What is the cause(s) of ozone trends in three megacity clusters in eastern China during 2015–2020?

Tingting Hu¹, Yu Lin¹, Run Liu¹,², Yuepeng Xu¹, Boguang Wang¹,², Yuanhang Zhang³, Shaw Chen Liu¹,²

¹Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
²Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China
³State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

Correspondence to: Run Liu (liurun@jnu.edu.cn), Shaw Chen Liu (shawliu@jnu.edu.cn)
Figure S1. Spatial distribution of daily mean MDA8 O$_3$ (in ppb) of O$_3$-exceeding days in BTH for O$_3$ episodes with four or more consecutive O$_3$-exceeding days (a), episodes with less than four consecutive O$_3$-exceeding days (b) and their difference (c) in 2015–2020.
Figure S2. Same as Figure S1, but for YRD.
Figure S3. Same as Figure S1, but for PRD.
Figure S4. Surface solar radiation (SSR) and temperature (T2m) in BTH in 2015–2020 for episodes with four or more consecutive O₃-exceeding days (red), clean days (non-O₃-exceeding days) (green) and episodes with less than four consecutive O₃-exceeding days (orange).
Figure S5. Same as Figure S4, but for YRD.
Figure S6. Same as Figure S4, but for PRD.