
1 

 

Investigating the Global OH Radical Distribution Using Steady-State 

Approximations and Satellite Data 

Matilda A. Pimlott1, Richard J. Pope1,2, Brian J. Kerridge3,4, Barry G. Latter3,4, Diane S. Knappett3,4, 

Dwayne E. Heard5, Lucy J. Ventress3,4, Richard Siddans3,4, Wuhu Feng1,6, Martyn P. Chipperfield1,2 

1School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK  5 
2National Centre for Earth Observation, University of Leeds, Leeds, LS2 9JT, UK 
3Remote Sensing Group, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK 
4National Centre for Earth Observation, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK 
5School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK 
6National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9PH, UK 10 

Correspondence to: Matilda A. Pimlott (eemap@leeds.ac.uk) 

Abstract. We present a novel approach to derive indirect global information on the hydroxyl radical (OH), one of the most 

important atmospheric oxidants, using state-of-art satellite trace gas observations (key sinks and sources of OH) and a 

steady-state approximation (SSA). This is a timely study as OH observations are predominantly from spatially sparse field 

and infrequent aircraft campaigns, so there is a requirement for further approaches to infer spatial and temporal information 15 

on OH and its interactions with important climate (e.g. methane, CH4) and air quality (e.g. nitrogen dioxide, NO2) trace 

gases. Due to the short lifetime of OH (~1 s), SSAs of varying complexities can be used to model its concentration and offer 

a tool to examine the OH budget in different regions of the atmosphere. Here, we use the well-evaluated TOMCAT three-

dimensional chemistry transport model to identify atmospheric regions where different complexities of the SSAs are 

representative of OH. In the case of a simplified SSA (S-SSA), where we have observations of ozone (O3), carbon monoxide 20 

(CO), CH4 and water vapour (H2O) from the Infrared Atmospheric Sounding Interferometer (IASI) on-board ESA’s MetOp-

A satellite, it is most representative of OH between 600 and 700 hPa (though suitable between 400–800 hPa) within ~20–30 

% of TOMCAT modelled OH. The same S-SSA is applied to aircraft measurements from the Atmospheric Tomography 

Mission (ATom) and compares well with the observed OH concentrations within ~26 % yielding a correlation of 0.78. We 

apply the S-SSA to IASI data spanning 2008–2017 to explore the global long-term inter-annual variability of OH. Relative 25 

to the 10-year mean, we find that global annual mean OH anomalies ranged from -3.1 % to +4.7 %, with the largest spread in 

the tropics between -6.9 % and +7.7 %. Investigation of the individual terms in the S-SSA over this time period suggests that 

O3 and CO were the key drivers of variability in the production and loss of OH. For example, large enhancement in the OH 

sink during the positive 2015/2016 ENSO event was due to large scale CO emissions from drought induced wildfires in 

South East Asia. The methodology described here could be further developed as a constraint on the tropospheric OH 30 

distribution as additional satellite data becomes available in the future. 
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Introduction 

The hydroxyl radical (OH) is a key species in atmospheric chemistry as it largely determines the oxidation capacity of the 

troposphere, and therefore the lifetimes of many different species. Key species controlled by OH include important 

greenhouse gases (e.g. methane, CH4), ozone-depleting substances (e.g. hydrochlorofluorocarbons), as well as other short-35 

lived anthropogenic and natural pollutants (e.g. volatile organic compounds (VOCs), nitrogen oxides (NOx) and carbon 

monoxide (CO)) (Lelieveld et al., 2016). The importance of OH to tropospheric oxidation capacity was recognised in the 

early 1970s (Levy, 1971) and has been subject to many scientific investigations since, especially in relation to the lifetime of 

CH4 e.g. McNorton et al. (2016), Rigby et al. (2017) and Turner et al. (2019). A better understanding of the spatial and 

temporal distribution of OH, the primary sink of CH4, would aid the interpretation of recent trends in CH4, such as the 2000–40 

2007 concentration stabilisation period (Turner et al., 2019).  

 

The primary source of OH in the remote troposphere is the photolysis of ozone (O3) by ultraviolet (UV) radiation (< 330 nm 

wavelength). This forms O(1D) which then reacts with water vapour (H2O) to form OH (Lelieveld et al., 2016): 

𝑂3 + ℎ𝑣 (𝜆 < 330 𝑛𝑚) → 𝑂(1𝐷) + 𝑂2                                                                                                                                                     (1) 45 

𝑂(1𝐷) + 𝐻2𝑂 → 2𝑂𝐻                                                                                                                                                                                    (2) 

The OH radical formed is very reactive due to the unpaired electron on the oxygen atom. After formation, the OH radicals 

attack reduced and partly oxidised gases, removing them from the atmosphere and forming peroxy radicals (e.g. 

hydroperoxyl radical, HO2). The peroxy radicals can go on to form peroxides and participate in many other atmospheric 

chemistry reactions (e.g. ozone formation) and can also go on to reform OH (Lelieveld et al., 2016). 50 

 

Direct in situ measurements of OH are scarce as the measurement process is challenging with few instruments available 

(Stone et al., 2012; Lelieveld et al., 2016). Due to its very short lifetime, ~1 second in the daytime, the abundance of OH is 

very low with the global tropospheric mean OH concentration is around 1 ×106 molecule cm-3Direct in situ measurements of 

OH are scarce due to its very short lifetime, ~1 second in the daytime, and low abundance; the global tropospheric mean OH 55 

concentration is around 1 ×106 molecule cm-3 (Lelieveld et al., 2016; Stone et al., 2012). In situ OH measurements are 

limited to field campaigns at specific locations (Stone et al., 2012) and aircraft missions e.g. NASA’s Atmospheric 

Tomography mission (ATom) (Wofsy et al., 2018; Brune et al., 2020). There has consequently been a demand for indirect 

methods to infer global-scale OH. An established method is to use the methyl chloroform (CH3CCl3, MCF) concentrations to 

derive a global mean OH concentration by using inverse modelling which exploits the fact that sources of MCF are well 60 

known and that its main sink is reaction with OH (Lovelock, 1977; Singh, 1977; Prinn et al., 1992). This method has been 

used to study the temporal variability of OH (Montzka et al., 2011; Prinn et al., 2005). The accuracy of this method depends 

on accurate estimates of MCF emissions. MCF production is regulated under the legislation initiated by the 1987 Montreal 

Protocol and therefore MCF has seen a sharp decline in atmospheric abundance since the mid-1990s, which will reduce the 
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viability of this method, leading to new methods and tracers being sought (Huang and Prinn, 2002; Liang et al., 2017; Rigby 65 

et al., 2017). 

 

However, the above-mentioned MCF method is unable to provide spatial information on OH. In the last two decades, there 

has been an increasing wealth of tropospheric satellite data, providing information on the spatial and temporal variability of 

atmospheric species, but not OH (Streets et al., 2013). These atmospheric composition data are global in extent and now 70 

span more than a decade, so have the potential to provide information to infer a global OH distribution and its variation over 

time. Presently, there are limited examples of the use of satellite data to infer global OH. In a recent study, Wolfe et al. 

(2019) used satellite formaldehyde observations and budget to calculate remote tropospheric column OH, developing the 

method using aircraft data from ATom to establish formaldehyde production/loss and OH concentrations.  

