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Abstract. Top-down inversions of China’s terrestrial carbon sink are known to be uncertain because of 

errors related to the relatively coarse resolution of global transport models and the sparseness of in situ 15 

observations. Taking advantage of regional chemistry transport models for mesoscale simulation and 

spaceborne sensors for spatial coverage, the Greenhouse Gases Observing Satellite (GOSAT) 

column-mean dry mole fraction of carbon dioxide (XCO2) retrievals were introduced in the Models-3 

Community Multi-scale Air Quality (CMAQ) and Ensemble Square Root Filter (EnSRF)-based 

regional inversion system to constrain China’s biosphere sink at a spatiotemporal resolution of 64 km 20 

and 1 h. In general, the annual, monthly and daily variation in biosphere flux was reliably delivered, 

attributable to the novel flux forecast model, reasonable CMAQ background simulation, well-designed 

observational operator, and joint data assimilation scheme (JDAS) of CO2 concentrations and fluxes. 

The size of the assimilated biosphere sink in China was −0.47 PgC yr
−1

, which was consistent with 

most global estimates (i.e., −0.27 to −0.68 PgC yr
−1

), indicating that the regional inversion system was 25 

sufficient to robustly constrain the control vectors. Furthermore, the seasonal patterns were recalibrated 

well, with a growing season that shifted earlier in the year over central and south China. Moreover, the 

provincial-scale biosphere flux was re-estimated, and the difference between the a posteriori and a 

priori flux ranged from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong. Additionally, 

better performance of the a posteriori flux in contrast to the a priori flux was proven when the 30 
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simulation was fitted to independent observations, indicating improved results in JDAS. This study 

serves as a basis for future regional- and urban-scale top-down carbon assimilation. 

1 Introduction 

In the context of human-induced climate change, the Paris Agreement charts the course for the world to 

transition to a green way of development and outlines the minimum steps to be taken to protect the 35 

Earth, which requires all countries to make significant commitments to stabilize atmospheric 

greenhouse gas concentrations and keep the global average temperature to well under a 2℃ rise 

(UNFCCC 2015). Therewith, a growing number of countries and regions are pledging to achieve 

net-zero emissions in the second half of this century; for instance, Austria by 2040, Sweden by 2045, 

the European Union by 2050, and China by 2060. Hence, there has been an increasing demand from 40 

policymakers and the scientific community in general for accurate knowledge of CO2 emissions from 

anthropogenic sources (so that the targeted reductions are effective) and from biospheric uptake (so that 

natural reservoirs remain stable) (Ciais et al., 2015; Pinty et al., 2017; Friedlingstein, et al., 2020; Deng 

et al., 2022). In 2019, the Intergovernmental Panel on Climate Change (IPCC) published a refined 

methodology report as an update to its 2006 guidelines with the aim to complement them with a 45 

bottom-up, transparent framework and highlight the Monitoring and Verification Support (MVS) 

capacity using independent atmospheric measurements (IPCC, 2019). A great deal of effort has been 

devoted in recent decades to developing and applying atmospheric CO2 inversions to constrain global- 

and regional-scale CO2 fluxes (Enting et al., 1995; Thompson and Stohl, 2014; Broquet et al., 2011, 

Peters, et a., 2007; Tian et al., 2014; Kou et al., 2017; Kountouris et al., 2018). Most of these inversions 50 

are informed by ground-based observations and global chemistry transport models (CTMs), which is 

far from sufficient to support the abovementioned needs. Despite the development of surface 

observation networks with highly accurate continuous data, such as ICOS (the Integrated Carbon 

Observation System) in Europe, the global distribution of ground-based CO2 measurements remains 

rather sparse and inhomogeneous. Consequently, errors are introduced, CTMs lack accuracy, and 55 

assimilation frameworks deliver inconsistent regional flux estimates obtained using state-of-the-art 

global inversions from national up to continental scales (Monteil et al., 2020; Piao et al., 2022; Schuh 

et al., 2022). 
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Spaceborne sensors, designed specifically to retrieve atmospheric concentrations with unprecedented 60 

spatial coverage, have in recent years begun to improve the current understanding of greenhouse gases 

and the associated CO2 emissions’ MVS capacity. At present, there are several operational CO2 

observation satellites in orbit, including Japan’s Greenhouse Gases Observing Satellite (GOSAT; Kuze 

et al., 2009), GOSAT-2 (Glumb et al., 2014), the US Orbiting Carbon Observatory 2 (OCO-2, Eldering 

et al., 2017a, 2017b), OCO-3 (Eldering et al., 2019), and China’s TanSat (Liu et al., 2018; Yang et al., 65 

2018). It is recognized that satellite retrievals of shortwave infrared radiation, despite their uncertainty, 

are sufficient to reliably capture the seasonal variability of XCO2 (column-mean dry mole fraction of 

carbon dioxide), as a first-order question in constraining inversion models (Lindqvist et al., 2015; Li et 

al., 2017). Furthermore, several centers and universities routinely assimilate GOSAT XCO2 data into 

models to estimate terrestrial ecosystem carbon exchange, including Japan’s National Institute for 70 

Environment Studies (NIES), the United States’ National Aeronautics and Space Administration 

(NASA), France’s Laboratoire des Sciences du Climat et de I’Environnement, the Netherland’s 

Institute for Space Research, the UK’s University of Edinburgh, Canada’s University of Toronto, and 

China’s Nanjing University. As an example, the NIES GOSAT Project provides a Level 4 CO2 data 

product, and the monthly regional CO2 flux estimates for the period 2009–2013, based on XCO2 75 

retrievals and NIES’ global atmospheric tracer transport model with Bayes’ theorem, are publicly 

available (Maksyutov et al., 2013; Takagi et al., 2014). Furthermore, NASA’s Carbon Flux Monitoring 

System is another recent top-down global inversion system configured with 4DVar and GEOS-Chem 

(Goddard Earth Observing System with Chemistry) and concurrently assimilates XCO2 from GOSAT 

and OCO-2. It has released the longest available terrestrial flux estimates (from 2010–2018) on 80 

self-consistent global and regional scales and has planned future updates of the dataset on an annual 

basis (Liu et al., 2021). In addition, the University of Edinburgh has simultaneously produced a 

five-year CH4 and CO2 flux estimate for 2010–2014 directly from GOSAT retrievals of XCH4:XCO2 by 

using GEOS-Chem and an ensemble Kalman filter (EnKF) (Feng et al., 2017). Moreover, the Global 

Carbon Assimilation System has been upgraded by Nanjing University to assimilate the GOSAT XCO2 85 

retrievals from 2010–2015 with the Ensemble Square Root Filter (EnSRF) algorithm and the Model for 

Ozone and Related Chemical Tracers, version 4 (Jiang et al., 2021; 2022). Overall, the top-down CO2 

biosphere flux datasets inverted from satellite data suggest an improved flux estimation compared with 
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the large uncertainties in process-based terrestrial biosphere model estimates (Byrne et al., 2019; 

Chevallier et al., 2019; Chen et al., 2021). Deng et al. (2016) and Wang et al. (2018) further highlighted 90 

the importance of improved observational coverage to better quantify the latitudinal distribution of 

terrestrial fluxes by combining GOSAT observations over land and ocean. Also, the sensitivity of 

observations from GOSAT and OCO-2 to optimized CO2 fluxes has been examined using GEOS-Chem, 

indicating that GOSAT offers greater sensitivity in Northern Hemisphere spring and summer (Byrne et 

al., 2017; Wang et al., 2019).  95 

 

Nevertheless, a GOSAT CO2 global inversion intercomparison experiment involving eight research 

groups found that, as expected, the most robust flux estimates were obtained at large scales and quickly 

diverged at subcontinental scales; and the inversions primarily involved uncertainties in their global 

CTMs, satellite retrievals, a priori fluxes, and inversion frameworks (Chevallier et al., 2015; 100 

Houweling et al., 2015; Fu et al., 2021). Generally, the assimilated CO2 flux (i.e., the analytical field) is 

a weighted average of background information and observations, which depends on the correlation 

coefficient between simulated concentrations of the observation and the state variable (i.e., CO2 flux). 

In particular, considering the transport errors introduced by global CTMs, the reliability of the regional 

fluxes inferred from GOSAT retrievals remains a topic of ongoing discussion (Reuter, et al., 2017; He 105 

et al., 2022). Consequently, if we can configure a reasonable simulation of the background CO2 

concentration compared with the coarse spatiotemporal resolution of the global scale, then the flux 

constrained by observations can be estimated more precisely at national and city scales. The step up in 

inversion resolution and accuracy calls for new developments in shifting from global to regional 

inversions.  110 

 

However, regional CTMs, with their advantages in resolving fine-scale CO2 concentrations, are rarely 

used in satellite carbon data assimilations, even though multimodel comparisons have reported large 

uncertainties introduced by global CTMs in estimating the carbon sink of China’s biosphere (Wang et 

al., 2021; Piao et al., 2022; Schuh et al., 2022; Wang et al., 2022). Notably, the use of regional CTMs in 115 

CO2 research is becoming more commonplace. For instance, Huang et al. (2014) demonstrated the 

importance of regional CTM performance to data assimilation and suggested it is possible to improve 

the simulation accuracy of the synoptic-scale variation in atmospheric CO2 by utilizing the EnKF 
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framework and CMAQ (Multi-scale Air Quality Modeling System). Zhang et al. (2021) assimilated 

OCO-2 retrievals with WRF-Chem/DART (Weather Research and Forecasting model coupled with 120 

Chemistry/Data Assimilation Research Testbed) to improve the estimation of CO2 concentrations. For 

regional CO2 inversions inferred from surface stations, towers, and aircraft flights, several studies have 

in recent years relied on the FLEXPART Lagrangian model, CHIMERE (France’s multi-scale CTM), 

WRF-Chem, and CMAQ to estimate not only urban CO2 emissions in megacities (e.g., Los Angeles, 

Paris, Indianpolis), but also terrestrial ecosystem exchange over Europe, North America, and East Asia 125 

(Brioude et al., 2013; Staufer et al 2016; Lauvaux et al 2016; Thompson et al., 2016; Kou et al., 2017; 

Zheng et al., 2018; Monteil et al., 2021). Moreover, the potential use of CMAQ and EnKF in regional 

CO2 inversions with GOSAT retrievals has been explored by Peng et al. (2015) with observing system 

simulation experiments. Pillai et al. (2016) also concluded that satellite missions such as CarbonSat 

(Carbon Monitoring Satellite) have high potential to obtain city-scale CO2 emissions by using a 130 

high-resolution modeling framework.  

