS,
- JX, TV, ZS, RMH, SK, SG, YS, WX, SY, LW, PF and XW provided logistical support and
- supporting data to constrain the model. JED prepared the manuscript with contributions from
- all co-authors.
- 639 Competing interests. The authors declare that they have no conflict of interest.
- 640 Acknowledgements. We are grateful to the Natural Environmental Research Council for
- 641 funding a SPHERES PhD studentship (Joanna E. Dyson). We are grateful to Tuan Vu for
- providing supervision and supporting data.

5 References

- Bohn, B., Heard, D. E., Mihalopoulos, N., Plass-Dülmer, C., Schmitt, R., and Whalley, L. K.:
- Characterisation and improvement of j(O¹D) filter radiometers, Atmos. Meas. Tech., 9, 3455-
- 646 3466, https://doi.org/10.5194/amt-9-3455-2016, 2016.
- Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F.,
- Dingenen, R. v., Estep, K., Amini, H., Apte, J. S., Balakrishnan, K., Barregard, L., Broday,
- 649 D., Feigin, V., Ghosh, S., Hopke, P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., Ma, S.,
- Morawska, L., Sangrador, J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M.
- H., Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for the Global
- Burden of Disease 2013, Environ. Sci. Technol., 50, 79-88,
- 653 https://doi.org/10.1021/acs.est.5b03709, 2016.
- 654 Commane, R., Floquet, C. F. A., Ingham, T., Stone, D., Evan, M. J., and Heard, D. E.:
- Observations of OH and HO₂ radicals over West Africa, Atmos. Chem. Phys., 10, 8783-8801,
- 656 https://doi.org/10.5194/acp-10-8783-2010, 2010.
- 657 Cooper, P. L. and Abbatt, J. P. D.: Heterogeneous Interactions of OH and HO2 Radicals with
- 658 Surfaces Characteristic of Atmospheric Particulate Matter, The Journal of Physical
- 659 Chemistry, 100, 2249-2254, https://doi.org/10.1021/jp952142z, 1996.

- 660 Crilley, L. R., Kramer, L., Pope, F. D., Whalley, L. K., Cryer, D. R., Heard, D. E., Lee, J. D.,
- Reed, C., and Bloss, W. J.: On the interpretation of in situ HONO observations via
- photochemical steady state, Faraday Discuss., 189, 191-212,
- 663 https://doi.org/10.1039/c5fd00224a, 2016.
- Dunmore, R., Hopkins, J., Lidster, R., Lee, J., Evans, M., Rickard, A., Lewis, A., and
- Hamilton, J.: Diesel-related hydrocarbons can dominate gas phase reactive carbon in
- megacities, Atmos. Chem. Phys., 15, 9983-9996, https://doi.org/10.5194/acp-15-9983-2015,
- 667 2015.
- 668 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J.,
- Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Dorland,
- R. V.: Chapter 2. Changes in atmospheric constituents and in radiative forcing., Climate
- Change 2007. The Physical Science Basis, 2007.
- Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
- equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem.
- 674 Phys., 7, 4639-4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
- Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-
- Allah, F., Abdulle, A. M., Abera, S. F., and Aboyans, V.: Global, regional, and national
- 677 comparative risk assessment of 84 behavioural, environmental and occupational, and
- 678 metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden
- of Disease Study 2016, The Lancet, 390, 1345-1422, https://doi.org/10.1016/S0140-
- 680 6736(18)32279-7, 2017.
- George, I. J., Matthews, P. S. J., Whalley, L. K., Brooks, B., Goddard, A., Baeza-Romero,
- M., and Heard, D. E.: Measurements of uptake coefficients for heterogeneous loss of HO₂
- onto submicron inorganic salt aerosols., Phys. Chem. Chem. Phys., 15, 12829-12845,
- 684 https://doi.org/10.1039/c3cp51831k, 2013.
- Hopkins, J. R., Jones, C. E., and Lewis, A. C.: A dual channel gas chromatograph for
- atmospheric analysis of volatile organic compounds including oxygenated and monoterpene
- compounds., J. Environ. Monit., 13, 2268-2276, https://doi.org/10.1039/C1EM10050E, 2011.
- Ivatt, P. D., Evans, M. J., and Lewis, A. C.: Suppression of surface ozone by an aerosol-
- inhibited photochemical ozone regime, Nat. Geosci, 15, 536-540,
- 690 https://doi.org/10.1038/s41561-022-00972-9, 2022.
- Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-
- 692 2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.