 75 

To exploit satellite data here, we use a simplified steady-state approximation. This is an appropriate assumption due to the 

very short daytime lifetime of OH and the simplification is described in Sect. 2 below. Some studies have thus far used 

steady-state approximations to calculate OH from in situ surface data at field sites e.g. Eisele (1996) at Mauna Loa 

Observatory, Savage et al. (2001) and Smith et al. (2006) at the Mace Head Atmospheric Research Centre, Ireland, Creasey 

et al. (2003) at Cape Grim in the Southern Ocean, and Slater et al. (2020) in central Beijing. However, there is also the 80 

potential for these approximations to be applied to satellite data in a global context. The use of the steady-state 

approximations has had varied success. Eisele (1996) found that the comparison between observed and calculated OH 

depended on which air mass was present, with free tropospheric air masses showing better agreement than air masses from 

the boundary layer. Savage et al. (2001) found a good correlation between measured and calculated OH, but a steady-state 

overprediction of around 30 %. Models using only simplified chemistry have been shown to capture the chemistry of 85 

unpolluted regions. Sommariva et al. (2004) used a ‘detailed’ and ‘simple’ box-model to study OH in unpolluted marine air 

at Cape Grim in the Southern Hemisphere (SH). The ‘simple’ box-model, based only on CO, CH4 and inorganic reactions, 

agreed within 5–10 % of the ‘detailed’ box-model that also contained non-methane hydrocarbons (NMHCs). The models 

over-estimated the measured OH by 10–20 %.  

 90 

OH reactivity (OHR), the inverse of OH lifetime, is also measured in the field to provide additional information on the 

tropospheric oxidation capacity and abundance of the OH radical. OHR can be measured in situ along with trace gas 

concentrations e.g. during aircraft campaigns such as NASA’s ATom (Wofsy et al., 2018). Observed OHR is commonly 

compared to calculated OHR by summing individual sink terms using measured reactant concentrations multiplied by their 

respective reaction rate co-efficients with OH (Yang et al., 2016). However, a large number of field campaigns have shown 95 

that there is often a substantial difference between observed in situ and calculated OHR, known as the “missing” reactivity 

(Ferracci et al., 2018). This “missing” reactivity can account for as much as 20 % (usually outside the OHR uncertainty 

range) to 80 % of the observed OHR (Yang et al., 2016). There are many proposed reasons for this “missing” reactivity, such 
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as short-lived VOCs that were not measured (Kovacs et al., 2003) or in the rainforests some mixture of unidentified biogenic 

emissions and photo-oxidation products (Edwards et al., 2013; Nölscher et al., 2016).  100 

 

An improved characterisation of the OH temporal variation is vital to understanding key aspects of atmospheric chemistry, 

such as interannual to decadal variability in methane (Turner et al., 2019; Zhao et al., 2020). Studies using MCF 

observations, in combination with box-model analyses, show similar annual OH anomalies between 1995 and 2010, with a 

broadly negative anomaly of -6 to 0 % between 1995 and 1999, a positive anomaly of 0 to 6 % between 1999 and 2007 and a 105 

negative anomaly of -5 to 0 % between 2007 and 2010 (Montzka et al., 2011; Rigby et al., 2017; Turner et al., 2017; Patra et 

al., 2021). After 2010, the results of such studies differ with some showing consistently negative anomalies of -4 to 0 % 

between 2010 and 2018 (Rigby et al., 2017; Turner et al., 2017) and others showing some positive anomalies in this period, 

for example in the range of 0 to 4 % between 2010 and 2015 (Naus et al., 2019; Patra et al., 2021). Studies using chemical 

transport models are not consistent with those using MCF observations. He et al., (2020) found negative anomalies of -5 to 0 110 

% between 1995 and 2005 and then positive anomalies of 0 to 4 % between 2005 and 2017. A study by Zhao et al., (2020) 

found a multi-model mean increase of 0.7 ×105 molecule cm-3 between 1980 and 2010, equivalent to around 0.1–0.5 % yr-1, 

with the greatest rate of increase in the final decade (2000–2010). The OH increase from 2000–2010 was predominantly due 

to that in the primary production term (O(1D) + H2O) though also to a decrease in the CO sink term (OH + CO). Model 

studies further show OH interannual variability to be influenced by the El Niño-Southern Oscillation (ENSO), with low OH 115 

concentrations being associated with El Niño years and high OH concentrations with La Niña years (Zhao et al., 2020; 

Anderson et al., 2021). 

 

Here, we use output data from the TOMCAT 3-D chemical transport model to explore the validity of OH steady-state 

approximations in the troposphere. A simplified steady-state approximation is then applied to observations of O3, CO, CH4 120 

and H2O mid-tropospheric concentrations retrieved from observations by the Infrared Atmospheric Sounding Interferometer 

(IASI) instrument on-board the MetOp-A satellite in 2010 and 2017. This calculated satellite OH is then compared to OH 

from TOMCAT using full chemistry and ATom observations. Finally, the simplified approximation is applied to MetOp-A 

data over a 10-year period (2008–2017) to infer the temporal variability in OH. Section 2 describes how steady-state 

approximations, TOMCAT model, aircraft and satellite data are employed in this study. Section 3 presents the results and 125 

discussion. Section 4 summarises our conclusions.  

2 Methods  

2.1 OH steady-state approximations 

Due to the short lifetime of OH, a steady-state approximation can be used to model its concentration. The approximation can 

be defined as Eq. (3): 130 
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[𝑂𝐻] 𝑆𝑡𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒 =  
𝑘𝐴+𝐵[𝐴][𝐵]+ . . . +𝑗𝐶[𝐶]+ . . .

∑ 𝑘𝐷[𝐷]+ . . .
                                                                                                                               (3) 

where the numerator of the expression represents a sum of the source terms. kA+B is the reaction rate constant of A and B to 

form OH and jC is the photolysis co-efficient of C to form OH. The denominator represents a sum of the sink terms. kD is the 

reaction rate constant of D and OH, where D represents an individual sink species. The accuracy of the approximation 

depends partly on the number of source and sink terms which can be included. This, in turn, depends on the availability of 135 

observations to provide a constraint for each of those terms.  

 

Here, we use three steady-state approximations of different complexity, summarised in Supplementary Table S1. The most 

complex is referred to as the full chemistry steady-state approximation (FC-SSA) and contains the largest number of source 

and sink terms, capturing the most comprehensive tropospheric chemistry, with 26 source terms and 51 sink terms. The 140 

second most complex is based on a steady-state approximation in Savage et al. (2001) (Sav-SSA) and contains 5 source and 

12 sink terms. Lastly, we propose a simplified steady-state approximation (S-SSA) containing 1 source term (based on Eq. 

(1) and Eq. (2)) and 3 sink terms (based on the reaction of OH with CH4, CO and O3). The S-SSA allows OH to be derived 

using only the main tropospheric source and sinks, that can be directly observed by satellite. We adopt the S-SSA as Eq. (4):  

[𝑂𝐻] 𝑆𝑡𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒145 

=  

2𝑗1𝑘1[𝑂3][𝐻2𝑂]
𝑘2[𝑁2] +  𝑘3[𝑂2]

(
2𝑗1𝑘1[𝑂3][𝐻2𝑂]

𝑘2[𝑁2] +  𝑘3[𝑂2] + 𝑘1[𝐻2𝑂]
)

    𝑘4[𝐶𝐻4] + 𝑘5[𝐶𝑂] + 𝑘6[𝑂3](𝑘4[𝐶𝐻4] + 𝑘5[𝐶𝑂] + 𝑘6[𝑂3])    
                                                                                                                                                                             (4) 

where j1 is the photolysis co-efficient for O3 → O(1D) + O2, k1 is the reaction rate constant for O(1D) + H2O, k2 and k3 are the 

collisional relaxation rate constants with respect to N2 and O2, k4, k5 and k6 are the rate constants for reaction of OH with 

CH4, CO and O3, respectively. The expression implicitly assumes a steady state for the production and loss of O(1D).  

