16 Dec 2022
16 Dec 2022
Status: this preprint is currently under review for the journal ACP.

In-depth study of the formation processes of single atmospheric particles in the southeastern margin of Tibetan Plateau

Li Li1,3, Qiyuan Wang1,2, Jie Tian1, Huikun Liu1, Yong Zhang1, Steven Sai Hang Ho4, Weikang Ran1, and Junji Cao5 Li Li et al.
  • 1Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • 2CAS Center for Excellence in Quaternary Science and Global Change, Xi’an 710061, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
  • 5Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract. The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the southeastern margin of the TP, which is a transport channel for pollutants from Southeast Asia during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six main types: the rich-potassium (rich-K) type was the largest fraction of the total particles (30.9 %), followed by the biomass burning (BB) type (18.7 %). Most particle types were mainly transported from the surroundings and cross-border of northern Myanmar; but the air masses from northeastern India and Myanmar show a greater impact on the number fraction of BB (31.7 %) and Dust (18.2 %) types, respectively. Besides, the two episodes events with high particle concentrations showed that the differences in the meteorological conditions in the same air clusters could cause significant changes in chemical components, especially the Dust and EC-aged types changed by a sum of 93.6 % and 72.0 % respectively. Ammonium and Dust particles distribute at a relatively larger size (~ 600 nm), but the size peak of other types is present at ~ 440 nm. The easily volatilized nitrate (62NO3) during the transport process leads the more abundant sulfate (97HSO4) to mix internally with the TP particles. C2H3O+, HC2O4, NH4+, NO3, and HSO4, severed as the indicators of secondary formation, are present in the atmospheric aging process of photo-oxidation and aqueous reaction by a linear correlation with Ox (O3+NO2) and relative humidity (RH). This study provides insights that can improve the knowledge of particle composition and size, mixing state, and aging mechanism at high time resolution over the TP region.

Li Li et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-786', Anonymous Referee #1, 07 Jan 2023
  • RC2: 'Comment on acp-2022-786', Anonymous Referee #2, 10 Jan 2023

Li Li et al.

Data sets

In-depth study of the formation processes of single atmospheric particles in the southeastern margin of Tibetan Plateau Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, Junji Cao

Li Li et al.


Total article views: 319 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
245 63 11 319 26 3 4
  • HTML: 245
  • PDF: 63
  • XML: 11
  • Total: 319
  • Supplement: 26
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 16 Dec 2022)
Cumulative views and downloads (calculated since 16 Dec 2022)

Viewed (geographical distribution)

Total article views: 317 (including HTML, PDF, and XML) Thereof 317 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 01 Feb 2023
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. The finding from this study elaborated the changes of chemical characteristics between transport and local fine particles during premonsoon, revealed the size distribution and the mixing states of different individual particles, highlighted the contributions of photooxidation and aqueous reaction to the formation of the secondary species.