- 693 Jin, Y., Andersson, H., and Zhang, S.: Air Pollution Control Policies in China: A
- Retrospective and Prospects, Int. J. Environ. Res. Public Health, 13,
- 695 https://doi.org/10.3390/ijerph13121219, 2016.
- Kanaya, Y. G., Cao, R. Q., Kato, S. G., Miyakawa, Y. K., Kajii, Y., Tanimoto, H., Yokouchi,
- 697 Y., Mochida, M., Kawamura, K., and Akimoto, H.: Chemistry of OH and HO₂ radicals
- observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO₂ and
- 699 positive nighttime correlations with monoterpenes, J. Geophys. Res. Atmos., 112, D11308,
- 700 https://doi.org/10.1029/2006JD007987, 2007.
- Kleinman, L. I.: Ozone process insights from field experiments part II: Observation-based
- analysis for ozone production, Atmos. Environ., 34, 2023-2033,
- 703 https://doi.org/10.1016/S1352-2310(99)00457-4, 2000.
- Kleinman, L. I., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R., Weinstein-
- Lloyd, J., and Rudolph, J.: Sensitivity of ozone production rate to ozone precursors, Geophys.
- 706 Res. Lett., 28, 2903-2906, https://doi.org/10.1029/2000GL012597, 2001.
- Kleinman, L. I., Daum, P. H., Lee, J. H., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R.,
- Newman, L., Weinstein-Lloyd, J., and Sillman, S.: Dependence of ozone production on NO
- and hydrocarbons in the troposphere, Geophys. Res. Lett., 24, 2299-2302,
- 710 https://doi.org/10.1029/97GL02279, 1997.
- 711 Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V.,
- Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P.,
- Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI
- observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, Atmos. Chem.
- 715 Phys., 16, 4605-4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
- Lakey, P. S. J., George, I. J., Baeza-Romero, M., Whalley, L. K., and Heard, D. E.: Organics
- substantially reduce HO₂ uptake onto aerosols containing transition metal ions., J. Phys.
- 718 Chem. A, 120, 1421-1430, https://doi.org/10.1021/acs.jcpa.5b06316, 2016.
- 719 Lakey, P. S. J., George, I. J., Whalley, L. K., Baeza-Romero, M., and Heard, D. E.:
- 720 Measurements of HO₂ uptake coefficients onto single component organic aerosols.,
- 721 Environmental Science Technology, 49, 4878-4885, https://doi.org/10.1021/acs.est.5b00948,
- 722 2015.
- Le Breton, M., Bacak, A., Muller, J. B. A., Bannan, T. J., Kennedy, O., Ouyang, B., Xiao, P.,
- Bauguitte, S. J. B., Shallcross, D. E., Jones, R. L., Daniels, M. J. S., Ball, S. M., and Percival,
- 725 C. J.: The first airborne comparison of N₂O₅ measurements over the UK using a CIMS and