2.2 OH reactivity  150 

OHR, the denominator of Eq. (3), can be directly observed or calculated using a model and/or observed species. The 

accuracy of an OHR calculation is similarly dependent on the number of sink terms which can be included and the 

availability of requisite observations. In principle, examination of OHR measurements co-located with those of [OH] could  

allow steady-state approximations for OH sources and sinks to be evaluated separately. We adopt the denominator of Eq. (4) 

as a simplified expression for OHR as Eq. (5): 155 

[𝑂𝐻𝑅] =  𝑘4[𝐶𝐻4] + 𝑘5[𝐶𝑂] + 𝑘6[𝑂3]                                                                                                                                                 (5)  
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2.3 Model and observations 

2.3.1 TOMCAT 3-D model 

In this study we use the 3-D global chemical transport model TOMCAT (Chipperfield, 2006) at a 2.8° × 2.8° resolution with 

31 vertical levels between the surface and 10 hPa. The model is coupled with the Global Model of Aerosol Processes 160 

(GLOMAP) to calculate aerosol microphysics (Mann et al., 2010). The model is forced by meteorological reanalyses (ERA-

Interim) from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). The tropospheric 

chemistry scheme is described in Monks et al. (2017), with the main updates as follows: Anthropogenic and natural surface 

emissions from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for NOx, CO and VOCs (Feng et al., 2020); 

fixed annual biogenic emissions from the Chemistry-Climate Model Initiative (CCMI) (Morgenstern et al., 2017); biomass 165 

burning emissions from the Global Fire Emissions Database (GFED) version 4 (van der Werf et al., 2017); CH4 scaled to a 

best estimate based on the 2010 globally averaged surface CH4 value from NOAA (Dlugokencky, 2020) and an update to the 

cloud fields using reanlyses from ECMWF (as described in Rowlinson et al. (2019)). The model simulation was run for 2010 

and 2017, with 6 months of spin up in each case. The simulation was sampled daily at 9:30 am local time globally to match 

the MetOp-A daytime overpass time. 170 

 

Monks et al. (2017) and Rowlinson et al. (2019) have evaluated TOMCAT OH compared to model and observational 

datasets for the year 2000. The set-up for the simulations used in Rowlinson et al. (2019) is most similar to that in this study, 

but broadly the simulation in Monks et al. (2017) produces similar regional zonal OH values. TOMCAT OH in Rowlinson et 

al. (2019) had an average global tropospheric concentration of 1.04 ×106 molecule cm-3, which sits within a range from other 175 

studies e.g. 0.94 ± 0.1 ×106 molecule cm-3 from inferred OH observations from MCF by Prinn et al. (2001), 1.08 ± 0.6 ×106 

molecule cm-3 from the POLARCAT Model Intercomparison Project (POLMIP) and the multi-model mean of 1.11 ± 0.2 

×106 molecule cm-3 from 16 Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) models (Naik 

et al., 2013). In terms of vertical distribution, Monks et al. (2017) and Rowlinson et al. (2019) show the maximum TOMCAT 

OH values to be between the surface and 750 hPa near the equator. In comparison, Spivakovsky et al. (2000) (MCF method) 180 

and the multi-model mean OH from ACCMIP (Naik et al., 2013) have peak OH values higher up in the troposphere. Overall, 

in the mid-troposphere, the primary focus in this study, Rowlinson et al. (2019) TOMCAT OH shows comparable values 

across all the latitude regions in comparison with Spivakovsky et al. (2000) and ACCMIP (Naik et al., 2013). 

 

Monks et al. (2017) investigated TOMCAT CO, O3 and OH and showed that the model is able to capture the main seasonal 185 

and spatial features of CO and O3. TOMCAT has a slightly higher global mean tropospheric OH concentration (1.08 ×106 

molecule cm-3) than inferred OH observations from MCF e.g. 0.94 ± 0.1 ×106 molecule cm-3 by Prinn et al. (2001). 

TOMCAT has a similar or lower global mean tropospheric OH concentration than multi-model values from several 

intercomparison studies e.g. 1.08 ± 0.6 ×106 molecule cm-3 from the POLARCAT Model Intercomparison Project (POLMIP) 
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or the multi-model mean of 1.11 ± 0.2 ×106 molecule cm-3 from 16 Atmospheric Chemistry and Climate Model 190 

Intercomparison Project (ACCMIP) models (Naik et al., 2013). In terms of vertical distribution of OH, in comparison with 

OH data from Spivakovsky et al. (2000) (MCF method) and the multi-model mean OH from the ACCMIP project (Naik et 

al. 2013), TOMCAT tends to show higher OH at the surface up to 700 hPa and lower OH above 700 hPa.  

2.3.2 Satellite observations  

We use satellite observations for 2010 and 2017 from the MetOp-A satellite launched by EUMETSAT in 2006. MetOp-A is 195 

in a polar sun-synchronous orbit which crosses the equator at ~9:30 (day overpass) and 21:30 (night overpass) giving global 

earth coverage twice a day (Clerbaux et al., 2009). Here, we use height-resolved distributions of CO, CH4, O3 and H2O 

retrieved from MetOp-A observations by schemes developed by the Rutherford Appleton Laboratory (RAL). The O3, CO 

and H2O retrievals are from the extended version of RAL’s Infrared and Microwave Sounding (IMS-extended) scheme, 

which co-retrieves temperature profiles, cloud and surface properties, other trace gases and aerosols and is documented in the 200 

supplement of Pope et al. (2021). The CH4 data were produced by an improved version (v2.0) of RAL’s methane retrieval 

scheme (Siddans et al., 2020) developed for IASI on MetOp-A. The original IASI methane scheme (v1.0) was described in 

Siddans et al. (2017). For the IMS-extended scheme, as well as the IASI methane scheme, retrieved profiles are output at the 

locations of IASI soundings. IASI is a nadir-viewing thermal infrared Fourier Transform Spectrometer, with a spectral range 

from 645 to 2760 cm-1 (Clerbaux et al., 2009). It samples a swath width of 2200 km by scanning a set of four fields of view 205 

across-track. At nadir, these are circular with 12 km diameter, occupying a square 50 km × 50 km (3.3° × 3.3°). For the study 

of OH temporal variation between 2008 and 2017, MetOp-A data sub-sampled both temporally (1 in 10 days) and spatially 

(1 in 4 pixels) were available. Supplementary Figs. S1 and S2 show good agreement between the sub-sampled and fully 

sampled satellite data in a zonal average when compared in 2010 and 2017, with an average monthly correlation coefficient 

in latitudinal structure of 0.89 and 0.85, respectively.  210 

 

Profiles of H2O, O3 and CO, along with temperature, are represented on a set of 101 levels in the IMS extended scheme. For 

H2O, information from IASI and the two microwave sounders (Microwave Humidity Sounder (MHS) and Advanced 

Microwave Sounding Unit (AMSU-A)) is sufficient to resolve a number of independent layers between the surface and 200 

hPa, with degrees of freedom of signal (DOFS) being typically ~10. Profiles of H2O (and temperature) produced from 215 

Metop-A by the IMS core scheme have been validated against radiosondes in ESA’s Climate Change Initiative (European 

Space Agency, n.d.) and found to have a systematic bias of ~10%. For CO, on the other hand, measurement information 

(exclusively from IASI) is sufficient to retrieve only one independent layer with the averaging kernels centred on the mid 

troposphere ~600 hPa with a full width half medium (FWHM) from ~300–900 hPa, as seen in Figs. S3 and S4. Validation of 

the IMS-extended CO retrievals, through indirect comparisons using the Copernicus Atmospheric Monitoring Service 220 

(CAMS) in which averaging kernels were applied (see the supplement of Pope et al. (2021)), found uncertainty in retrieved 

CO to be approximately 10%. For O3, averaging kernels peak at a number of levels spanning the troposphere and 
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stratosphere with DOFs generally ranging between 3.0 and 4.0. The lowest peak is seen in Figs. S3 and S4 to be around ~600 

hPa with FWHM from ~350–900h Pa. When compared with ozonesondes (Supplementary Sect. S3), O3 retrieved in the mid-

troposphere by the IMS-extended scheme is found to be differ systematically larger by up to 20 %. The RAL v2.0 IASI 225 

scheme retrieves CH4 on a set of coarsely spaced levels, taking as input temperature profiles and surface spectral emissivity 

pre-retrieved from the same soundings by IMS. Output files also include layer-average mixing ratios and their corresponding 

averaging kernels, as shown in Figs. S3 and S4. The number of DOFS is greater than 2 in the tropics and drops to below 2 at 

polar latitudes; the surface–450 hPa layer average is well resolved from layers above. Examples of averaging kernels for 

H2O, CH4, CO and O3 are shown in Supplementary Sect. S2 (Figs. S3 and S4). 230 

 

With the exception of H2O, retrieval sensitivity is seen in Figs. S3 and S4 to decrease in the lowest atmosphere as 

temperature approaches that of the surface and surface-air temperature contrast on which sensitivity depends diminishes.  