 

Previous studies have highlighted that the simultaneous assimilation of concentrations and fluxes as 

state variables can help reduce the uncertainty of both the initial CO2 fields and the fluxes (Tian et al., 

2014; Peng et al., 2015; Kou et al., 2017). Recently, Peng et al. (2017, 2018, 2020) improved air quality 135 

forecasts and emission estimates over China by developing a novel flux forecast model with the 

EnSRF-based Joint Data Assimilation Framework (JDAS), so that the extended model can construct 

ensembles of both concentration and flux at the hourly scale. As an extension to this work, JDAS was 

further developed towards a high-resolution inversion of CO2 fluxes based on CMAQ and EnSRF with 

real-time GOSAT observations over China from 1 January 2016 to 31 December 2016, which holds an 140 

advantage over global models in terms of the CO2 background information and inversion scheme. To 

the best of our knowledge, this is the most up to date estimates of China’s biosphere flux informed by a 

regional CTM and satellite observations. It should prove to be of considerable value, particularly under 

the framework of the Paris Agreement, which requires high spatiotemporal resolution inversions of 

CO2 flux for carbon accounting at national scales. 145 

 

In this paper, we focus on the development of top-down estimates constrained by GOSAT retrievals and 

CMAQ. Using this unique regional inversion technique, we address the following questions: 
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1. On what scales can regional CTMs facilitate the inversion of GOSAT observations compared with 150 

global inversions? 

2. What is the difference between flux inversions from spaceborne retrievals and ground-based 

observations? Are they inconsistent? 

2 Model, System and Data 

2.1 CMAQ regional transport model 155 

The atmospheric transport and the signature of sources and sinks in CO2 concentrations were simulated 

using a regional CTM, i.e., CMAQ, which was originally developed by the US Environmental 

Protection Agency to model multiple air quality issues over a variety of scales, and has been updated 

for passive tracers, as in Kou et al. (2013) with a 1–64 km horizontal resolution capability. The CMAQ 

regional modeling system has already been used in several regional studies and has shown promising 160 

performance in capturing the fine-scale spatiotemporal variability of CO2 mixing ratios (e.g., Kou et al., 

2013; 2015; Liu et al., 2013; Huang et al., 2014; Li et al., 2017). The CMAQ configuration used here 

was a domain of 6720 km × 5504 km with 64 × 64 km
2
 fixed grid cells centered at 35°N and 116°E in a 

rotated polar stereographic map projection. This domain, having 105 (west–east) × 86 (south–north) 

grid points, covered the whole of mainland China and its surrounding regions (Fig. 1). The model has 165 

15 vertical layers unequally spaced from the ground to approximately 23 km, half of which are 

concentrated in the lowest 2 km to improve the simulation of the atmospheric boundary layer. In 

addition, RAMS (Regional Atmospheric Modeling System) provides the three-dimensional 

meteorological fields, with the lowest seven layers being the same as those in CMAQ. The time step of 

the CMAQ output is 1 h. 170 

 

The initial and lateral boundary meteorological fields, sea surface temperatures, and initial soil 

conditions were prescribed by European Centre for Medium-Range Weather Forecasts reanalysis data 

with a spatial resolution of 1° × 1° and 6-hourly temporal intervals (Zhang et al., 2002). As the real 

initial and lateral boundary atmospheric CO2 concentrations, the global 4D CO2 data were created using 175 

the optimized surface fluxes and simulated atmospheric transport of CarbonTracker, version CT2019B, 
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from the National Oceanic and Atmospheric Administration (NOAA), with a spatial resolution of 3° × 

2°, 25 vertical levels, and a temporal resolution of 3 h, which represent the optimum estimate of the 

distribution of atmospheric CO2 (Jacobson et al., 2020). In addition, the a priori biosphere and ocean 

fluxes used for simulations within the CMAQ domain were also derived from the CT2019B optimized 180 

fluxes at a 3-h intervals, but with a spatial resolution of 1° × 1°. The anthropogenic CO2 emission 

fluxes were based on the Multi-resolution Emissions Inventory for China, version 1.3, and the Regional 

Emissions Inventory in Asia, version 3.2, with monthly gridded data at a resolution of 0.25° × 0.25° 

(Zheng et al., 2018; Kurokawa et al., 2020). The Global Fire Emissions Database, version 4.1s, with 

monthly gridded data at a resolution of 0.25° × 0.25°, was applied to provide the biomass burning 185 

emissions (van der Werf et al., 2017). The abovementioned four individual CO2 fluxes (i.e., biosphere, 

fossil fuels, fire, and ocean) were spatially interpolated to the CMAQ grid, conserving the total mass of 

emissions. In each EnSRF analysis step, CMAQ integrated and generated a 3D CO2 concentration 

ensemble derived by the N ensemble fluxes with perturbed CO2 initial and boundary conditions. 

2.2 JDAS CO2 inversion framework 190 

The inverse optimization updates EnSRF, originated from NOAA’s operational EnKF system 

(https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf), to assimilate the 

GOSAT observations in order to optimize the surface biosphere CO2 fluxes. The EnSRF algorithm has 

been extended to simultaneously assimilate multiple chemical initial conditions and emissions with the 

in situ measurements of their atmospheric observations, and produce one of the latest Chinese 195 

reanalysis datasets of atmospheric composition as well as an updated emissions inventory (Peng et al. 

2017, 2018, 2020; Kou et al., 2021). In the present study, the initial CO2 concentrations and fluxes were 

also designed to be concurrently assimilated within the JDAS framework, which indicates that both the 

CO2 concentrations and fluxes were regarded as state variables (i.e.,  ,
T

x C E ), and helpful 

observational information employed in the current assimilation cycle could be efficiently capitalized 200 

upon in the next assimilation cycle with reduced uncertainty in the initial CO2 conditions.  

 

CO2 flux was treated as the model input, with the result that ensemble samples of fluxes could not be 

prepared by the CTM’s forward forecasting. Consequently, besides the application of the CMAQ model 

to generate ensemble CO2 concentrations in JDAS, the forecast model also consisted of a novel flux 205 
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forecast model, which was designed to generate the background CO2 flux ensembles 
f

i,t+1E , where i = 

1,…, N refers to the ith ensemble member at time t (Equation 1). The superscripts a, f and p denote 

“assimilation”, “forecast” and “a priori”, respectively. First, following Peng et al. (2020), the a priori 

flux ensemble , 1

p

i tE  is created by using the ensemble CMAQ forecast CO2 concentration ,

f

i tC  

forced by the ,

f

i tE , where ,1

1 Nf f

t i tiN 
 C C  stands for the ensemble mean of ,

f

i tC  and 
1

p

tE  210 

refers to the a priori flux. The covariance inflation factor β is further used to keep the ensemble spread 

of the CO2 concentration scaling factor i,t . The ensemble mean of i,t
 

can be expressed as 

,
1

1
= 1

N
f f

i t i
i

t
N 

 C Cκ . Next, in the second part of Equation (1), the ensemble mean of 

 1

+1 24 11

1f a p

t t j tj MM
   

 E E E  is determined by the assimilated CO2 flux at the same time on 

each day from the previous assimilation cycles among these M − 1 days (i.e., 
 24 1

a

t M  
E , 215 

 24 2

a

t M  
E ,…, and 24 1 1, 2, ,1a

t j M M    ，E ) and the a priori CO2 flux 
1

p

tE . M refers to 

the length of the smoothing window, which was chosen as 4 days. This design follows Peters et al. 

