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Abstract. Top-down inversions of China’s terrestrial carbon sink are known to be uncertain because of 15 

errors related to the relatively coarse resolution of global transport models and the sparseness of in situ 

observations. Taking advantage of regional chemistry transport models for mesoscale simulation and 

spaceborne sensors for spatial coverage, the Greenhouse Gases Observing Satellite (GOSAT) 

column-mean dry mole fraction of carbon dioxide (XCO2) retrievals were introduced in the Models-3 

Community Multi-scale Air Quality (CMAQ) and Ensemble Kalman smoother (EnKS)-based 20 

Ensemble Square Root Filter (EnSRF)-based regional inversion system to constrain China’s biosphere 

sink at a spatiotemporal resolution of 64 km and 1 h. In general, the annual, monthly and daily 

variation in biosphere flux was reliably delivered, attributable to the novel flux forecast model, 

reasonable CMAQ background simulation, well-designed observational operator, and joint data 

assimilation scheme (JDAS) of CO2 concentrations and fluxes. The size of the assimilated biosphere 25 

sink in China was −0.47 PgC yr
−1

, which was comparable with most global estimates which was 

consistent with most global estimates (i.e., −0.27 to −0.68 PgC yr
−1

), indicating that the regional 

inversion system was sufficient to robustly constrain the control vectors. Furthermore, the seasonal 

patterns were recalibrated well, with a growing season that shifted earlier in the year over central and 

south China. Moreover, the provincial-scale biosphere flux was re-estimated, and the difference 30 

between the a posteriori and a priori flux ranged from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1
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in Shandong. Additionally, better performance of the a posteriori flux in contrast to the a priori flux 

was statistical detectable when the simulation was fitted to independent observationsbetter performance 

of the a posteriori flux in contrast to the a priori flux was proven when the simulation was fitted to 

independent observations, indicating improved results in JDAS. This study serves as a basis for future 35 

regional- and urban-scale top-down carbon assimilation. 

1 Introduction 

In the context of human-induced climate change, the Paris Agreement charts the course for the world to 

transition to a green way of development and outlines the minimum steps to be taken to protect the 

Earth, which requires all countries to make significant commitments to stabilize atmospheric 40 

greenhouse gas concentrations and keep the global average temperature to well under a 2℃ rise 

(UNFCCC 2015). Therewith, a growing number of countries and regions are pledging to achieve 

net-zero emissions in the second half of this century; for instance, Austria by 2040, Sweden by 2045, 

the European Union by 2050, and China by 2060. Hence, there has been an increasing demand from 

policymakers and the scientific community in general for accurate knowledge of CO2 emissions from 45 

anthropogenic sources (so that the targeted reductions are effective) and from biospheric uptake (so that 

natural reservoirs remain stable) (Ciais et al., 2015; Pinty et al., 2017; Friedlingstein, et al., 2020; Deng 

et al., 2022). In 2019, the Intergovernmental Panel on Climate Change (IPCC) published a refined 

methodology report as an update to its 2006 guidelines with the aim to complement them with a 

bottom-up, transparent framework and highlight the Monitoring and Verification Support (MVS) 50 

capacity using independent atmospheric measurements (IPCC, 2019). A great deal of effort has been 

devoted in recent decades to developing and applying atmospheric CO2 inversions to constrain global- 

and regional-scale CO2 fluxes (Enting et al., 1995; Thompson and Stohl, 2014; Broquet et al., 2011, 

Peters, et a., 2007; Tian et al., 2014; Kou et al., 2017; Kountouris et al., 2018). Most of these inversions 

are informed by ground-based observations and global chemistry transport models (CTMs), which is 55 

far from sufficient to support the abovementioned needs. Despite the development of surface 

observation networks with highly accurate continuous data, such as ICOS (the Integrated Carbon 

Observation System) in Europe, the global distribution of ground-based CO2 measurements remains 

rather sparse and inhomogeneous. Consequently, the errors introduced by the incomplete observation 
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network, the uncertainties of the CTMs, as well as inversion framework have been proven to 60 

disadvantage in delivering consistent regional flux estimates obtained using state-of-the-art global 

inversions from the national up to the continental scales Consequently, errors are introduced, CTMs 

lack accuracy, and assimilation frameworks deliver inconsistent regional flux estimates obtained using 

state-of-the-art global inversions from national up to continental scales (Monteil et al., 2020; Piao et al., 