However, in all four cases, averaging kernels for layers centred in the mid-troposphere are well behaved, with peaks around 

600–700 hPa and FWHMs contained within the free troposphere, as appropriate for the focus of this study. For 235 

straightforward comparison with TOMCAT simulations, use of retrieved MetOp-A data is further restricted to the 400–800 

hPa and 600–700 hPa layers, where averaging kernels peak, rather than applying the averaging kernels to model profiles.    

 

Co-located retrievals of H2O, O3 and CO data and CH4 were filtered for a geometric cloud fraction of 20 % or less (i.e. 0.2 

fractional coverage or less). This resulted in satellite soundings which exclude all opaque clouds which fill the field of view 240 

and a fraction of clouds which fill part of the field of view. In comparison with TOMCAT, which had no filtering for cloud, 

this could produce a clear skies bias. However, the model is driven by ECMWF meteorological fields, which are also used in 

the satellite retrieval, so they should be reasonably consistent. Figure S6 shows the daily average number of retrievals used 

per grid box for the calculation of satellite [OH]. Globally, the daily average number of grid-box profile retrievals for the 

input species ranges between 0 and 24, with an average of ~6. Therefore, there are sufficient retrievals of the trace gases in 245 

the S-SSA to calculate values of OH for most grid-boxes every day. 

 

Uncertainty on [OH] calculated with the S-SSA using satellite data is estimated from the systematic errors on the four 

retrieved species, as described in Supplementary Sect. S6, to be ~23–24 % (Fig. S7). This assumes that there is no 

uncertainty in the rate constants (j1, k1-6), which is a potential source of error.   250 

 

2.3.3 ATom observations 

The ATom mission observed many atmospheric variables, including OH and OHR (Wofsy et al., 2018). NASA’s DC-8 

aircraft sampled the atmosphere between 0.2–12 km altitude during four campaigns between 2016–2018, sampling both 

hemispheres over the Pacific and Atlantic Oceans. We use ATom observations of OH, OHR, O3, CO, CH4, H2O and j1. We 255 
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use data from all four campaigns between and 08:00–11:00 local solar time, to compare with the 09:30 MetOp-A overpass 

time and the 600–700 hPa pressure range, where the S-SSA agrees best with the full chemistry (see Sect. 3.1). The data are 

also filtered to remove measurements influenced by stratospheric air (O3/CO > 1.25) or biomass burning (acetonitrile 

concentration > 200 ppt), as in Travis et al. (2020). The OH and OHR observations used in this study were made by the 

ATHOS instrument (Faloona et al., 2004; Brune et al., 2020). Wofsy et al. (2018) merged the observations into a two minute 260 

sampling interval. The uncertainty on the OH observations from the ATHOS instrument at the 2σ confidence level is ± 35 % 

and the limit of detection of the OH observations is 0.018 pptv. The uncertainty on the OHR observations from the ATHOS 

instrument at the 2σ confidence level is ± 0.8 s-1. The NOAA Picarro instrument provides CH4 and CO observations, with 

uncertainties of ± 0.7 ppbv and ± 8.9 ppbv, respectively (Karion et al., 2013). The Diode laser hygrometer (DLH) provides 

H2O observations with an uncertainty of ± 5 % (Podolske et al., 2003). The NOAA-NOy O3 instrument provides O3 265 

observations with an average uncertainty of ± 2.0 ppb (Ryerson et al., 2000). The CCD Actinic Flux Spectroradiometers 

(CAFS) instrument provides j1 observations, with an uncertainty of ± 20 % (Shetter and Müller, 1999).  

3 Results & Discussion 

3.1 Application of the simplified steady-state approximation  

3.1.1 Application to model data  270 

We use the TOMCAT output of CO, CH4, O3 and H2O, for 2010 in the S-SSA of OH to determine the validity of this 

approximation in different regions of the troposphere. Mass-weighted zonal mean [OH] calculated with the S-SSA and 

modelled TOMCAT [OH] are compared in Fig.1. Table 1 shows the differences to be very large (>85 %) between global 

mean TOMCAT OH and TOMCAT S-SSA OH at pressures <400 hPa (i.e. upper troposphere and stratosphere). Nearer the 

surface (>800 hPa) the S-SSA shows a good zonal mean agreement (< 6 % difference). However, there are large differences 275 

in the longitude-latitude distribution which do not show in the zonal mean and we do not expect a good approximation of the 

complex OH chemistry in the boundary layer using our simplified approximation. Therefore, we focus our investigation at 

pressure levels above the boundary layer.  

 

The mid tropospheric region (400–800 hPa) shows good agreement in spatial distribution and abundance with a S-SSA 280 

global mean underestimate of ~30–35 %. In the mid-troposphere, there are peak values of 5.4 ×106 molecule cm-3 (Jan) and 

7.3 ×106 molecule cm-3 (Jun) for TOMCAT S-SSA OH, which are comparable to peak values of 5.6 ×106 molecule cm-3 

(Jan) and 8.3 ×106 molecule cm-3 (Jun) for TOMCAT OH. Within this mid-tropospheric region, the 600–700 hPa layer is 

further investigated, as it shows better agreement in the zonal mean structure and global mean than the larger pressure 

region, as shown in Table 1. TOMCAT output from 2017 was also applied to the S-SSA with similar results, shown in 285 

Supplementary Sect. S7 (Fig. S9). We therefore selected the pressure region 600–700 hPa for investigation because of the 
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good agreement between TOMCAT OH and TOMCAT S-SSA OH in this region. OH in this the pressure region contributes 

to ~15 % of the tropospheric OH burden. Diagnosis of the model output shows the influence of OH in this region to methane 

oxidation is slightly larger, with a contribution of ~19 % of methane-loss-weighted OH.  

 290 

Figure 2 shows the spatial differences between the TOMCAT and S-SSA OH. In January, the S-SSA shows an 

underestimate of up to ~2 ×106 molecule cm-3 across the Northern Hemisphere (NH) and over parts of the oceans across the 

SH, mostly between the equator and 30°S e.g. the Atlantic, edges of the Pacific, but not the Indian Ocean. In the SH, an 

overestimate is present over some of the continents, e.g. up to ~2 ×106 molecule cm-3 in S America, and up to ~1 ×106 

molecule cm-3 in the Indian Ocean and the centre of the Pacific. Broadly, the peak [OH] values across SE Indian Ocean and 295 

S African continent show good agreement. In June, the S-SSA shows good agreement over the oceans in the NH, mostly 

between the equator and 30°N, and the S American and Australian continent in the SH. An overestimate of up to ~4 ×106 is 

found across the peak [OH] values found across the N African continent and China. A slight underestimate of up to ~1 ×106 

is found on landmasses around the equator. 

 300 

In summary, the S-SSA agrees with TOMCAT across the oceans near the equator, to an extent which depends on the season. 

The peak values of [OH] are found in similar locations for TOMCAT and S-SSA [OH], however, the S-SSA generally 

produces an underestimate of these peak values.  

 

 305 
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Figure 1: Comparison of TOMCAT OH and S-SSA OH in 2010: (a) TOMCAT OH January, (b) TOMCAT S-SSA OH January, 

(c) TOMCAT OH June, (d) TOMCAT S-SSA OH June. The dashed lines represent the proposed area of best agreement, 600–700 

hPa. The numbers on the right of each plot represent the mass-weighted mean OH in ×106 molecule cm-3 of the region shown by 

the dotted lines (from top to bottom): < 400 hPa, between 400–800 hPa, between 800 hPa and the surface. 310 

 

 

 

 

 315 

 

Table 1: Comparison of mass-weighted global mean TOMCAT OH and S-SSA OH for different pressure ranges. Percentage 

difference relative to the TOMCAT OH mean given in brackets.   