(2007), in which the useful observational information from the previous assimilation cycle was made 

beneficial to the next assimilation cycle via a smoothing operator but was further modified to cooperate 

with the diurnal variation in CO2 biosphere flux. Then, +1

f

tE  was used to recenter +1

p

tE . In contrast 220 

to previous flux models without diurnal variation, this new flux model is advantageous insofar as it 

facilitates the development of assimilation between regional CTM forecasts and observations at the 

hourly scale, so as to achieve high-resolution inversion. Thus, the background of the joint vector, 

,
T

f f f   x C E , can be prepared. Furthermore, the associated analyzed state vector, 

,
T

a a a   x C E , can be updated by applying the EnSRF constrained by GOSAT retrievals: 225 

 

 

, 1 , 1 1 1

1, +1

1 24 11

+1

1

f p f p

i t i t t t

f

i t p a p

t t t j tj Mf

t
M



   

    

  

 
    

 
 



E E E E

C
E E E

C


.                   (1) 
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In this study, by developing an observational operator, EnSRF was further extended to be able to 

assimilate the GOSAT XCO2 retrievals. The simulated CO2 concentration profiles were mapped into 

the satellite retrieval levels and then vertically integrated based on the satellite averaging kernel 230 

according to the following equation: 

  
levN

f p f p

2 2 k k k k

k=1

XCO = XCO + y y (1 )  
  A h w ,                       (2) 

where the subscript k represents the retrieval level, 
p

2XCO  denotes the a priori XCO2 for retrieval, 

p

ky  is the a priori CO2 profile for retrieval, kA
 

stands for the satellite column-averaged kernel, kh  

is a pressure weighting function, and 
f

ky  denotes the CMAQ-simulated CO2 profile interpolated into 235 

the corresponding retrieval levels. As in Equation 1, the superscripts f and p refer to “forecast” and “a 

priori” in Equation 2. Moreover, w  denotes the RAMS water mole fraction, which was used to map 

from the CO2 concentrations to the dry mole fraction, as suggested by Feng et al. (2009). A brief 

description of the GOSAT retrievals and operations before assimilation is given in Section 2.3. 

 240 

The basic configuration of the JDAS CO2 inversion settings followed previous studies. For instance, 

the ensemble size N was set to 50 to sustain the balance between computational cost and ensemble 

performance. The horizontal covariance localization radius was chosen as 1280 km to localize the 

observation’s impact and ameliorate the spurious long-range correlations between state variables and 

observations caused by the limited number of ensemble members. Moreover, the covariance inflation 245 

factor β was set to 80 to preserve the ensemble spread. In this study, the assimilation window was set to 

24 h, and hour-by-hour assimilation was adopted in the novel flux forecast model and fine-scale 

CMAQ background simulation. Hereafter, AN denotes the analysis fields ,a a  C E  and BG denotes 

the model’s first guess background fields ,f f  C E  in the assimilation. 

2.3 GOSAT XCO2 retrievals 250 

GOSAT, launched by the Japan Aerospace Exploration Agency in January 2009, was designed to make 

near-global greenhouse gas measurements in a sun-synchronous orbit. It covers the whole globe in 3 d 

and has a sounding footprint of approximately 10.5 km. In this study, we assimilated GOSAT XCO2 
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retrievals from NASA’s Atmospheric CO2 Observations from Space Level 2 standard data products 

(version ACOS_L2_Lite_FP.9r; data available at 255 

https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/). The XCO2 data from Lite 

products were bias-corrected (Wunch et al. 2017; O’Dell et al. 2018). Typically, Level 2 Lite products 

contain 10–200 useful soundings per orbit, noting that more than 50% of the spectral data were not 

processed during retrieval because they did not pass the first cloud screening pre-processing step. 

 260 

Before being applied in the JDAS inversion system, the GOSAT retrievals were operated in three steps. 

First, the XCO2 retrievals were filtered with the “outcome_flag” parameter, which indicates the 

retrieval quality and are provided along with the ACOS product. Only data retrievals tagged with 

“RetrievalResults/outcome_flag =1” were selected, particularly where soundings converged. Second, to 

achieve the most extensive spatial coverage with the assurance of using the best quality data available, 265 

a thinning strategy was used when multiple observations appeared in the same model grid at the same 

hour on each day after interpolation of the model’s horizontal coordinates. Only retrievals with the 

minimum value of uncertainty, i.e., “RetrievalResults/xco2_uncert”, were selected, which represented a 

higher quality of retrieval data. According to the statistics listed in Table 2, the total number of thinned 

XCO2 values in 2016 was 19267, with the highest coverage in January (~2300) and lowest coverage in 270 

July (~730). Third, the difference between the observation and first guess of the model (denoted as 

o − b) was further tested, based upon which, if the difference between the XCO2 retrieval and the 

CMAQ background–simulated XCO2 was greater than a certain threshold value (±5.00 ppm), the 

retrieval was further excluded from the JDAS inversion to maintain stability in the assimilation. The 

total number of assimilated XCO2 values in 2016 reached 15264 (i.e., 79.22% of the thinned amount), 275 

with the monthly ratio of “assimilated-to-thinned” ranging from 74.19% (in August) to 98.91% (in 

July). It should be noted that the maximum median XCO2 uncertainty occurred in July (0.99 ppm) and 

the minimum in December (0.64), indicating a better quality of XCO2 retrievals in winter and less 

stable retrievals in summer. The scenario of |o − b| > 5.00 (i.e., the absolute value of o − b) was mostly 

found near the boundary of the model domain. 280 

 

Non-assimilated XCO2 observations were used for verification purposes after another process of 

repeated sifting, whose steps were as follows: (1) observations were marked with “outcome_flag = 1”, 
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which selected the XCO2 values that passed the internal quality check; (2) XCO2 values with the 

minimum “xco2_uncert” in the same model grid and at the same hour were excluded, which filtered out 285 

all of the assimilated XCO2; (3) outliers were precluded if the absolute bias between the XCO2 of the 

analysis concentration field and the corresponding XCO2 measurements was larger than 5.00 ppm (i.e., 

the same threshold as in the assimilation). In general, the total number of XCO2 retrievals used for 

validation in 2016 was 14660, ranging from ~2300 in January to ~730 in July (Table 2). 

2.4 Experimental design and evaluation method 290 

Following previous GOSAT inversion work (Maksyutov et al., 2013; Feng et al., 2017; Wang et al., 

2019; Liu et al., 2021; Jiang et al., 2022), in this study, the natural flux (i.e., biosphere–atmosphere 

exchange and ocean–atmosphere exchange) were assimilated, while the fossil-fuel and 

biomass-burning fluxes were kept unchanged. This design, in which the natural fluxes were a subset of 

the state vector, further allowed us to focus on investigating the uncertainty of China’s carbon sink, 295 

since the uncertainty in prescribed biomass-burning and fossil-fuel emissions are minor compared to 

that of the biosphere fluxes in the model domain (van der Werf et al., 2017; Zheng et al., 2018; 

Kurokawa et al., 2020). Fully reconciling the differences between bottom-up and inversion-estimated 

fossil-fuel emissions is outside the scope of this work and is therefore not discussed any further in this 

paper. Consequently, the selected XCO2 observations were assimilated hourly to adjust the initial CO2 300 

concentrations and fluxes. The ensemble assimilation was performed for the period 0000 UTC 25 

December 2015 to 2300 UTC 31 December 2016 using the perturbed initial conditions, boundary 

conditions, and natural fluxes by adding Gaussian random noise with a standard deviation of 5% and 

10% of the corresponding variables, respectively. The first 7 days were set as spin-up, and results for 

the period 1 January to 31 December 2016 are discussed and validated in detail in this paper. 305 

 

Then, additionally, to assess the quality of the inversion results, two sets of forward simulations were 

performed throughout the year of 2016. One set of experiments was forced by the optimized a 

posteriori fluxes (denoted as FC), and the other was forced by the prescribed a priori fluxes as a 

control experiment (denoted as CTRL). Both forward runs used the same initial and boundary 310 

concentrations from the CT2019B product. Generally, it is hard to validate the optimized flux, because 

comparison with in situ flux measurements is high-risk on account of the discrepancy in scales between 

https://doi.org/10.5194/acp-2022-777
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

fluxes assimilated in the model grid and eddy-covariance measurements over a very large uniform 

underlying surface. Therefore, this traditional approach was adopted as a compromise to assess whether 

the a posteriori fluxes would enable improvements in the fit to independent (i.e., non-assimilated) 315 

observed CO2 concentrations. 

3 Results and Discussion 

3.1 Performance of observational and analysis increments 

We begin by assessing the GOSAT observational performance in CO2 concentration and flux joint 

assimilation. In CO2 inversion, usually, the o − b is denoted as “innovations”, and the analysis 320 

concentration and flux are obtained by adding the innovations to the model first guess with the weights 

that are determined based on the estimated statistical error covariance of the forecast and observations. 