2022; Schuh et al., 2022). 65 

 

Spaceborne sensors, designed specifically to retrieve atmospheric concentrations with unprecedented 

spatial coverage, have in recent years begun to improve the current understanding of greenhouse gases 

and the associated CO2 emissions’ MVS capacity. At present, there are several operational CO2 

observation satellites in orbit, including Japan’s Greenhouse Gases Observing Satellite (GOSAT; Kuze 70 

et al., 2009), GOSAT-2 (Glumb et al., 2014), the US Orbiting Carbon Observatory 2 (OCO-2, Eldering 

et al., 2017a, 2017b), OCO-3 (Eldering et al., 2019), and China’s TanSat (Liu et al., 2018; Yang et al., 

2018). It is recognized that satellite retrievals of shortwave infrared radiation, despite their uncertainty, 

are sufficient to reliably capture the seasonal variability of XCO2 (column-mean dry mole fraction of 

carbon dioxide), as a first-order question in constraining inversion models (Lindqvist et al., 2015; Li et 75 

al., 2017). Furthermore, several centers and universities routinely assimilate GOSAT XCO2 data into 

models to estimate terrestrial ecosystem carbon exchange, including Japan’s National Institute for 

Environment Studies (NIES), the United States’ National Aeronautics and Space Administration 

(NASA), France’s Laboratoire des Sciences du Climat et de I’Environnement, the Netherland’s 

Institute for Space Research, the UK’s University of Edinburgh, Canada’s University of Toronto, and 80 

China’s Nanjing University. As an example, the NIES GOSAT Project provides a Level 4 CO2 data 

product, and the monthly regional CO2 flux estimates for the period 2009–2013, based on XCO2 

retrievals and NIES’ global atmospheric tracer transport model with Bayes’ theorem, are publicly 

available (Maksyutov et al., 2013; Takagi et al., 2014). Moreover Furthermore, NASA’s Carbon Flux 

Monitoring System is another recent top-down global inversion system configured with 4DVar and 85 

GEOS-Chem (Goddard Earth Observing System with Chemistry) and concurrently assimilates XCO2 

from GOSAT and OCO-2. It has released the longest available terrestrial flux estimates (from 2010–

2018) on self-consistent global and regional scales and has planned future updates of the dataset on an 

annual basis (Liu et al., 2021). In addition, the University of Edinburgh has simultaneously produced a 
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five-year CH4 and CO2 flux estimate for 2010–2014 directly from GOSAT retrievals of XCH4:XCO2 by 90 

using GEOS-Chem and an ensemble Kalman filter (EnKF) (Feng et al., 2017). Moreover, the Global 

Carbon Assimilation System has been upgraded by Nanjing University to assimilate the GOSAT XCO2 

retrievals from 2010–2015 with the Ensemble Square Root Filter (EnSRF) algorithm and the Model for 

Ozone and Related Chemical Tracers, version 4 (Jiang et al., 2021; 2022). Overall, the top-down CO2 

biosphere flux datasets inverted from satellite data suggest an improved flux estimation compared with 95 

the large uncertainties in process-based terrestrial biosphere model estimates (Byrne et al., 2019; 

Chevallier et al., 2019; Chen et al., 2021). Deng et al. (2016) and Wang et al. (2018) further highlighted 

the importance of improved observational coverage to better quantify the latitudinal distribution of 

terrestrial fluxes by combining GOSAT observations over land and ocean. Also, the sensitivity of 

observations from GOSAT and OCO-2 to optimized CO2 fluxes has been examined using GEOS-Chem, 100 

indicating that GOSAT offers greater sensitivity in Northern Hemisphere spring and summer (Byrne et 

al., 2017; Wang et al., 2019).  