 

 320 

 S-SSA OH average – TOMCAT OH average (×106 molecule cm-3) 

Pressure range January June 

< 400 hPa -2.48 (-86 %) -2.71 (-85 %) 

400–800 hPa -0.86 (-34 %) -1.01 (-31 %) 

> 800 hPa -0.08 (-6 %) -0.24 (-2 %) 

600–700 hPa -0.86 (-31 %) -0.96 (-26 %) 
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Figure 2: OH concentrations averaged over the 600-700 hPa range for TOMCAT, S-SSA and the difference (TOMCAT S-SSA 

minus TOMCAT). Panels a)-c) and d)-f) represent comparisons for January and June, respectively. All values are in in units of 

×106 molecule cm-3. 

 325 

3.1.2 Study of reactions omitted from the S-SSA 

The aim of this study is to derive information about OH from satellite data. Therefore, some source and sink reactions, which 

do not have relevant satellite retrievals, have been omitted from the S-SSA. We apply TOMCAT model data to another more 

complex steady-state approximations, Sav-SSA, to demonstrate which atmospheric species additional to H2O, O3, CO and 

CH4 are key to OH production and removal in the pressure ranges, <400 hPa and >800 hPa. The results are shown as zonal 330 

means in supplement Sect. S8. Figures S11 and S12 show that the reaction of nitric oxide (NO) and the hydroperoxyl radical 

(HO2) to be an important missing source at pressures <400 hPa. The OH and HO2 radicals are closely linked in chemical 

cycles which are not, however, represented in the S-SSA.  
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Figure 3 shows the regional impact of the NO + HO2 source term on the total production term of the Sav-SSA, averaged 335 

across the 600 – 700 hPa pressure layer. In areas with very high NO + HO2 percentage contributions, it is likely that the S-

SSA does not sufficiently capture all the important chemical pathways. For January, the NO + HO2 source term shows a very 

large percentage contribution between 30°N and 60°N (up to 100%), although the [OH] is very low there and therefore 

relatively unimportant. Below 30°N, the spatial distribution of this percentage contribution is similar to the spatial 

distribution of the negative differences between TOMCAT and S-SSA [OH] in Fig. 2, indicating that these regions would 340 

have improved agreement with the addition of this source term. For example, across the NH oceans and continents and in the 

SH Atlantic and Pacific Ocean off the coast of S America. For June, the NO + HO2 source term makes a larger percentage 

contribution across the SH oceans and continents (where [OH] is low). In the NH, the NO + HO2 source term makes a 

greater contribution over land, and a very low contribution over the oceans, where Fig. 2 shows that the S-SSA [OH] is in 

good agreement with the TOMCAT [OH].  345 

 

Figures S13 and S14 show a comparison between [OH] calculated using the S-SSA, as in Eq. (4), but with the addition of 1 

source term (NO + HO2) and 2 sink terms (NO + OH + M and NO2 + OH + M). The [OH] calculated using the NOx terms 

shows an overestimate of between ~0 and 4 ×106 molecule cm-3 compared to TOMCAT [OH] for both January and June 

2010 and improves the agreement in some regions, such as at broadly above the equator in January and below the equator in 350 

June.  

 

Although the NO + HO2 source term is important in some regions, there are no NO or HO2 satellite observations available in 

the relevant pressure range, so we cannot include this term in the S-SSA in this study. Introducing co-located tropospheric 

NO2 satellite data from another instrument on MetOp-A, the Global Ozone Monitoring Experiment-2 (GOME-2), alongside 355 

IASI (Munro et al., 2016) is an area for potential future work. This would require additional steady-state balance expressions 

for NO:NO2 and for HO2.  
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Figure 3: Contribution of NO + HO2 360 
reaction to total production term for Sav-

SSA in 2010 averaged for the 600-700 hPa 

pressure region. (a) total production term 

in January, (b) percentage contribution of 

the NO + HO2 source reaction to the total 365 
production term in January, (c) total 

production term in June, (d) percentage 

contribution of the NO + HO2 source 

reaction to the total production term in 

June. Total production is in units of ×105 370 
molecule cm-3 s-1. 

 

 

 

 375 

 

 

 

 

 380 

 

 

 

 

Closer to the surface (> 800 hPa), Figs. S15 and S16 show that there are a number of important sink reactions for OH which 385 

are not included in the S-SSA, but are included in the Sav-SSA. These sink species include nitrogen dioxide (NO2), dimethyl 

sulphide (DMS), hydrogen (H2), hydrogen peroxide (H2O2), NO, sulphur dioxide (SO2), formaldehyde (HCHO) and a 

combination of hydrocarbons (e.g. alkanes and alkenes).  

 

Figure 4 shows the regional impact of two VOC terms (of interest) on the total production term of the Sav-SSA, averaged 390 

across the 600 – 700 hPa pressure layer. The regional contribution of all sink terms can be found in the Supplementary 

Material. Figure 4 shows that C5H8 (isoprene), from the sum of hydrocarbon term, shows a large contribution across South 

America and Indonesia in both January and June. These are regions of high S-SSA OH compared to TOMCAT OH seen in 

Fig. 2, representing the lack of this sink term in the S-SSA, leading to an overestimation by the S-SSA. In these regions, the 

S-SSA expression is shown to not fully capture the OH chemistry. Formaldehyde (HCHO) represents ~10% of the total sink 395 

term in both months.  
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Figure 4: Contribution of isoprene (C5H8) and formaldehyde (HCHO) OH sink reactions to the total sink term for Sav-SSA in 

2010 averaged for the 600-700 hPa 

pressure region. (a) Total sink term 400 
in January, (b) percentage 

contribution of the OH + C5H8 to the 

total sink term in January, (c) 

percentage contribution of the OH + 

HCHO to the total sink term in 405 
January, (d) total sink term in June, 

(e) percentage contribution of the 

OH + C5H8 to the total sink term in 

June, (f) percentage contribution of 

the OH + HCHO to the total sink 410 
term in June. Percentage value in 

panel label (i.e. 0-40 %) refers to the 

colour bar range. Total sink is in 

units of s-1.  

 415 

These additional source and sink terms could potentially help reduce the overestimate of the S-SSA in this region. Satellite 

data on tropospheric columns of NO2 and several other relevant species (HCHO and SO2 at enhanced levels) are available 

from GOME-2 alongside IASI on MetOp-A. Other than in tropical regions of lightning NOx production and rapid convective 

uplift, these reside principally in the lower troposphere. Co-located data from GOME-2 could therefore allow further 

investigation in future work. For the other source and sink species, satellite data is either not available in the relevant 420 

pressure region or not available from a similar instrument to the species in the S-SSA. This would yield problems, such as in 

combining observations with different vertical resolutions at different locations and times of day. 

 

Overall, the spatially varying importance of different source and sink terms prevents the S-SSA from achieving a spatially 

uniform agreement and this must be considered when applying the approximation. 425 

 

3.1.3 Application to satellite data  

We apply satellite-retrieved trace gas data and model j1 for 2010 to estimate [OH] using the S-SSA in the layer of interest, 

between 600–700 hPa. The satellite profiles interpolated to this layer are applied on an individual sounding basis for the 

daytime (~9:30 am local time) overpass. The [OH] estimates are then gridded onto the model grid for comparisons. Figure 5 430 

shows the satellite S-SSA [OH] for 2010. The mass-weighted global mean [OH] ranges from 2.1 ×106 molecule cm-3 

(January) to 2.9 ×106 molecule cm-3 (July). The seasonal variation is clear, with the higher [OH] values e.g. above 5.0 ×106 

molecule cm-3 mostly in the SH during the summer (December-February), with a grid-box maximum value of 10.6 ×106 

molecule cm-3. These larger [OH] concentrations in the tropical region, between 30° S–30° N, appear from March to May, 

with a grid-box maximum of 10.9 ×106 molecule cm-3. For June to August the higher [OH] values are mostly in the NH, with 435 
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a grid-box maximum of 28.1 ×106 molecule cm-3. The higher [OH] values are present around the equator and sub-tropics in 

September to November, with a grid-box maximum of 11.4 ×106 molecule cm-3.  