Fig. 1 demonstrates the distribution of XCO2 observation increments and CO2 flux analysis increments 

over the model domain, including January (Figs. 1a and b), July (Figs. 1c and d) and the whole year 

(Figs. 1e and f). Also, detailed statistical information on the assimilated XCO2 is given in Table 2. The 325 

number of observations corresponding to each grid point in 2016 in the domain is approximately 

between 0 and 60, covering every province of China. Using January and July as the reference, 

predominant seasonal variation in the spatial coverage of XCO2 occurs, with the most abundance in 

winter and the least in summer (Fig. 1), which is primarily associated with the screening depending 

upon the extent of cloud coverage and aerosol filtering (Wunch et al. 2017). The available XCO2 data 330 

amount for JDAS decreases from 1788 in January, to 1870 in February, to 734 in June, and to 728 in 

July, representing an approximate 61% reduction in the year-round monthly comparison (Table 2). In 

particular, most of the available XCO2 in July appears in the north and central region of China, but the 

south and northwest tend to be blank. The XCO2 innovation range is usually between −3 and 3 ppm in 

the corresponding model grid, with a monthly mean value between −0.12 and −0.96 ppm over the 335 

model domain. As expected, the observational increments show an ability to depict the fine-scale 

features with strong spatial heterogeneity whilst in general retaining the large-scale spatial patterns, 

which can be attributed to the CMAQ simulation performance in differentiating the nuances of 

anthropogenic and natural conditions. In contrast, Fu et al. (2022) found that the results of a global 

model (i.e., GEOS-Chem) tended to be generally lower than GOSAT’s XCO2 in China from the 340 

https://doi.org/10.5194/acp-2022-777
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

weighted ensemble mean of various terrestrial models with a mean bias of about 2 ppm in winter, while 

Lei et al. (2014) found GEOS-Chem simulations tended to produce higher values than GOSAT (by 5.8 

ppm) in China during summer. As shown in Table 2, the correlation between the CMAQ background 

simulation and the GOSAT assimilation is highest in July (0.80) and lowest in May (0.16). In addition, 

both the mean absolute error (MAE) and root-mean-square error (RMSE) exhibit a maximum in July 345 

(1.99 and 2.41, respectively) and a minimum in April and September (MAE: 1.76 and 1.76 ppm; 

RMSE: 2.18 and 2.15 ppm), indicating that the point-by-point uncertainty is larger in summer and 

lower in spring and autumn, which is consistent with the seasonal performance from previous model 

studies (Li et al., 2017). This discrepancy of the seasonal scale could be partly due to the uncertainties 

in the spatial and temporal variations of the biosphere flux estimation and fossil-fuel inventories. 350 

Generally, the shortwave near-infrared detectors mounted on GOSAT have been testified as being more 

sensitive to near-surface CO2 changes (Buchwitz et al., 2013; O’Dell et al. 2018), which further 

demonstrates the potential to reduce the uncertainty of surface CO2 flux estimates by assimilating 

GOSAT column concentration values. 

 355 

The pattern of CO2 flux analysis increments (i.e., AN–FC flux) demonstrated in Fig. 1 preserves 

features from innovations and certifies that GOSAT XCO2 is effectively absorbed in JDAS. GOSAT 

retrievals were found to display impacts within a certain range near the observation points after 

entering the assimilation system. The monthly flux analysis increments vary from −0.2 to 0.1 μmol m
−2

 

s
−1

 in January, and from −1.0 to 1.0 μmol m
−2

 s
−1

 in July, respectively. The higher variation in monthly 360 

flux analysis increments for July than those for January indicates that the uncertainties of forecast flux 

in summer are larger than those of the variation in winter. In this study, the biosphere flux first-guess 

fields were derived from the novel flux forecast model by taking the a priori flux, the analysis flux 

from the previous assimilation cycle, and the forecast concentration as independent variables (Equation 

1), which is a great help in assisting with improving the background information and initial 365 

perturbation for ensemble forecasting. On the other hand, the EnSRF analysis increments depend not 

only on the innovations, but also on how well the Kalman gain matrix computes the contribution 

weighting factors based on the time-dependent forecast error covariance. Considering the peculiarities 

of atmospheric CO2, such as its long atmospheric lifetime, long-range transport, high background 

concentrations, and strong biosphere–atmosphere exchanges, there are both wide-ranging overall 370 
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increases (e.g., −0.01 to 0.1 over central China) and decreases (e.g., −0.2 to −0.01 over South China) 

and small-scale adjustment taking place in 2016 (Fig. 1f). In general, the flux analysis increments are 

reasonably and effectively calculated, which may be attributable to the novel flux forecast model, the 

favorable CMAQ forecast concentration, the representative observation increments, and the 

well-designed assimilation framework. 375 

3.2 Size of the annual carbon sink in China 

Before presenting the a posteriori biosphere fluxes in China from JDAS, the total annual carbon sink in 

previous research along with our study are summarized (Table 1). The aim was mainly to check that all 

methods—for instance, inventories, ecosystem process models, and atmospheric inversions—actually 

improve the carbon sink comparability, but also to check the reliability and credibility of the inversions. 380 

Based on national ecosystem inventory data, China’s terrestrial carbon sink increased from −0.18 PgC 

yr
−1

 in the 1980s to −0.33 PgC yr
−1

 in the 2000s owing to forest area expansion and afforestation during 

recent years (Piao et al, 2009; Jiang et al., 2016; Wang et al., 2022). Meanwhile, the results from 

several ecosystem process-based models display a carbon sink ranging from −0.13 to −0.22 PgC yr
−1

 

during 1980–2010, achieved by assessing the effect of changes in climate and CO2 (Piao et al, 2009; He 385 

et al., 2019). In addition, according to the flux gap between top-down and bottom-up estimations 

mentioned above, those atmospheric inversion results with lateral flux adjustment are also reported in 

Table 1 (italic and shaded parts). The lateral fluxes include the carbon exchange between the land and 

atmosphere in non-CO2 forms as well as the imported wood and crop products, and a recent estimate of 

the lateral flux for China is −0.14 PgC yr
−1

 (Wang et al., 2022). The terrestrial carbon sink in 2016 after 390 

correcting for lateral fluxes amounts to approximately −0.33 PgC yr
−1

 (i.e., −0.47 + 0.14 = −0.33), 

constrained by the GOSAT XCO2 in the JDAS inversion system. This result is consistent with 

inventory-based and ecosystem model–based estimations within the recognized interannual variability. 

Correspondingly, we also provide a corrected carbon sink estimate of −0.54 PgC yr
−1

 (i.e., −0.68 + 0.14 

= −0.54) inferred from in situ CO2 data provided by JDAS, which is the optimal mathematical solution 395 

under the current sparse observational coverage with daytime photosynthetic uptake, and likely leads to 

a slight overestimation to some extent. 

 

Furthermore, as well as results for China’s annual carbon sink, Table 1 also provides an overview of 
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most of the well-known inversion modeling systems, configurations of inversions, atmospheric 400 

transport models, spatiotemporal resolutions, and observations. In general, most research into the 

inversion of China’s carbon sink has commonly used global transport models. The limited resolution 

and distribution of observations are deemed to lead to large uncertainties in inversion in small regions, 

especially at national scales (Scrowell et al., 2019; Monteil et al., 2020; Piao et al., 2022). The 

resolution-related performance of transport models tends to magnify the uncertainty in China’s carbon 405 

sink estimates, which can be attributed to the significant bias in representing atmospheric CO2 

concentrations with a coarse model resolution. For example, either in situ CO2 or GOSAT XCO2 

constrained flux (i.e., −1.11 and −0.83 PgC yr
−1

) demonstrates much higher sink estimates from 

GEOS-Chem-based inversion with a 4° × 5° horizontal resolution. Excluding the outliers, most global 

inversions report a carbon sink in China of −0.27 to −0.56 PgC yr
−1

 from in situ CO2, and −0.34 to 410 

−0.68 PgC yr
−1

 from satellite retrievals. In contrast, our estimates constrained by analogous observation 

(−0.68 and −0.47 PgC yr
−1

 from in situ CO2 and GOSAT, respectively) agree reasonably well with the 

previous estimates mentioned above, implying that the underlying regional transport model (i.e., 

CMAQ) is reliable in presenting robust local signals. Overall, the good agreement between JDAS 

ground-based and satellite-based estimates, together with the comparable results from previous studies, 415 

suggests that the JDAS inversion configuration is sufficient to robustly constrain the control vector, and 

that the limited observations are effectively absorbed at the regional scale. This reinforces our 

confidence in analyzing and interpreting the optimized fluxes in terms of spatial variability over China. 

3.3 Spatial variability of optimized fluxes 

As can be seen in Fig. 2a, the annual horizontal distribution patterns of biosphere flux show significant 420 

spatial heterogeneity and fairly large gradients in most areas. Fig. 2b further illustrates annual 

differences between a priori and a posteriori fluxes over the model domain. Compared to the 

prescribed a priori biosphere flux, not only large-scale vegetation adjustments but also small-scale 

conditions can be detected throughout the year after assimilating atmospheric observations under the 

UNFCCC’s MVS framework (Fig. 2b). Although China’s total carbon sink of a posteriori fluxes (−0.47 425 

PgC yr
−1

) are approximately equal to the a priori fluxes (−0.43 PgC yr
−1

), the spatial distribution has 

been modified through assimilation. Generally, the a priori biosphere fluxes are overestimated (~0.1–

0.3 μmole m
−2

 s
−1

) in the north (dominated by forest, grassland and cropland) and south (dominated by 
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forest and grassland) of China, while they are underestimated (~0.1–0.5 μmole m
−2

 s
−1

) primarily in 

central China where there is a large area of cropland (He et al., 2022). This change in flux pattern needs 430 

to be further assessed and discussed. The good response of the vegetation condition to the a posteriori 

results provides a strong foundation for a meaningful interpretation of biosphere fluxes. 