 

Nevertheless, the inversions primarily involved uncertainties in global CTMs, satellite retrievals, a 

priori fluxes, and inversion frameworks. A GOSAT CO2 global inversion intercomparison experiment 105 

involving eight research groups found that, as expected, the most robust flux estimates were obtained at 

large scales and quickly diverged at subcontinental scales Nevertheless, a GOSAT CO2 global inversion 

intercomparison experiment involving eight research groups found that, as expected, the most robust 

flux estimates were obtained at large scales and quickly diverged at subcontinental scales; and the 

inversions primarily involved uncertainties in their global CTMs, satellite retrievals, a priori fluxes, 110 

and inversion frameworks (Chevallier et al., 2015; Houweling et al., 2015; Fu et al., 2021). Generally, 

the assimilated CO2 flux (i.e., the analytical field) is a weighted average of background information and 

observations, which depends on the correlation coefficient between simulated concentrations of the 

observation and the state variable (i.e., CO2 flux). In particular, considering the transport errors 

introduced by global CTMs, the reliability of the regional fluxes inferred from GOSAT retrievals 115 

remains a topic of ongoing discussion (Reuter, et al., 2017; He et al., 2022). Consequently, if we can 

configure a reasonable simulation of the background CO2 concentration compared with the coarse 

spatiotemporal resolution of the global scale, then the flux constrained by observations can be 

estimated more precisely at national and city scales. The step up in inversion resolution and accuracy 
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calls for new developments in shifting from global to regional inversions.  120 

 

The use of regional CTMs in CO2 research is more recent. For instance, Huang et al. (2014) 

demonstrated the importance of regional CTM performance to assimilation and suggested it is possible 

to improve the CO2 concentration accuracy of the synoptic-scale variation by utilizing EnKF and 

CMAQ (Multi-scale Air Quality Modeling System). Zhang et al. (2021) assimilated OCO-2 retrievals 125 

with WRF-Chem/DART (Weather Research and Forecasting model coupled with Chemistry/Data 

Assimilation Research Testbed) to improve the estimation of CO2 concentrations. In recent years, 

several studies have relied on regional CTMs in CO2 flux inversions inferred from surface stations, 

towers, and aircraft flights, including CMAQ, WRF-Chem, CHIMERE, and the FLEXPART 

Lagrangian model. Not only terrestrial ecosystem exchange (e.g. Europe, North America, East Asia) 130 

but also urban CO2 emissions (e.g., Los Angeles, Paris, Indianpolis) has been estimated, and the 

importance of regional CTM is increasingly recognized with their advantages in resolving fine-scale 

CO2 concentrations (Brioude et al., 2013; Staufer et al 2016; Lauvaux et al 2016; Thompson et al., 

2016; Kou et al., 2017; Zheng et al., 2018; Monteil et al., 2021). Moreover, the potential use of regional 

CTM in CO2 inversions with satellite has been explored with artificial retrievals by observing system 135 

simulation experiments (Peng et al. 2015). Pillai et al. (2016) further concluded that satellite missions 

such as CarbonSat (Carbon Monitoring Satellite) have high potential to obtain high-resolution CO2 

fluxes in Germany. However, regional CTMs are rarely used in satellite carbon data inversion in 

estimating China’s terrestrial carbon sink, even though multimodel comparisons have reported large 

uncertainties introduced by global CTMs in China’s top-down inversion (Wang et al., 2021; Piao et al., 140 

2022; Schuh et al., 2022; Wang et al., 2022). 

However, regional CTMs, with their advantages in resolving fine-scale CO2 concentrations, are rarely 

used in satellite carbon data assimilations, even though multimodel comparisons have reported large 

uncertainties introduced by global CTMs in estimating the carbon sink of China’s biosphere (Wang et 

al., 2021; Piao et al., 2022; Schuh et al., 2022; Wang et al., 2022). Notably, the use of regional CTMs in 145 

CO2 research is becoming more commonplace. For instance, Huang et al. (2014) demonstrated the 

importance of regional CTM performance to data assimilation and suggested it is possible to improve 

the simulation accuracy of the synoptic-scale variation in atmospheric CO2 by utilizing the EnKF 

framework and CMAQ (Multi-scale Air Quality Modeling System). Zhang et al. (2021) assimilated 
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OCO-2 retrievals with WRF-Chem/DART (Weather Research and Forecasting model coupled with 150 

Chemistry/Data Assimilation Research Testbed) to improve the estimation of CO2 concentrations. For 

regional CO2 inversions inferred from surface stations, towers, and aircraft flights, several studies have 

in recent years relied on the FLEXPART Lagrangian model, CHIMERE (France’s multi-scale CTM), 

WRF-Chem, and CMAQ to estimate not only urban CO2 emissions in megacities (e.g., Los Angeles, 