 

Figure 5: Satellite S-SSA OH (×106 molecule cm-3) averaged for the 600–700 hPa layer in all months of 2010. Global mass-weighted 

mean OH values (×106 molecule cm-3) for this region are labelled for each month. 440 

 

Figure 6 shows a comparison of TOMCAT, TOMCAT S-SSA, TOMCAT FC-SSA and satellite S-SSA [OH] in January and 

June 2010. In both months the four estimates are seen to have very similar geographical structures. As expected, TOMCAT 

[OH] and TOMCAT FC-SSA [OH] show spatial patterns and global averages which are particularly similar (<6 % 

difference). This good agreement indicates that the use of monthly model data in the steady-state expression matches well 445 

with the numerical integration scheme inside the model. The TOMCAT and satellite S-SSA distributions also agree well in 

both months. The agreement is closer in January than June, with comparable peaks over NW Australia and S Africa with a 

TOMCAT [OH] grid-box maximum of 9.7 ×106 molecule cm-3 and a satellite [OH] grid-box maximum of 10.3 ×106 

molecule cm-3. The TOMCAT and satellite S-SSA January global mean [OH] values are 2.85 and 2.21 ×106 molecule cm-3, 
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respectively, so are consistent to ~22 %.  In June 2010, TOMCAT and satellite S-SSA distributions have peaks over S Asia 450 

and N Africa. Over SE Asia, the TOMCAT and satellite peaks are ~15 and 12 ×106 molecule cm-3, respectively, and over N 

Africa they are ~15 and 8 ×106 molecule cm-3, respectively. The TOMCAT distribution also has a peak over N America 

which is not captured by the satellite S-SSA. The TOMCAT and satellite S-SSA June global mean [OH] values are 3.80 and 

2.73 ×106 molecule cm-3, respectively, so are consistent to ~28 %. The correlation co-efficient between the monthly average 

grid-boxes of TOMCAT and satellite S-SSA OH is 0.85 for January and 0.83 for June. In summary, the monthly-mean 455 

geographical distributions and global averages derived using the S-SSA (using TOMCAT/satellite data) agree well with 

those from TOMCAT and TOMCAT FC-SSA, indicating the S-SSA offers a useful approach to investigate [OH] behaviour 

globally in the 600–700 hPa layer. The monthly-mean distributions of satellite-derived S-SSA [OH] agree well with 

TOMCAT S-SSA although values are generally lower, indicating some inconsistency between TOMCAT and satellite in the 

distributions of H2O, O3, CO and/or CH4. The same analysis was applied to data from 2017 (Fig. S10) and similar results 460 

obtained, a global underestimate for the satellite S-SSA of 21 % in January and 28 % in June.  

 

3.1. Application to aircraft data 

To further assess the robustness of the S-SSA, we apply it to CH4, CO, O3, H2O and j1 observations from four ATom 

campaigns. Figure 7 shows a comparison between [OH] observed by ATom (OH-obvs) and as calculated from ATom H2O, 465 

O3, CO and CH4 observations using the S-SSA (OH-calc) where ATom data were available for all species. Across all four 

ATom campaigns, OH-calc is biased by -25.8 % with respect to OH-obvs. This bias is similar to the uncertainty on OH-obvs 

of ~35 % (Brune et al., 2020). For the four individual campaigns, the % bias is persistently negative, ranging from -21.1 to -

25.2 % for ATom-1,3,4 and -48.8 % for ATom-2. One explanation for the large normalised mean bias for ATom-2 is due to 

the predominance of smaller values of [OH] during this campaign, leading to higher percentage differences, as the absolute 470 

bias is more in line with the other campaigns. Across the four campaigns the Pearson’s correlation co-efficient is 0.78, and 

for the four individual campaigns, the correlation ranges from 0.51 to 0.86.  

 

Figure 8 shows a comparison between zonally-averaged OH-obvs and OH-calc. The left panels show that for OH-obvs, the 

higher values are predominantly found closer to the equator although exceptions exist e.g. around 45°N in ATom-1. The 475 

right panels show that for the majority of latitudes, OH-obvs is larger than OH-calc across all four campaigns, with a few 

exceptions, mostly in ATom-2 and 4. The deviations range from -9.7 ×106 molecule cm-3 to 4.1 ×106 molecule cm-3. 

Generally, they are smallest between 30° S and 90° S, corresponding to the low OH-obvs and OH-calc values in this region. 

They are higher in 30° S–30° N and 30°–90°N, corresponding to generally higher OH-obvs and OH-calc values near the 

equator and some large values in the NH mid-latitudes.  480 
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The normalised mean bias between OH-obvs and OH-calc is ~26 % which is a similar order of magnitude to the large 

uncertainty of 35 % for the OH observations. The ATom observations provide a comparatively large aircraft dataset for 

comparison, however, it nonetheless has a limited spatiotemporal extent, which must be acknowledged when interpreting our 

results. Here, we believe that for the observations used, the datasets are correlated sufficiently to justify further study of the 485 

S-SSA at this pressure range. 

 

As the normalised mean bias between OH-obvs and OH-calc is comparable to the uncertainty on the OH-obvs and the 

datasets are well correlated, this analysis of the ATom campaigns provides further justification that the use of the S-SSA to 

further study OH in this pressure range is robust.   490 
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Figure 6: 2010 OH comparison in the 600–700 

hPa layer: (a) TOMCAT January, (b) TOMCAT 

June, (c) TOMCAT FC-SSA January, (d) 495 
TOMCAT FC-SSA June, (e) TOMCAT S-SSA 

January, (f) TOMCAT S-SSA June, (g) Satellite 

S-SSA January and (h) Satellite S-SSA June. 

Global mass-weighted mean OH values (×106 

molecule cm-3) for this atmospheric region are 500 
given below each panel.   
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Figure 7: Comparison between OH-calc and OH-obvs. The left panel shows a combination of ATom-1, ATom-2, ATom-3 and 

ATom-4. The right four panels show the data split into the individual campaigns. ATom observations are filtered for 600–700 hPa 

and 08:00–11:00 LT. All data is in units of ×106 molecule cm-3. Data points in orange are excluded from the analysis, either as an 505 
outlier ( > mean + 3.0 standard deviations) or below the limit of detection of the ATHOS instrument (0.018 pptv or 0.31 ×106 

molecule cm-3) shown by the orange line. Pearson’s correlation co-efficient (r), the mean bias (calculated from OH-calc – OH-obvs) 

and the normalised mean bias (% with respect to OH-obvs) are displayed in the top left corner of each panel.  

 

Figure 9 shows OH-obvs overlayed onto a satellite derived [OH] field averaged across the corresponding days in 2017. The 510 

comparison is challenging due to the sparse nature of the ATom data points compared to the satellite [OH] field (highlighted 

in Fig. 9) and using satellite data only for 2017 (ATom-1 occurred in 2016 and ATom-4 in 2018). There are examples of 

good agreement between the satellite and OH-obvs in some peak [OH] regions, e.g. off the western coast of Mexico between 

the equator and 30° N in ATom-1, and also low [OH] regions, e.g. over the North Atlantic ocean in ATom-2. However, there 

are also examples of poor agreement, e.g. high values in OH-obvs near Alaska and low values in the satellite OH in ATom-3 515 

and 4. Across the four campaigns, the correlation co-efficient ranges from 0.15 to 0.75, and the  bias of satellite with respect 

to ATom ranges from -60.1 % to -35.1 %.  Figure 6 highlights the sparse nature of the ATom data in comparison to the 

satellite [OH] field.The poor comparison in some regions may be attributable to the resolution difference between the point 

aircraft observations and the averaged satellite [OH] field, due to spatial inhomogeneity of OH.  