 

Figs. 2c–f show the seasonal spatial differences before and after assimilation, taking January, April, 

July and October as representatives of winter, spring, summer and autumn. The monthly averages were 435 

calculated from the daily averages based on hourly outputs. The seasonal spatial variation of biosphere 

flux is considerably affected by the seasonal growth and decay of terrestrial ecosystems, which is 

mainly driven by the variation in temperature, precipitation, photosynthetically active solar radiation, 

and other meteorological factors (Fu et al., 2022). Accordingly, the difference between the analysis and 

a priori flux tends to be larger in July (Fig. 2e; approximately −1.0 to 1.0 μmole m
−2

 s
−1

), lower in 440 

April and October, and lowest in January, which indicates a larger uncertainty in biosphere flux 

estimates in the growing season. This is consistent with the findings of previous studies (Jiang et al., 

2016; Chen et al, 2021). Nevertheless, summer is also the season with the largest percentage of satellite 

data rejection and retrieval uncertainty, making it a tough test still for inversion systems. As a result, 

JDAS maintains a robust and stable capability with better use of observational information throughout 445 

the whole year, owing to the joint assimilation of CO2 concentrations and fluxes helping to fully utilize 

and absorb observations as well as reduce the uncertainties in initial concentrations fields. Moreover, it 

should be noted that an obvious underestimation of a priori flux (approximately 0.1–0.5 μmole m
−2

 s
−1

) 

occurs in the northern, central and southern vegetation growth regions, where there are several of 

China’s key ecological engineering construction areas, which will be further discussed later in detail. 450 

On the other hand, the central part of China, dominated by cropland, shows relatively larger a 

posteriori flux in winter and smaller a posteriori flux in summer and autumn, in contrast with the a 

priori flux constrained by the limited background observation sites (Zhang et al., 2014; Jacobson et al., 

2020). Satellites, with their better spatial coverage, as well as regional transport models, with their 

improved stability, can help in assessing the real conditions of local terrestrial ecosystems with 455 

complex conditions, such as over central China. Additionally, compared with the weekly temporal 

resolution of global inversion, the hourly observational increments as well as the hourly first-guess 

fields in this study hold some advantage in evaluating the monthly variations of fluxes. As expected, 
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some distinguishing features are thus demonstrated in the assimilated fluxes, such as the carbon sources 

in parts of central, eastern and southwest China, which is more consistent with the underlying surface 460 

situation. In this way, the JDAS inversion system has the potential to depict the characteristics of 

biosphere flux well. 

 

Next, we analyze the monthly and annual fluxes in five large regions—west, north, central, south, and 

mainland China (denoted by the red frame in Fig. 2a)—to evaluate the effectiveness of the regional 465 

inversion in subcontinental-scale flux variation as well as to contrast with the previous inversion 

analysis over China (Fig. 3). The flux forecast model that includes a smoothing operator with diurnal 

variation provides reasonable background flux information. Given the representative background and 

observation information, the seasonality patterns are reproduced well by the JDAS assimilation, with 

larger annual sinks relative to the a priori ones and a growing season that is shifted earlier in the year 470 

over central and south China. This indicates that the regional carbon assimilation system is calibrated 

well and performs reliably. As shown in Fig. 3, there is an evident difference in the a posteriori annual 

carbon sink magnitude in these regions, gradually decreasing in the north (e.g., forest, grassland and 

cropland), south (e.g., forest and grassland), west (e.g., grassland and tundra), and central region (e.g., 

cropland) in turn, which is consistent with the primary corresponding ecosystem types, while the a 475 

priori sink of the west tends to be larger than that of the south. Using the north as a reference, the 

annual carbon sink of the a priori estimates for the north, south, west and central regions are 1.00, 0.57, 

0.62 and 0.44, respectively, while those of the a posteriori estimates are 1.00, 0.62, 0.56 and 0.38. On 

the other hand, the a priori and a posteriori amplitudes of the seasonal variation [i.e., the difference 

between the maximum and minimum monthly estimates, as defined in Scrowell et al. (2016)] range 480 

from 374.33/333.74, 87.01/80.41, 120.33/113.98, 82.34/88.00 to 413.17/389.48 TgC month
−1

 in north, 

south, west, central and mainland China, respectively. The decreased annual sink and increased 

seasonal variability in central China deduced by the a posteriori flux with satellite observations may in 

fact reflect the atmospheric CO2 fixed by cropland vegetation, where ~60% of the area is cropland with 

relative few in situ observations used for constraining the a priori flux (Piao et al., 2009, 2022). 485 

Moreover, for daily flux estimation, the day-to-day variability demonstrated by a posteriori fluxes is 

substantially smaller than that of the a priori estimation (sub-graph in the left-hand panel of Fig. 3). 

The drastic fluctuation in the daily variation of a priori fluxes has been modified by observational 
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constraints, which appears more realistic than that of the a priori estimates. This implies the potential 

for regional inversion in interpreting underlying processes in large regions such as China where the 490 

ecosystems and climate are quite varied. 

 

Nevertheless, achieving robust and reliable flux signals at smaller regional scales is quite demanding 

and rather challenging, because of the limited observations and low accuracy of transport models as 

well as the a priori information. In this paper, we further try to investigate the condition of the regional 495 

biosphere carbon sink over several of China’s key ecological areas (denoted by the blue frame in Fig. 

2a)—for example, Daxing’anling (DX), the Loess Plateau (HT), the Qinling Mountains (QL), the rocky 

desert in Guangxi (SM), Mount Wuyi (WY), and Xishuangbanna (XS). These regions are characterized 

by their unique vegetation and climatic conditions. Generally, the duration of the carbon sink extends 

gradually from north to south, such as four months in DX, five months in HT, and seven months in SM 500 

and XS, due to the seasonal growth and decay of biosphere ecosystems, which is principally 

determined by meteorological conditions including solar radiation, temperature and precipitation. In 

particular, the a priori and a posteriori seasonal amplitudes amount to 43.64/39.56, 24.03/23.39, 

35.73/37.96, 29.36/31.80, 2.70/3.64 and 7.93/7.04 TgC month
−1

 in DX, HT, QL, SM, WY and XS, 

respectively. The region of DX is characterized by abundant forest and far more satellite retrievals to 505 

constrain fluxes, with annual a priori and a posteriori carbon sinks of −25.13/−29.64 TgC yr
−1

. 

Favorable meteorological conditions [e.g., precipitation in the growing season being 20% higher than 

that in 2015 (China Climate Bulletin 2016)] have also been reported, which further supports the 

improved ecological quality, indicating JDAS’s potential in tracking biosphere CO2 fluxes from space. 

Compared to a priori fluxes, relatively stronger a posteriori sinks are also found in QL (−60.05/−62.53 510 

TgC yr
−1

), SM (−62.10/−71.27 TgC yr
−1

), WY (0.36/−2.19 TgC yr
−1

) and XS (−10.12/−10.79 TgC yr
−1

), 

which is consistent with the improved ecological conditions due to ecological engineering construction 

as well as generally favorable climatic conditions. The XS region is unique and worthy of attention in 

contrast to the other regions not only because it shows different seasonality in its release of CO2 to the 

atmosphere in summer and removal of CO2 from the atmosphere in other seasons, but also because of 515 

the large transport model errors that are included in the model–data mismatch error involved in 

previous inversion studies (Wang et al., 2020; He et al., 2022; Schuh et al., 2022; Wang et al., 2022). As 

can be seen in Fig. 4, JDAS demonstrates potential in reproducing a reasonable biosphere flux 
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dominated by complex underlying conditions, with a reliable and robust CMAQ performance in 

providing first-guess concentration fields. Thus, the abovementioned spatial variations of a posteriori 520 

fluxes might unlock some of the potential local signals in areas where regional transport models are 

more reliable and observations are plentiful.  

3.4 Provincial patterns of optimized fluxes in China 

In this section, we investigate the provincial patterns of biosphere flux. Based on the gridded a 

posterior flux dataset, we first assess the annual CO2 biosphere sink levels in 31 provinces in mainland 525 

China (Taiwan, Hong Kong, Macao and Shanghai are not discussed because of the insufficient grid 

resolution). Fig. 5 shows the a priori, a posteriori annual biosphere flux estimations and their 

differences (in units of μmole m
−2

 s
−1

) on the provincial scale over mainland China. At this scale, the 

inversion fluxes are associated with regional differences partly controlled by the a priori flux and the 

atmospheric measurements. Both the a priori and a posteriori fluxes indicate the strongest carbon sink 530 

intensity per unit area (> 0.3 μmole m
−2

 s
−1

) being in Shaanxi, Guangxi and Guizhou, but the a priori 

fluxes produce an underestimation in Shanxi (~0.01–0.05 μmole m
−2

 s
−1

) and overestimations in 

Guangxi and Guizhou (~0.1–0.2 μmole m
−2

 s
−1

), respectively. Next, the second strongest carbon sink 

intensity (0.2–0.3 μmole m
−2

 s
−1

) is commonly seen in Shaanxi, Sichuan, Chongqing and Hubei, 

whereas a comparatively low level of carbon sink intensity appears in Xinjiang, Liaoning, Anhui and 535 

Yunnan, at approximately 0.05–0.1 μmole m
−2

 s
−1

, as well as in Tibet and Fujian, at 0.01–0.05 μmole 

m
−2

 s
−1

. Furthermore, some provinces with neutral (i.e., close to 0), source or sink statuses are 

re-evaluated by the GOSAT constrained fluxes (Figs. 5a and b). For instance, the a posteriori flux in 

Ningxia is −0.01–0.01 μmole m
−2

 s
−1

, while the a priori flux displays a weak carbon sink of −0.01 to 

−0.05 μmole m
−2

 s
−1

, due to the complexity in the estimation related to the grassland and cropland land 540 

surfaces in this province. On the contrary, the a priori fluxes in Fujian and Jiangsu are close to 0, but 

we find a carbon sink ranging from approximately −0.01 to −0.05 μmole m
−2

 s
−1

 and a carbon source 

from 0.05 to 0.1 μmole m
−2

 s
−1

, respectively. For Liaoning, the a priori fluxes are characterized by CO2 

sources (0.01–0.05 μmole m
−2

 s
−1

), while the assimilated fluxes with satellite measurements are slightly 

adjusted to a carbon sink (−0.05–0.1 μmole m
−2

 s
−1

). In general, (1) widespread underestimation of the 545 

a priori flux (0.01–0.1 μmole m
−2

 s
−1

) is found in central China, which is dominated by cropland and 

where dense satellite retrievals are accordingly available; (2) overestimates are distribute in the 
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northeast and south of China over a considerable spatial extent and should be modified; and (3) smaller 

changes between a posteriori and a priori estimates are primarily located in the west of China, which 

tends to agree with the XCO2 o − b pattern. 550 

 

Lastly, the sizes of the provincial biosphere fluxes are summarized and sorted quantitatively in Fig. 6. 