Paris, Indianpolis), but also terrestrial ecosystem exchange over Europe, North America, and East Asia 155 

(Brioude et al., 2013; Staufer et al 2016; Lauvaux et al 2016; Thompson et al., 2016; Kou et al., 2017; 

Zheng et al., 2018; Monteil et al., 2021). Moreover, the potential use of CMAQ and EnKF in regional 

CO2 inversions with GOSAT retrievals has been explored by Peng et al. (2015) with observing system 

simulation experiments. Pillai et al. (2016) also concluded that satellite missions such as CarbonSat 

(Carbon Monitoring Satellite) have high potential to obtain city-scale CO2 emissions by using a 160 

high-resolution modeling framework.  

 

Previous studies have highlighted that the simultaneous assimilation of concentrations and fluxes as 

state variables can help reduce the uncertainty of both the initial CO2 fields and the fluxes (Tian et al., 

2014; Peng et al., 2015; Kou et al., 2017). Recently, Peng et al. (2017, 2018, 2020) improved air quality 165 

forecasts and emission estimates over China by developing a novel flux forecast model with the 

EnSRF-based Joint Data Assimilation Framework (JDAS), so that the extended model can construct 

ensembles of both concentration and flux at the hourly scale. As an extension to this work, JDAS was 

further developed towards a high-resolution inversion of CO2 fluxes based on CMAQ and Ensemble 

Kalman smoother (EnKS) with historical GOSAT observations over China, As an extension to this 170 

work, JDAS was further developed towards a high-resolution inversion of CO2 fluxes based on CMAQ 

and EnSRF with real-time GOSAT observations over China from 1 January 2016 to 31 December 2016, 

which holds an advantage over global models in terms of the CO2 background information and 

inversion scheme. To the best of our knowledge, this is the most up to date estimates of China’s 

biosphere flux informed by a regional CTM and satellite observations. It should prove to be of 175 

considerable value, particularly under the framework of the Paris Agreement, which requires high 

spatiotemporal resolution inversions of CO2 flux for carbon accounting at national scales. 

 

In this paper, we focus on the development of top-down estimates constrained by GOSAT retrievals and 
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CMAQ. Using this unique regional inversion technique, we address the following questions: 180 

 

1. On what scales can regional CTMs and GOSAT observations facilitate the inversion of China’s 

carbon sink? 

2. What is the difference between posterior flux inferred from spaceborne retrievals and prior flux? 

1. On what scales can regional CTMs facilitate the inversion of GOSAT observations compared with 185 

global inversions? 

2. What is the difference between flux inversions from spaceborne retrievals and ground-based 

observations? Are they inconsistent? 

2 Methods and Data 

2 Model, System and Data 190 

2.1 CMAQ regional transport model 

The atmospheric transport and the signature of sources and sinks in CO2 concentrations were simulated 

using a regional CTM, i.e., CMAQ, which was originally developed by the US Environmental 

Protection Agency to model multiple air quality issues over a variety of scales, and has been updated 

for passive tracers, as in Kou et al. (2013) with a 1–64 km horizontal resolution capability. The CMAQ 195 

regional modeling system has already been used in several regional studies and has shown promising 

performance in capturing the fine-scale spatiotemporal variability of CO2 mixing ratios (e.g., Kou et al., 

2013; 2015; Liu et al., 2013; Huang et al., 2014; Li et al., 2017). The CMAQ configuration used here 

was a domain of 6720 km × 5504 km with 64 × 64 km
2
 fixed grid cells centered at 35°N and 116°E in a 

rotated polar stereographic map projection. This domain, having 105 (west–east) × 86 (south–north) 200 

grid points, covered the whole of mainland China and its surrounding regions (Fig. 1). The model has 

15 vertical layers unequally spaced from the ground to approximately 23 km, half of which are 

concentrated in the lowest 2 km to improve the simulation of the atmospheric boundary layer.  