 520 

Figure 10 shows a comparison between OH-obvs and the nearest value from the averaged satellite [OH] field (OH-sat). The 

data is coloured by latitude and, as in Fig. 9, indicates OH-sat to be negatively biased with respect to OH-obvs at northern 

mid–high latitudes, but to a lesser extent at lower latitudes. Across the four campaigns, the values at northern mid–high 

latitudes (30°–90° N) and the values at lower latitudes (90° S–30° N) show similarly high correlation co-efficients of 0.68, 

with a small difference of 9.4 % for the lower latitudes, and a much larger difference of 72.8 % for the higher latitudes. This 525 
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corresponds to the results in Sect. 3.1.2, where the OH source reaction HO2 + NO represents a larger contribution to the total 

production in the NH high latitudes in winter (ATom-2,3,4). The reduction in agreement in this region, indicates that the S-

SSA may not be able to provide robust information about [OH] here. In Sect. 3.3 we study a tropical (15° S–15° N) band, 

where the S-SSA shows a more robust agreement. 

 530 

 
Figure 8: OH-calc and OH-obvs comparison. Left panels show latitude-averaged OH (ppt) with error bars of 35 %. Right panels 

show latitude-averaged OH difference between OH-calc and OH-obvs (calc – obvs) with the mean difference (MB) labelled for 3 

different latitude regions marked by the dashed lines (90°–30° S, 30° S–30° N and 30°–90° N). All data is in units of ×106 molecule 

cm-3. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. 535 

 

3.1.5 Aircraft data and omitted source terms 

Fig. S17 is similar to Fig. 7 but shows a comparison of ATom OH-calc with (OH-calc-NOx) and without (OH-calc) 3 NOx 

reactions (NO + HO2, NO + OH + M, NO2 + OH + M) included in the S-SSA. The addition of the NOx terms changes the 
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bias in the OH-calc relative to OH-obvs from -20.6 % to +13.2 %. This change in sign is consistent with the comparison of 540 

S-SSA and S-SSA with NOx reactions using model data as shown in Figs. S13 and S14. Overall, the correlation remains 

similar for with and without NOx (0.76 and 0.78). This corresponds to the model results in Sect. 3.1.2 which show that for 

some regions, the NO + HO2 source term can make a large contribution to the total source term.  

 

3.2 OH reactivity 545 

As described in Sect. 2.2, OHR observations can potentially be used to check the denominator of a steady-state 

approximation, in this case a simplified expression of OHR (Eq. (5)). Supplementary Sect. S10 (Figs. S18 and S19) 

discusses our comparisons between ATom OHR observations (OHR-obvs) and ATom data used in the simplified expression 

for OHR (OHR-calc). Although ~80 % of calculated OHR values fell within the range of measurement uncertainty, the 

estimated error on OHR measurements (0.8 s-1) was too large to find any correlation with calculated OHR (r = -0.02). The 550 

bias in calculated OHR varied between -57 % to +20 % over the four campaigns and the average bias in calculated OHR (-37 

%) over the four campaigns (Fig. S18) is compatible with the (-28 %) bias in S-SSA [OH]. Several studies (Thames et al., 

2020; Travis et al., 2020) have quantified “missing OH reactivity” in the boundary layer in detail, however, our analysis of 

ATom [OH] and OHR measurements demonstrates the S-SSA to estimate [OH] with an accuracy within ~30% in the 600-

700 hPa layer. 555 

3.3 OH temporal variation 

Satellite data in conjunction with the S-SSA presented in previous sections provides a mean to examine the temporal 

variation in global [OH]. We use satellite data produced on a sub-sampled basis from 2008–2017 and the S-SSA, together 

with fixed annual monthly model j1 distributions from the TOMCAT model for a fixed year (2010). The use of a fixed year 

of j1 distributions removes any influence from variation in this value between years e.g. from variation in overhead 560 

stratospheric ozone, which is an assumption that should considered when interpreting these results. Figure 11 shows the time 

series of global, NH, SH and tropical (15° S–15° N) OH monthly anomalies with respect to the 2008-2017 mean for each 

month for the 600–700 hPa layer. We include a tropical band as this is the most representative region of OH using the S-

SSA. Similar plots in Sect. S11 show % anomalies for the input species and temperature (Figs. S20–S24). During this time 

period the [OH] anomaly varies between: -0.10 and +0.15 ×106 molecule cm-3 for the global average; -0.15 and +0.11×106 565 

molecule cm-3 for the NH average; -0.21 and +0.21 ×106 molecule cm-3 for the SH average; and -0.37 and +0.54 ×106 

molecule cm-3 for the tropical average. Aside from a few exceptions, the global, NH, SH and tropical average follow a 

similar pattern. Notable positive anomalies (values given for the tropical band, in units of ×106 molecule cm-3) occur in mid-

2010 (+0.30), the end of 2012 and beginning of 2013 (+0.54), mid-2015 (+0.15) and mid-2016 (+0.14). Notable negative 

anomalies occur in mid-2009 (-0.27), 2011 to mid-2012 (-0.37), end of 2015 and beginning of 2016 (-0.21) and the end of 570 

2017 (-0.22). The global annual mean [OH] anomaly ranges from -3.1 % to +4.7 % and the tropics anomaly ranges from 
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around -6.9 to +7.7 %. This behaviour is broadly similar to other studies of [OH] variability using MCF observations and 

chemistry transport models, which find a range of around -6 to +6 % for global [OH] anomaly during this time period 

(although our assessment is limited to a specific pressure range, so this is not a direct comparison) (Voulgarakis et al., 2015; 

Patra et al., 2021). 575 

 

Figure 12 shows contrasting behaviour of the three sink terms during the time period 2008–2017. It shows that in the 600–

700 hPa layer, CO is the dominant sink term, ranging between 0.20–0.45 s-1, with the CH4 sink having the next largest 

contribution between 0.10–0.15 s-1 and the O3 sink having the smallest contribution at around 0.04 s-1. The comparatively 

large size of the CO sink, indicates that variation in CO is likely to dominate the variation in the total sink term. The CO sink 580 

is consistently lower in the SH than NH, with largest difference (~0.2 s-1) in the first half of the year. The CH4 and O3 sinks 

show negligible difference between SH and NH, therefore the CO sink will have a lower percentage contribution in the SH. 

These findings are consistent with those from aircraft measurements below 3 km in Travis et al. (2020) and from model data 

in the free troposphere in Lelieveld et al., (2016). Satellite CH4 shows a positive trend of 4.5 ppb yr-1 throughout this time 

period (Fig. S21). However, as seen in Fig. 12, when the rate constant is applied, the CH4 sink term shows very little 585 

variation, with no evidence of the positive trend in CH4 concentrations having a significant impact. The source term 

(numerator of Eq. (4)) varies between 5–15 ×105 molecule cm-3 s-1 for the global, NH and SH averages, while for the tropical 

band it ranges between 15–28 ×105 molecule cm-3 s-1. 

 

 590 
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Figure 9: Satellite OH for four periods in 2017 corresponding to A1 to A4 (ATom-1 to ATom-4, 2016-2018) with ATom OH 

observations (OH-obvs) overlayed on top as coloured circles. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. 