The maximum and minimum provincial biosphere flux sizes are in Inner Mongolia (a posteriori: –

53.65 TgC yr
−1

; a priori: −53.41 TgC yr
−1

) and Shandong (a posteriori: 5.99 TgC yr
−1

; a priori: 3.05 

TgC yr
−1

), respectively. Moreover, satellites observations can facilitate the evaluation of biosphere flux 555 

in combination with atmospheric inversions. The difference between the a posteriori and a priori 

provincial flux ranges from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong, with an 

underestimation greater than 2.00 TgC yr
−1

 appearing in Shandong (2.95), Jiangsu (2.31) and Hebei 

(2.25), and an overestimation greater than 5.00 TgC yr
−1

 appearing in Heilongjiang (7.03), Liaoning 

(5.68), Yunnan (5.59) and Guangxi (5.10). On the other hand, a smaller percentage of modification 560 

between the a posteriori and a priori flux [i.e. (a posteriori − a priori) / a priori × 100% in absolute 

value] arises in Xinjiang (0.28%), Inner Mongolia (0.46%), Tibet (1.10%), Qinghai (2.45%), Gansu 

(3.21%), Shaanxi (3.50%), Sichuan (4.34%) and Shanxi (4.65%), indicating a lower level of 

uncertainty in these larger carbon-sink provinces. Nevertheless, an increased percentage of 

modification in provincial flux appears in Jiangsu (a posteriori: 2.29 TgC yr
−1

; a priori: −0.02 TgC 565 

yr
−1

), Liaoning (a posteriori: −4.27 TgC yr
−1

; a priori: 1.40 TgC yr
−1

), Fujian (a posteriori: −1.15 TgC 

yr; a priori: 0.29 TgC yr
−1

), and Shandong (already listed above). As discussed earlier, all provinces in 

China differ in both their terrestrial vegetation and anthropogenic activity. The abovementioned 

magnitude of uncertainty between a posteriori and a priori estimates is closely related to the degree of 

human activity intervention. Several factors could account for the provincial spatial distribution 570 

constrained from GOSAT; for instance, the increased precipitation along with the strong El Niño in 

2016, the levels of reforestation and afforestation, and the reductions in biofuels in rural areas bringing 

about a shrubland carbon sink. 

3.5 Evaluation of a posteriori fluxes against independent data  

In this section, we further assess the performance of the a posteriori CO2 fluxes by comparing the 575 

CTRL, FC and AN results. The monthly and annual statistics were computed from the hourly outputs 
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from the assimilation, simulation and GOSAT retrievals. Table 2 demonstrates (as expected) that the 

concentration from the analysis fields (AN) performs best when fitted to the independent XCO2 

observations. Generally, the simulation with a posteriori fluxes (i.e., FC) shows improvements, with 

decreased RMSE and MAE as well as an increased correlation coefficient, when compared to the a 580 

priori flux simulation (CTRL) using the non-assimilated XCO2 for validation. It is notable that the 

column-averaged satellite signals have limited capacity in facilitating the tropospheric variation in CO2 

concentration, and thus the response to changes in the simulated concentration signal is weak, but 

improvements are still apparent. For instance, the annual RMSE, MAE and correlation coefficient for 

AN are 2.34 ppm, 1.93 ppm and 0.73; for FC, they are 2.63 ppm, 2.02 ppm and 0.66; and for CTRL, 585 

they are 2.65 ppm, 2.03 ppm and 0.66, respectively. Additionally, the AN, FC and CTRL biases from 

independent observations were further calculated (Table 3). The outliers in CTRL have been effectively 

amended. When FC is compared with the CTRL results, the frequency of bias in [−4, 4] increases by 

0.25%, in [−3, 3] by 0.36%, in [−2, 2] by 0.32%, and in [−1, 1] by 0.14%. Furthermore, the error 

standard deviation decreases from 2.63 ppm in CTRL to 2.61 ppm in FC and to 2.27 ppm in AN. 590 

 

Moreover, the annual-averaged horizontal distributions of CO2 concentration (unit: ppm) near the 

surface in 2016 are also presented (Fig. 7). Fig. 7a displays the surface CO2 concentration analysis 

fields, from which it can be seen that the high CO2 concentrations are mainly distributed over regions 

with intense human activities. Thus, the AN can be used as a closer representation of the real condition, 595 

and the much-refined description in the CO2 analysis concentration fields allows for a more detailed 

characterization of the spatiotemporal distribution of CO2 concentration and can further facilitate an 

interpretation of satellite data in a regional context over China. As shown in Figs. 7b and c, compared 

to the CTRL fields, the FC fields tend to be considerably closer to the AN fields, suggesting that the a 

posteriori fluxes are calibrated well and perform acceptably. Furthermore, Fig. 7d shows the 600 

year-round statistic of XCO2 error reduction [defined as (1 – δFC / δCTRL) × 100%)], as well as the 

amounts of independent observations, where δFC represents the FC XCO2 error standard deviation and 

δCTRL the CTRL XCO2 error standard deviation. The region of 8°–57°N and 105°–120°E is used as a 

reference because there is a relatively larger difference between the a priori and a posteriori fields, 

including the concentration as well as flux. In general, the error reduction is primarily found to be 605 

positive and ranges from approximately 0.80% to 32.13% with a median of 5.65% and mean of 7.23%. 
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This zonal evaluation further verifies the improvement in the a posteriori flux compared to the a priori 

flux. 

4 Summary and Outlook 

Top-down estimations of carbon budgets have been included in the UNFCCC’s MVS framework. At 610 

present, most carbon sink inversions in China utilize a global transport model with relatively coarse 

resolution. Characterized by large heterogeneity in its biospheric spatiotemporal distribution, the 

transport model error, as well as the sparseness of in situ observations, leads to large uncertainties in 

the assimilation of carbon flux in China. In this study, a regional high-resolution inversion model 

(JDAS) was used, which has been extended to incorporate GOSAT constraints, along with a joint 615 

assimilation of CO2 flux and concentration at high spatial (64 km) and temporal (1 h) resolution. The 

annual, monthly and daily variation in biosphere flux was reproduced reasonably well, which was 

attributable to the novel flux forecast model with diurnal variation, the reliable CMAQ background 

simulation, carefully chosen XCO2 retrievals, and the well-designed EnSRF assimilation configuration. 

 620 

The size of the biosphere carbon sink in China amounted to −0.47 PgC yr
−1

 with JDAS by GOSAT 

constraints, which is consistent with previous global estimates (i.e., −0.27 to −0.56 PgC yr
−1

 from in 

situ observations and −0.34 to −0.68 PgC yr
−1

 from satellite retrievals), indicating that the regional 

inversion system is sufficient to robustly constrain the control vector. Next, the much-refined CMAQ 

resolution in JDAS inversion was found to allow for a more detailed characterization of the 625 

spatiotemporal distribution of CO2 and to further facilitate an interpretation of carbon flux in a regional 

context over China. The a priori and a posteriori seasonal amplitudes ranged from 374.33/333.74, 

87.01/80.41, 120.33/113.98, 82.34/88.00 to 413.17/389.48 TgC month
−1

 in north, south, west, central 

and mainland China, respectively. Also, the drastic fluctuation in the daily variation of a priori fluxes 

was modified by observational constraints, which appeared more realistic than that of the a priori 630 

estimates. Moreover, we further investigated the condition of the biosphere carbon sink in several of 

China’s key ecological areas. Using XS as an example, the large transport model errors that were 

included in the model–data mismatch error involved in previous global inversion studies were 

effectively reduced by JDAS, and XS was reported to be a relatively stronger sink in contrast to prior 
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estimates (−10.12/−10.79 TgC yr
−1

). Furthermore, the provincial patterns of biosphere flux were 635 

investigated and re-estimated. As seen from GOSAT, the difference between the a posteriori and a 

priori provincial flux ranged from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong. 