- 726 BBCEAS during the RONOCO campaign, Analytical Methods, 6, 9731-9743,
- 727 <u>https://doi.org/10.1039/C4AY02273D</u>, 2014.
- Levy, H.: Normal atmosphere: large radical and formaldehyde concentrations predicted,
- 729 Science, 173, 141-143, https://doi.org/10.1126/science.173.3992.141, 1971.
- 730 Li, H., Wang, D., Cui, L., Gao, Y., Huo, J., Wang, X., Zhang, Z., Tan, Y., Huang, Y., and
- Cao, J. J. S. o. t. t. e.: Characteristics of atmospheric PM2. 5 composition during the
- implementation of stringent pollution control measures in shanghai for the 2016 G20 summit,
- 733 648, 1121-1129, https://doi.org/10.1016/j.scitotenv.2018.08.219, 2019.
- Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K.: Anthropogenic drivers of
- 735 2013-2017 trends in summer surface ozone in China, Proceedings of the National Academy
- 736 of Sciences, 116, 422-427, https://doi/org/10.1073/pnas.1812168116, 2018.
- 737 Lin, C. Q., Liu, G., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., and Lao, X. Q.: High-
- resolution satellite remote sensing of provincial PM_{2.5} trends in China from 2001 to 2015,
- 739 Atmos. Environ., 180, 110-116, https://doi.org/10.1016/j.atmosenv.2018.02.045, 2018.
- Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.:
- Recent reduction in NO_x emissions over China: synthesis of satellite observations and
- 742 emission inventories, Environ. Res. Lett, 11, 114002, https://doi.org/10.1088/1748-
- 743 9326/11/11/114002, 2016.
- Liu, Y.-H., Liao, W.-Y., Lin, X.-F., Li, L., and Zeng, X.-l.: Assessment of Co-benefits of
- vehicle emission reduction measures for 2015–2020 in the Pearl River Delta region, China,
- 746 Environ. Pollut., 223, 62-72, https://doi.org/10.1016/j.envpol.2016.12.031, 2017.
- Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W., and Xu, X.: Significant increase of surface
- ozone at a rural site, north of eastern China, Atmos. Chem. Phys., 16, 3969-3977,
- 749 https://doi.org/10.5194/acp-16-3969-2016, 2016a.
- 750 Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., and
- Liu, Y.: Satellite-Based Spatiotemporal Trends in PM_{2.5} Concentrations: China, 2004-2013,
- 752 Environ. Health Perspect., 124, 184-192, https://doi.org/10.1289/ehp.1409481, 2016b.
- Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe
- redox coupling in aerosols, Atmos. Chem. Phys., 13, 509-519, https://doi.org/10.5194/acp-
- 755 <u>13-509-2013</u>, 2013.
- 756 Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Chair, J. M. S.,
- 757 Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J.
- L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen,
- G., Crawford, J. H., McHaughton, C., Clarke, A. D., Jaegle, L., Fisher, J. K., Yantosca, R.

- 760 M., LeSager, P., and Carouge, C.: Chemsitry of hydrogen oxide radicals (HO_x) in the artic
- 761 troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, https://doi.org/10.5194/acp-10-
- 762 5823-2010, 2010.
- Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H.,
- Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter,
- R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.:
- OH and HO₂ concentrations, sources, and loss rates during the Southern Oxidants Study in
- Nashville, Tennessee, summer 1999, Journal of Geophysical Research: Atmospheres, 108,
- 768 <u>https://doi.org/10.1029/2003JD003551</u>, 2003.
- Matthews, P. S. J., Baeza-Romero, M., Whalley, L. K., and Heard, D. E.: Uptake of HO₂
- radicals onto Arizona test dust particles using an aerosol flow tube, Atmos. Chem. Phys., 14,
- 771 7397-7408, https://doi.org/10.5194/acp-14-7397-2014, 2014.
- 772 Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal
- changes in global surface NO_x emissions from multi-constituent satellite data assimilation,
- 774 Atmos. Chem. Phys., 17, 807-837, https://doi.org/10.5194/acp-17-807-2017, 2017.
- Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G.: Mass accommodation
- coefficient for HO₂ radicals on aqueous particles, J. Geophys. Res., 92, 4163-4170,
- 777 https://doi.org/10.1029/JD092iD04p04163, 1987.
- Sakamoto, Y., Sadanaga, Y., Li, J., Matsuoka, K., Takemura, M., Fujii, T., Nakagawa, M.,
- Kohno, N., Nakashima, Y., Sato, K., Nakayama, T., Kato, S., Takami, A., Yoshino, A.,
- 780 Murano, K., and Kajii, Y.: Relative and Absolute Sensitivity Analysis on Ozone Production
- 781 in Tsukuba, a City in Japan, Environ. Sci. Technol., 53, 13629-13635,
- 782 <u>https://doi.org/10.1021/acs.est.9b03542</u>, 2019.
- Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han,
- Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton,
- W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D.,
- Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty,
- 787 R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D.,
- Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J.,
- 789 Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu,
- 790 K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E.,
- O'Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R.,
- Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q.,
- 793 Wang, W., Wang, X., Wang, X., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P.,

- Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue
- "In-depth study of air pollution sources and processes within Beijing and its surrounding
- 796 region (APHH-Beijing)", Atmos. Chem. Phys., 19, 7519-7546, https://doi.org/10.5194/acp-
- 797 19-7519-2019, 2019.
- 798 Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.: Substantial changes in air
- 799 pollution across China during 2015–2017, Environ. Res. Lett, 13, 114012,
- 800 https://doi.org/10.1088/1748-9326/aae718, 2018.
- 801 Slater, E. J.: Understanding radical chemistry in Beijing through observations and modelling,
- 802 School of Chemistry, University of Leeds, 2020.
- Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins,
- J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L.,
- Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang,
- X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during
- wintertime in central Beijing, Atmos. Chem. Phys. Discuss., 2020, 1-43,
- 808 https://doi.org/10.5194/acp-2020-362, 2020.
- 809 Smith, K. R., Edwards, P. M., Evans, M. J., Lee, J. D., Shaw, M. D., Squires, F., Wilde, S.,
- and Lewis, A. C.: Clustering approaches to improve the performance of low cost air pollution
- sensors, Faraday Discuss., 200, 621-637, https://doi.org/10.1039/C7FD00020K, 2017.
- Sommariva, R., Haggerstone, A. L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D.
- 813 E., Lee, J. D., Lewsi, A. C., Pilling, M. J., and Zador, J.: OH and HO₂ chemistry in clean
- marine air during SOAPEX-2, Atmos. Chem. Phys., 4, 839-856, https://doi.org/10.5194/acp-
- 815 4-839-2004, 2004.
- 816 Song, H., Lu, K., Dong, H., Tan, Z., Chen, S., Zeng, L., and Zhang, Y.: Reduced Aerosol
- Uptake of Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to
- Volatile Organic Compounds, Environ. Sci. Tech. Letts., 9, 22-29,
- 819 https://doi.org/10.1021/acs.estlett.1c00893, 2022.
- Song, H., Chen, X., Lu, K., Zou, Q., Tan, Z., Fuchs, H., Wiedensohler, A., Moon, D. R.,
- Heard, D. E., Baeza-Romero, M. T., Zheng, M., Wahner, A., Kiendler-Scharr, A., and Zhang,
- Y: Influence of aerosol copper on HO₂ uptake: a novel parameterized equation, Atmos.
- 823 Chem. Phys., 20, 15835-15850, https://doi.org/10.5194/acp-20-15835-2020, 2020.
- Stone, D., Whalley, L. K., Ingham, T., Edwards, P. M., Cryer, D. R., Brumby, C. A., Seakins,
- P. W., and Heard, D. E.: Measurement of OH reactivity by laser flash photolysis coupled
- with laser-induced fluorescence spectroscopy, Atmos. Meas. Tech., 9, 2827-2844,
- 827 https://doi.org/10.5194/amt-9-2827-2016, 2016.

- 828 Taketani, F., Kanaya, Y., and Akimoto, H.: Kinetics of heterogeneous reactions of HO₂
- radical at ambient concentration levels with (NH₄)₂SO₄ and NaCl aerosol particles., J. Phys.
- 830 Chem. A, 112, 2370-2377, https://doi.org/10.1021/jp0769936, 2008.
- Taketani, F., Kanaya, Y., Pocharnart, P., Liu, Y., Li, J., Okuzawa, K., Kawamura, K., Wang,
- 832 Z., and Akimoto, H.: Measurement of overall uptake coefficients for HO₂ radicals by aerosol
- particles sampled from ambient air at Mts. Tai and Mang (China). Atmos. Chem. Phys., 12,
- 834 11907-11916, https://doi.org/10.5194/acp-12-11907-2012, 2012.
- Tan, Z., Hofzumahaus, A., Lu, K., Brown, S. S., Holland, F., Huey, L. G., Kiendler-Scharr,
- 836 A., Li, X., Liu, X., Ma, N., Min, K.-E., Rohrer, F., Shao, M., Wahner, A., Wang, Y.,
- Wiedensohler, A., Wu, Y., Wu, Z., Zeng, L., Zhang, Y., and Fuchs, H.: No Evidence for a
- 838 Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North
- China Plain in Summer 2014, Environ. Sci. Technol., 54, 5973-5979,
- 840 https://doi.org/10.1021/acs.est.0c00525, 2020.
- Thornton, J. A. and Abbatt, J. P. D.: Measurements of HO₂ uptake of aqueous aerosol: Mass
- accommodation coefficients and net reactive loss., J. Geophys. Res., 110,
- 843 https://doi.org/10.1029/2004JD005402, 2005.
- Thornton, J. A., Jaegle', L., and McNeill, V. F.: Assessing known pathways for HO₂ loss in
- aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants., J.
- 846 Geophys. Res., 113, https://doi.org/10.1029/2007JD009236, 2008.
- van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys,
- N.: Cleaning up the air: effectiveness of air quality policy for SO_2 and NO_x emissions in
- 849 China, Atmos. Chem. Phys., 17, 1775-1789, https://doi.org/10.5194/acp-17-1775-2017, 2017.
- Verstraeten, W. W., Neu, J. L., Williams, J. E., Bowman, K. W., Worden, J. R., and
- Boersma, K. F.: Rapid increases in tropospheric ozone production and export from China,
- 852 Nat. Geosci, 8, 690-695, https://doi.org/10.1038/ngeo2493, 2015.
- Wang, P.: China's air pollution policies: Progress and challenges, Current Opinion in
- 854 Environmental Science & Health, 19, 100227, https://doi.org/10.1016/j.coesh.2020.100227,
- 855 2021.
- Whalley, L. K., Blitz, M. A., Desservattez, M., Seakins, P. W., and Heard, D. E.: Reporting
- 857 the sensitivity of laser-induced fluorescence instruments used for HO₂ detection to an
- interference from RO₂ radicals and introducing a novel approach that enables HO₂ and
- certain RO₂ types to be selectively measured, Atmos. Meas. Tech., 6, 3425-3440,
- 860 https://doi.org/10.5194/amt-6-3425-2013, 2013.

- Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A.
- 862 C., Williams, P., Kleffmann, J., Laufs, S., Woodward-Massey, R., and Heard, D. E.:
- Understanding in situ ozone production in the summertime through radical observations and
- modelling studies during the Clean air for London project (ClearfLo), Atmos. Chem. Phys.,
- 865 18, 2547-2571, https://doi.org/10.5194/acp-18-2547-2018, 2018.
- Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A., Oetjen, H., Read, K.
- A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane, J. M. C., Saltzman, E. S.,
- Wiedensohler, A., and Heard, D. E.: The chemistry of OH and HO₂ radicals in the boundary
- layer over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 1555-1576,
- 870 <u>https://doi.org/10.5194/acp-10-1555-2010</u>, 2010.
- Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins,
- J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D.,
- Bacak, A., Bannan, T. J., Coe, H., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J.,
- Bloss, W. J., Vu, T., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton,
- W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Evaluating the sensitivity of
- radical chemistry and ozone formation to ambient VOCs and NOx in Beijing, Atmos. Chem.
- Phys. Discuss., 21, 2125-2147, https://doi.org/10.5194/acp-2020-785, 2021.
- Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner,
- 879 B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac,
- H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P.,
- Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F.,
- Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G.,
- O'Dowd, C. D., Marinoni, A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P.
- H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and
- 885 Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and
- data structure to facilitate high quality long-term observations of atmospheric particle number
- size distributions, Atmos. Meas. Tech., 5, 657-685, https://doi.org/10.5194/amt-5-657-2012,
- 888 2012.
- 889 Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders,
- 890 S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four
- 891 Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem.
- 892 Phys., 14, 13175-13188, https://doi.org/10.5194/acp-14-13175-2014, 2014.

- Ye, C., Heard, D. E., and Whalley, L. K.: Evaluation of novel routes for NO_x formation in
- remote regions., Environ. Sci. Technol., 51, 7442-7449, https://doi.org/acs.est.6b06441,
- 895 2017.
- Zhou, J., Murano, K., Kohno, N., Sakamoto, Y., and Kajii, Y.: Real-time quantification of the
- total HO₂ reactivity of ambient air and HO₂ uptake kinetics onto ambient aerosols in Kyoto
- 898 (Japan), Atmos. Environ., 223, 117189, https://doi.org/10.1016/j.atmosenv.2019.117189,
- 899 2020.

905

- 200 Zhou, J., Sato, K., Bai, Y., Fukusaki, Y., Kousa, Y., Ramasamy, S., Takami, A., Yoshino, A.,
- Nakayama, T., Sadanaga, Y., Nakashima, Y., Li, J., Murano, K., Kohno, N., Sakamoto, Y.,
- and Kajii, Y.: Kinetics and impacting factors of HO₂ uptake onto submicron atmospheric
- aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan, Atmos. Chem.
- 904 Phys., 21, 12243-12260, https://doi.org/10.5194/acp-21-12243-2021, 2021.