The Pearson’s correlation co-efficient (r), mean bias (calculated from the nearest satellite grid cell – OH-obvs) and the normalised 

mean bias (% with respect to OH-obvs) are displayed at the bottom of each panel. All data is in ×106 molecule cm-3.  595 
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Figure 10: Comparison between OH-obvs and OH-sat (nearest satellite OH value to ATom observation from averaged 2017 

satellite OH grid). The left panel shows a combination of ATom-1, ATom-2, ATom-3 and ATom-4. The right four panels show the 

data split into the individual campaigns. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. All data are in 600 
units of ×106 molecule cm-3. Data points in orange are not included in analysis, either as an outlier ( > mean + 3.0 standard 

deviations) or below the limit of detection of the ATHOS instrument (0.018 pptv or 0.31 ×106 molecule cm-3) shown by the orange 

line. Pearson’s correlation co-efficient (r), the mean bias (calculated from OH-sat – OH-obvs) and the normalised mean bias (% 

with respect to OH-obvs) are displayed in the top left corner of each panel for 3 different latitude ranges: all latitudes, 90° S–30° N 

and 30°–90°N, respectively. The values are coloured by latitude as shown on the colour bar.  605 

 

Figure 13 shows the temporal anomaly, relative to the 2008–2017 mean, of the balance between source and sink terms in the 

approximation and the derived OH concentration. The positive anomalies in mid-2010, end of 2012 and beginning of 2013, 

mid-2015 and mid-2016 coincide with the positive anomalies in the source term, driven by O3 (O3 anomalies are shown in 

Fig. S23), and smaller or close to zero anomalies in the sink terms. The negative anomalies in mid-2009, 2011 to mid-2012, 610 

and end of 2017 can be explained by a negative anomaly in the source term, again driven by O3, and a small or close to zero 

anomaly in the sink term. The negative anomalies at the end of 2015 and beginning of 2016 can be explained by a very large 

positive sink term anomaly, despite the large positive source term anomaly. This large positive anomaly in the sink term 

corresponds to a large positive anomaly of CO in most latitudes (Fig. S22), with maximum anomaly ~12 % globally and ~20 

% in the tropics. The 2015–2016 El Niño event is the likely cause of this CO anomaly, due to a large increase in global fire 615 

emissions (Huijnen et al., 2016). As shown in Fig. 13d, the event started at the end of 2014, peaked at the end of 2015 with a 

maximum Multivariate ENSO Index (MEI.v2) value of +2.2, and ended in May 2016 (Liu et al., 2017; NOAA, 2021). 

Biomass burning was also found to be the key driver of OH variability in a study by Voulgarakis et al. (2015).  
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Figure 11: Monthly mean satellite OH anomaly (2008–2017): (a) 15° latitude bins and (b) 3-month average global, NH, SH and 620 
tropics means. All data is in ×106 molecule cm-3. Anomaly is relative to a 2008–2017 average.  

 

As the combined source term is a dominant driver of OH variability, it is useful to distinguish the relative importance of O3 

and water vapour in driving this variability. To do this, we repeat the source term calculation (numerator in Eq. (4)) but using 

a fixed value of O3 or water vapour, respectively. These fixed values are derived from the average value for each month 625 

across the full 2008–2017 time series. If the source term anomaly time series derived using a fixed water vapour value can 

reproduce the original anomaly time series (i.e. Fig. 13b), this would demonstrate that variability of water vapour is not 

important in comparison to that of O3 or vice versa (Fig. 14). Our results show that when water vapour is fixed (varying O3) 

in the source term anomaly, 66.4 % of the variability (i.e. R2=0.664) in the original source term can be explained on the 

global scale (Fig. 14c). When O3 is fixed to a constant monthly value (varying water vapour), the R2 value drops to 0.164 630 

with only 16.4 % of the variability in the original source term anomaly explained by this time series (Fig. 14b). This 

demonstrates that variations in O3 are the primary driver in the source term and therefore in the OH variability using the S-
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SSA in this altitude range and time period. Cross-correlations between the drivers of the key species e.g. OH, O3, are likely 

to exist, however a detailed analysis and quantification of this is beyond the scope of the study.   

 635 

 

 

Figure 12: Temporal variability in the components of the S-SSA approximation (2008–2017). Global, NH, SH and tropical average 

time series for: (a) kO3+OH[O3], (b) kCO+OH[CO], (c) kCH4+OH[CH4] and (d) 

2j1k1[O3][H2O]/(kN2+O(1D)[N2]+kO2+O(1D)[O2]+kH2O+O(1D)[H2O]).  640 
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Figure 13. Temporal variability in OH anomaly and anomalies of the numerator (source) and denominator (sink) lines of the 

steady-state approximation in Eq. (4) (2008–2017). Global, NH, SH and tropical average time series for: (a) OH anomaly, (b) 

2j1[O3][ H2O]/(kN2+O(1D)[N2]+kO2+O(1D)[O2]+kH2O+O(1D)[H2O]) (total source term) anomaly, (c) kCO+OH[CO] + kCH4+OH[CH4] + 650 
kO3+OH[O3] (total sink term) anomaly and (d) Bimonthly Multivariate ENSO index (NOAA, 2021). Anomalies are relative to a 

2008–2017 average. 
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Figure 14. Global, NH, SH and tropical average time series (2008–2017) for: (a) OH S-SSA source anomaly, (b) OH S-SSA source 

anomaly calculated with fixed monthly O3 concentrations (source fixed-O3) and (c) OH S-SSA source anomaly calculated with 655 
fixed monthly water vapour concentrations (source fixed-wv). Fixed O3/water vapour calculated as monthly average across the 

time period. Anomalies are relative to a 2008–2017 average. Values in the top right of panel (b) represent the R2 value between the 

OH S-SSA source anomaly and the source fixed-O3 anomaly and in the top right of panel (c) represent the R2 values between the 

OH S-SSA source anomaly and the source fixed-wv anomaly. All data is in units of ×105 molecule cm-3  s-1.  

4 Conclusions 660 

Due to its short photochemical lifetime, steady-state approximations are able to represent tropospheric OH concentrations 

well, depending on the complexity of the expression used and the atmospheric pressure range over which they are applied. 

The terms in the steady-state approximation also allow us to quantify components which contribute to the OH budget. A 

simplified steady-state approximation (S-SSA) can be constructed which contains terms based on trace gases observed by 

satellite. Results from the TOMCAT 3D chemical transport model show that this should be a good approximation to [OH] in 665 

the 600–700 hPa layer in terms of magnitude (~26–31 % underestimate in the mass-weighted global mean [OH] comparison 
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to full chemistry) and spatial distribution. This atmospheric layer is above the boundary layer where [OH] is substantially 

affected by many pollutants which are not measured by satellite and therefore invalidate the S-SSA. We have tested the S-

SSA in the 600–700 hPa layer using data from four ATom aircraft campaigns and found that it tracked measured [OH] with 

a correlation of r = 0.78 and a mean bias of ~26 %, similar to the 35 % estimated uncertainty on the OH observations. 670 

Measurements of OH reactivity (OHR) allow the denominator of the S-SSA expression to be considered in addition and 

found to be consistent with an S-SSA [OH] accuracy of ~30 % in the 600–700 hPa layer.  

 

The S-SSA approach allows us to demonstrate how a multi-year record of satellite observations can be used to examine 

interannual variability in tropospheric [OH]. Using H2O, O3, CO and CH4 data retrieved from MetOp-A observations for 675 

2008-17 we find the global annual mean [OH] anomaly to range from -3.1 % to +4.7 %. The influence of important terms in 

the OH budget was also derived, demonstrating the balance between the source and sink terms over time. Variation in the S-

SSA OH was found to be determined primarily by the combined source term, driven by O3, and by the CO sink term. In the 

tropics, OH variation reflected that of O3 (peaks in 2008, 2010 and the largest in 2013) along with the positive CO anomaly 

associated with the strong El Niño event in 2015/16. Overall, we have demonstrated a novel and robust methodology, using 680 

satellite observations and a simple steady-state approach, to estimate mid-troposphere [OH], which can complement existing 

methods to measure [OH] (i.e. the limited network of surface sites, infrequent flight campaigns and the MCF-type approach 

to estimate global mean [OH]). Most importantly though, the approach here will provide the scientific community with a 

global observational constraint on mid-tropospheric [OH] and help future studies assess the [OH] impacts on important air 

quality (e.g. O3 and NO2) and climate (e.g. CH4) trace gases. 685 
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