Finally, an evaluation against independent data demonstrated better performance of the a posteriori 

flux when fitted to the non-assimilated XCO2 observations, indicating improved results in the regional 

inversion. Considering our prior estimates from CT2019B, the discrepancy could be because our study 640 

(a) relied on a fine-scale regional transport model; (b) was constrained by GOSAT XCO2 retrievals with 

better spatial coverage rather than sparse and inhomogeneous in situ observations; (c) performed a joint 

assimilation of CO2 flux and concentration, which helped reduce the uncertainty in both the initial CO2 

fields and the fluxes; and (d) carried out hourly assimilation based on hourly simulation and 

observation, which was more realistic. 645 

 

The regional inversion methodology and results presented here prove the feasibility and superiority of 

regional CTMs and satellite observations in investigating China’s carbon sink. On account of the 

obvious interannual variation in the biosphere sink, this work also serves as a foundation for future 

multi-year retrospective analyses of biosphere–atmosphere exchanges under different meteorological 650 

conditions. On the one hand, although the ACOS retrieval technology has been substantially improved 

and provides unprecedented spatial coverage, more XCO2 retrievals with better quality and lower 

retrieval uncertainty are still needed, especially during summertime and over west China. On the other 

hand, a knowledge gap also exists in inversion-based estimates, in which fossil-fuel emissions are 

generally assumed to be accurate. Besides uncertainties in natural flux, our current knowledge of urban 655 

emissions is far from adequate. Around 70% of fossil-fuel emissions are derived from cities in 

combination with considerable uncertainties. Within the framework of the Paris Agreement, inversions 

at higher spatial resolution are an increasing demand, making it crucial to develop the capacity for 

inversions to quantify urban emissions and assess the effectiveness of emission mitigation strategies, 

alongside calls for improvements in observations, a priori information, anthropogenic emission 660 

inventories, transport models, and inversion technology.  
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Figures and Tables 

Captions: 

Table 1.  China’s annual carbon sink estimated by different methods, including the inventory method, 

ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). Italic font and gray shading 

denote the inversion results after correcting for lateral fluxes according to the flux gap between 1015 

top-down and bottom-up estimation. The abbreviations used in the table are as follows: CAMS, 
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Copernicus Atmosphere Monitoring Service; BI, Bayesian Inversion; JCS, Jena CarboScope; CCDAS, 

Carbon Cycle Data Assimilation System; FAPAR, remotely sensed Fraction of Absorbed 

Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie Dynamique Zoom, a global 

transport model; and TM5, the global atmospheric Tracer Model 5. 1020 

Table 2. Evaluation results between the observations and model (unit: ppm). “XCO2 (validation)” 

denotes the independent GOSAT XCO2 retrievals for validation, including model results from CTRL 

(black, a priori flux simulation), FC (blue, a posteriori flux simulation), and AN (red, analysis fields 

from JDAS). “XCO2 (assimilation)” represents the observations used for assimilation, and the 

corresponding model results come from BG (JDAS background fields). RMSE refers to the 1025 

root-mean-square error; CORR refers to the correlation coefficient; MAE refers to the mean absolute 

bias; and NUM refers to the XCO2 data amount. The monthly and annual averages were calculated 

from the hourly outputs. 

Table 3.  Probability distribution of hourly bias (unit: %) and bias standard deviation (unit: ppm) of 

XCO2 validation including CTRL, FC and AN in 2016. 1030 

Figure 1. Observation increments (XCO2; unit: ppm) and analysis increments (biosphere flux; unit: 

μmole m
−2

 s
−1

) in (a, b) January, (c, d) July, and (e, f) the whole year of 2016. 

Figure 2. Horizontal distribution of CO2 biosphere fluxes (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎 in 2016, the a 

posteriori fluxes; (b) 𝐸𝑎–𝐸𝑝 in 2016, the differences between the a posteriori and a priori CO2 fluxes; 

(c) 𝐸𝑎–𝐸𝑝 in January; (d) 𝐸𝑎– 𝐸𝑝 in April; (e) 𝐸𝑎–𝐸𝑝 in July; (f) 𝐸𝑎– 𝐸𝑝 in October. The red 1035 

frames mark west China (28°–48°N, 85°–104°E), north China (37°–52°N, 105°–135°E), central China 

(30°–36°N, 105°–120°E), and south China (18°–29°N, 105°–123°E). The blue frames mark six key 

ecological areas of China: Daxing’anling (50°–53°N, 121°–127°E); the Loess Plateau (35°–40°N, 

105°–112°E); the Qinling Mountains (32°–34°N, 104°–115°E); the rocky desert in Guangxi (22°–25°N, 

106°–111°E); Mount Wuyi (26.5°–28.0°N, 117.5°–119.0°E); and Xishuangbanna (21.0°–22.6°N, 1040 

100.0°–102.0°E). 

Figure 3. Time series of CO2 biosphere fluxes over (a) mainland China, (b) west China, (c) north China, 

(d) central China, and (e) south China, marked by the red frames in Fig. 2a (unit: TgC month
−1

), in each 

month of 2016, obtained from a priori values (PR, black), a posteriori values (AN, red), and the flux 

forecast model (FC, blue). The bars on the right-hand side represent the 12-month average (unit: TgC 1045 

month
−1

). The boxes on the left-hand side denote the daily flux (unit: TgC day
−1

), with the whiskers 

https://doi.org/10.5194/acp-2022-777
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



37 
 

indicating the minimum and maximum and the horizontal lines across the box indicating the 25
th
 

percentile, the median, and the 75th percentile, respectively. 

Figure 4. Time series of CO2 biosphere fluxes over six ecological areas of China (blue frames in Fig. 

2a; unit: TgC month
−1

), in each month of 2016, obtained from a priori values (PR, black bars) and a 1050 

posteriori values (AN, red bars). The bars on the right-hand side represent the 12-month average (unit: 

TgC month
−1

). The subfigures at the bottom denote the daily temperature (blue lines; unit: ℃; left-hand 

y-axis), total solar radiation (red stars; unit: MJ d
−1

; left-hand y-axis), and precipitation (grey bars; unit: 

mm d
−1

; right-hand y-axis), with the right-hand bars representing the annual average. 

Figure 5. Horizontal distribution of CO2 biosphere fluxes averaged over each province of mainland 1055 

China in 2016 (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎: the a posteriori fluxes; (b) 𝐸𝑝: the a priori fluxes; (c) 

𝐸𝑎–𝐸𝑝: the differences between the a posteriori and a priori CO2 fluxes. Note that Taiwan, Hong 

Kong, Macao and Shanghai are not discussed owing to the insufficient grid resolution. 

Figure 6. The total a priori (black) and a posteriori (red) CO2 biosphere fluxes over each province of 

mainland China in 2016 (unit: TgC yr
−1

). The abbreviations of the provinces are: NM, Neimenggu; SC, 1060 

Sichuan; GZ, Guizhou; XJ, Xinjiang; QH, Qinghai; SX’, Shaanxi; GX, Guangxi; HL, Heilongjiang; GS, 

Gansu; SX, Shanxi; HUN, Hunan; HUB, Hubei; HEB, Hebei; NEN, Henan; JL, Jilin; XZ, Xizang; GD, 

Guangdong; JX, Jiangxi; CQ, Chongqing; YN, Yunnan; AH, Anhui; ZJ, Zhejiang; NX, Ningxia; BJ, 

Beijing; JS, Jiangsu; SH, Shanghai; FJ, Fujian; TJ, Tianjin; HAN, Hainan; LN, Liaoning; and SD, 

Shandong. 1065 

Figure 7. The annual-averaged horizontal distribution of CO2 concentrations (unit: ppm) near the 

surface in 2016: (a) AN: the analysis concentration; (b) FC−AN: the difference between the a 

posteriori flux simulation and analysis concentration fields; (c) CTRL−AN: the difference between the 

a priori flux simulation and analysis concentration fields; (d) the XCO2 error reduction [see text for 

calculation; blue, with the standard deviation (±) of the analysis XCO2 provided] and independent 1070 

XCO2 data amount (black stars, rescaled to 1:10) over 8°–57°N and 105°–120°E at different latitudes. 
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Figure 1. Observation increments (XCO2; unit: ppm) and analysis increments (biosphere flux; unit: 

μmole m
−2

 s
−1

) in (a, b) January, (c, d) July, and (e, f) the whole year of 2016. 

  1075 
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Figure 2. Horizontal distribution of CO2 biosphere fluxes (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎 in 2016, the a 

posteriori fluxes; (b) 𝐸𝑎–𝐸𝑝 in 2016, the differences between the a posteriori and a priori CO2 fluxes; 

(c) 𝐸𝑎–𝐸𝑝 in January; (d) 𝐸𝑎– 𝐸𝑝 in April; (e) 𝐸𝑎–𝐸𝑝 in July; (f) 𝐸𝑎– 𝐸𝑝 in October. The red 

frames mark west China (28°–48°N, 85°–104°E), north China (37°–52°N, 105°–135°E), central China 1080 

(30°–36°N, 105°–120°E), and south China (18°–29°N, 105°–123°E). The blue frames mark six key 

ecological areas of China: Daxing’anling (50°–53°N, 121°–127°E); the Loess Plateau (35°–40°N, 

105°–112°E); the Qinling Mountains (32°–34°N, 104°–115°E); the rocky desert in Guangxi (22°–25°N, 

106°–111°E); Mount Wuyi (26.5°–28.0°N, 117.5°–119.0°E); and Xishuangbanna (21.0°–22.6°N, 

100.0°–102.0°E).  1085 
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Figure 3. Time series of CO2 biosphere fluxes over (a) mainland China, (b) west China, (c) north China, 

(d) central China, and (e) south China, marked by the red frames in Fig. 2a (unit: TgC month
−1

), in each 

month of 2016, obtained from a priori values (PR, black), a posteriori values (AN, red), and the flux 

forecast model (FC, blue). The bars on the right-hand side represent the 12-month average (unit: TgC 1090 

month
−1

). The boxes on the left-hand side denote the daily flux (unit: TgC day
−1

), with the whiskers 

indicating the minimum and maximum and the horizontal lines across the box indicating the 25
th
 

percentile, the median, and the 75th percentile, respectively. 
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 1095 

Figure 4. Time series of CO2 biosphere fluxes over six ecological areas of China (blue frames in Fig. 

2a; unit: TgC month
−1

), in each month of 2016, obtained from a priori values (PR, black bars) and a 

posteriori values (AN, red bars). The bars on the right-hand side represent the 12-month average (unit: 

TgC month
−1

). The subfigures at the bottom denote the daily temperature (blue lines; unit: ℃; left-hand 

y-axis), total solar radiation (red stars; unit: MJ d
−1

; left-hand y-axis), and precipitation (grey bars; unit: 1100 

mm d
−1

; right-hand y-axis), with the right-hand bars representing the annual average. 
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Figure 5. Horizontal distribution of CO2 biosphere fluxes averaged over each province of mainland 

China in 2016 (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎: the a posteriori fluxes; (b) 𝐸𝑝: the a priori fluxes; (c) 1105 

𝐸𝑎–𝐸𝑝: the differences between the a posteriori and a priori CO2 fluxes. Note that Taiwan, Hong 

Kong, Macao and Shanghai are not discussed owing to the insufficient grid resolution. 
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Figure 6. The total a priori (black) and a posteriori (red) CO2 biosphere fluxes over each province of 1110 

mainland China in 2016 (unit: TgC yr
−1

). The abbreviations of the provinces are: NM, Neimenggu; SC, 

Sichuan; GZ, Guizhou; XJ, Xinjiang; QH, Qinghai; SX’, Shaanxi; GX, Guangxi; HL, Heilongjiang; GS, 

Gansu; SX, Shanxi; HUN, Hunan; HUB, Hubei; HEB, Hebei; NEN, Henan; JL, Jilin; XZ, Xizang; GD, 

Guangdong; JX, Jiangxi; CQ, Chongqing; YN, Yunnan; AH, Anhui; ZJ, Zhejiang; NX, Ningxia; BJ, 

Beijing; JS, Jiangsu; SH, Shanghai; FJ, Fujian; TJ, Tianjin; HAN, Hainan; LN, Liaoning; and SD, 1115 

Shandong. 
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Figure 7. The annual-averaged horizontal distribution of CO2 concentrations (unit: ppm) near the 

surface in 2016: (a) AN: the analysis concentration; (b) FC−AN: the difference between the a 1120 

posteriori flux simulation and analysis concentration fields; (c) CTRL−AN: the difference between the 

a priori flux simulation and analysis concentration fields; (d) the XCO2 error reduction [see text for 

calculation; blue, with the standard deviation (±) of the analysis XCO2 provided] and independent 

XCO2 data amount (black stars, rescaled to 1:10) over 8°–57°N and 105°–120°E at different latitudes.  
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Table 1.  China’s annual carbon sink estimated by different methods, including the inventory method, 

ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). Italic font and gray shading 

denote the inversion results after correcting for lateral fluxes according to the flux gap between 

top-down and bottom-up estimation. The abbreviations used in the table are as follows: CAMS, 

Copernicus Atmosphere Monitoring Service; BI, Bayesian Inversion; JCS, Jena CarboScope; CCDAS, 1130 

Carbon Cycle Data Assimilation System; FAPAR, remotely sensed Fraction of Absorbed 

Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie Dynamique Zoom, a global 

transport model; and TM5, the global atmospheric Tracer Model 5. 

Method Carbon sink Period covered     Reference 

Inventory 

–0.18± 0.07 1980–1999  Piao et al., 2009 

–0.29± 0.12 2000–2009  Jiang et al., 2016 

–0.28 2009–2018  Wang et al., 2022 

Ecosystem  

process 

models 

–0.17± 0.04 1980–2002  Piao et al., 2009 

–0.18 1961–2005  Tian et al., 2011 

–0.12±0.08 1982–2010  He et al., 2019 

Inversion   Observations Transport 

models 

Optimization Resolution  

CAMS –0.35± 0.033 1996–2005 in situ CO2 LMDZ  Bayesian  3.75°×2.5°, 

monthly 

Piao et al, 2009 

CAMS-v19 –0.25 2010–2016 in situ CO2 LMDZ  Variational 3.75°×1.875°,  

8 days, 

Wang et al., 2022 

BI –0.51 ± 0.18 2006–2009 in situ CO2 TM5 Bayesian 3°×2°, weekly Jiang et al., 2016 

CT-China –0.39 ± 0.33 2006–2009 in situ CO2 TM5 EnSRF 1°×1°, weekly Jiang et al., 2016 

CT-China –0.33 2001–2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Zhang et al., 2014 

CT-China –0.27±0.20 2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-China –0.41±0.22 2010–2012 GOSAT XCO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-Europe –0.32 2010-2015 in situ CO2 TM5 EnSRF 1°×1°, weekly van der Laan-Luijkx et al., 

2017 

UoE –1.11 ± 0.38 2010–2016 in situ CO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.83 ± 0.47 2010–2015 GOSAT XCO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.68 2015 OCO-2 XCO2 GEOS-Chem EnKF 2°×2.5°, 8 days Schuh et al., 2022 

JCS –0.48 2010-2015 in situ CO2 TM3 Bayesian 4°×5°, monthly Rödenbeck et al., 2018 

GCASv2 –0.34 ± 0.14 2010–2015 GOSAT XCO2 MOZART-4 EnSRF 1°×1°, weekly He et al., 2022 

CCDAS –0.43 ± 0.09 2010–2015 in situ CO2, FAPAR TM2 4D-Var 2°×2°, monthly He et al., 2022 

CT-2019B −0.43 2016 in situ CO2 TM5 EnSRF 1°×1°, weekly Jacobson et al., 2020 

JDAS −0.68 2016 in situ CO2 CMAQ EnSRF 64×64km, hourly This study 

JDAS −0.47 2016 GOSAT XCO2 CMAQ EnSRF 64×64km, hourly This study 
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Table 2.  Evaluation results between the observations and model (unit: ppm). “XCO2 (validation)” 

denotes the independent GOSAT XCO2 retrievals for validation, including model results from CTRL 

(black, a priori flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields 

from JDAS). “XCO2 (assimilation)” represents the observations used for assimilation, and the 

corresponding model results come from BG (JDAS background fields). RMSE refers to the 1140 

root-mean-square error; CORR refers to the correlation coefficient; MAE refers to the mean absolute 

bias; and NUM refers to the XCO2 data amount. The monthly and annual averages were calculated 

from the hourly outputs. 

 XCO2 (validation) XCO2 (assimilation) 

 RMSE 

(CTRL/FC/AN) 

CORR 

(CTRL/FC/AN) 

MAE 

(CTRL/FC/AN) 
NUM NUM 

RMSE 

(BG) 

CORR 

 (BG) 

MAE 

 (BG) 

Median of 

XCO2 uncertainty 

Jan 3.80/3.79/2.45 0.19/0.19/0.46 2.45/2.45/2.05 2024 1788 2.38 0.53 1.97 0.66 

Feb 2.42/2.40/2.37 0.42/0.42/0.43 1.99/1.98/1.97 1902 1870 2.29 0.52 1.87 0.72 

Mar 2.48/2.46/2.40 0.36/0.37/0.38 2.05/2.03/2.00 1409 1617 2.26 0.49 1.83 0.78 

Apr 1.90/1.90/1.79 0.31/0.32/0.35 1.91/1.91/1.84 1037 1346 2.18 0.36 1.76 0.91 

May 2.70/2.71/2.47 0.18/0.18/0.17 2.23/2.23/2.10 826 1090 2.36 0.16 1.95 0.91 

Jun 2.34/2.35/2.26 0.70/0.70/0.73 1.84/1.83/1.82 615 734 2.21 0.72 1.78 0.97 

Jul 2.45/2.44/2.37 0.82/0.82/0.83 2.02/2.02/1.98 560 728 2.41 0.80 1.99 0.99 

Aug 2.49/2.50/2.42 0.65/0.65/0.66 2.03/2.03/2.01 742 842 2.38 0.69 1.98 0.95 

Sep 2.26/2.22/2.11 0.37/0.38/0.43 1.82/1.80/1.71 879 854 2.15 0.47 1.76 0.82 

Oct 2.37/2.28/2.22 0.37/0.40/0.44 1.91/1.86/1.84 1192 1190 2.29 0.45 1.88 0.75 

Nov 2.39/2.36/2.25 0.54/0.55/0.58 1.91/1.89/1.84 1627 1517 2.27 0.60 1.85 0.67 

Dec 2.36/2.35/2.34 0.52/0.52/0.53 1.94/1.93/1.91 1847 1688 2.26 0.60 1.85 0.64 

2016 2.65/2.63/2.34 0.66/0.66/0.73 2.03/2.02/1.93 14660 15264 2.29 0.72 1.87 0.77 
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Table 3. Probability distribution of hourly bias (unit: %) and bias standard deviation (unit: ppm) of 

XCO2 validation including CTRL, FC and AN in 2016. 

Bias probability distribution CTRL FC AN 

[-4,4] 89.64 89.89 91.02 

[-3,3] 75.63 75.99 76.84 

[-2,2] 56.13 56.45 56.88 

[-1,1] 30.22 30.08 30.24 

[0,4] 53.43 53.62 55.74 

[0,3] 44.65 44.86 46.21 

[0,2] 32.26 32.46 33.07 

Bias standard deviation 2.6268 2.6072 2.2674 
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