In addition, RAMS (Regional Atmospheric Modeling System) provides the three-dimensional 

meteorological fields, with the lowest seven layers being the same as those in CMAQ. The time step of 205 

the CMAQ output is 1 h. 
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In this study, the initial fields and boundary conditions of atmospheric CO2 volume fraction were 

obtained by interpolation of NOAA’s CT2019B, which is a widely recognized estimate of the global 

distribution of atmospheric CO2. CT2019B CO2 concentration were created using the optimized surface 210 

fluxes, with a spatial resolution of 3° × 2°, 25 vertical levels, and a temporal resolution of 3 h 

(Jacobson et al., 2020). The initial and lateral boundary meteorological fields, sea surface temperatures, 

and initial soil conditions were prescribed by European Centre for Medium-Range Weather Forecasts 

reanalysis data with a spatial resolution of 1° × 1° and 6-hourly temporal intervals (Zhang et al., 2002). 

As the real initial and lateral boundary atmospheric CO2 concentrations, the global 4D CO2 data were 215 

created using the optimized surface fluxes and simulated atmospheric transport of CarbonTracker, 

version CT2019B, from the National Oceanic and Atmospheric Administration (NOAA), with a spatial 

resolution of 3° × 2°, 25 vertical levels, and a temporal resolution of 3 h, which represent the optimum 

estimate of the distribution of atmospheric CO2 (Jacobson et al., 2020). In addition, the a priori 

biosphere and ocean fluxes used for simulations within the CMAQ domain were also derived from the 220 

CT2019B optimized fluxes at a 3-h intervals, but with a spatial resolution of 1° × 1°. The 

anthropogenic CO2 emission fluxes were based on the Multi-resolution Emissions Inventory for China, 

version 1.3, and the Regional Emissions Inventory in Asia, version 3.2, with monthly gridded data at a 

resolution of 0.25° × 0.25° (Zheng et al., 2018; Kurokawa et al., 2020). The Global Fire Emissions 

Database, version 4.1s, with monthly gridded data at a resolution of 0.25° × 0.25°, was applied to 225 

provide the biomass burning emissions (van der Werf et al., 2017). The abovementioned four individual 

CO2 fluxes (i.e., biosphere, fossil fuels, fire, and ocean) were spatially interpolated to the CMAQ grid, 

conserving the total mass of emissions. CMAQ integrated and generated a 3D CO2 concentration 

ensemble derived by the N ensemble fluxes with perturbed CO2 initial and boundary conditions. The 

time step of the CMAQ output is 1 h.  230 

In each EnSRF analysis step, CMAQ integrated and generated a 3D CO2 concentration ensemble 

derived by the N ensemble fluxes with perturbed CO2 initial and boundary conditions. 

 

In addition, RAMS (Regional Atmospheric Modeling System) provides the three-dimensional 

meteorological fields, with the lowest seven layers being the same as those in CMAQ. The initial and 235 

lateral boundary meteorological fields, sea surface temperatures, and initial soil conditions were 

prescribed by European Centre for Medium-Range Weather Forecasts reanalysis data with a spatial 
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resolution of 1° × 1° and 6-hourly temporal intervals (Zhang et al., 2002).  

 

2.2 JDAS CO2 assimilation framework 240 

2.2 JDAS CO2 inversion framework 

In the joint assimilation framework, besides the application of CMAQ to generate ensemble CO2 

concentrations, a flux forecast model was also designed to represents natural flux variations on account 

of fluxes acting as model forcing. The EnKS was further designed to joint assimilate CO2 

concentrations and fluxes. A brief description of the flux forecast model as well as the ensemble 245 

assimilation scheme is presented below. 

2.2.1 Flux forecast model 

CO2 flux was treated as the model input, with the result that ensemble samples of fluxes could not be 

prepared by the CMAQ’s forward forecasting. Consequently, a novel flux forecast model was designed 

to generate the background CO2 flux ensembles 
f

i,t+1E , where i = 1,…, N refers to the ith ensemble 250 

member at time t (Equation 1). The superscripts a, f and p denote “assimilation”, “forecast” and “a 

priori”, respectively. 
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First, the a priori flux ensemble , 1

p

i tE  is created by using the ensemble CMAQ forecast CO2 

concentration ,

f

i tC  forced by the ,

f

i tE , where ,1

1 Nf f

t i tiN 
 C C  stands for the ensemble mean of 255 

,

f

i tC  and 
1

p

tE  refers to the a priori flux. The covariance inflation factor β is further used to keep the 

ensemble spread of the CO2 concentration scaling factor i,t . The ensemble mean of i,t
 

can be 
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1

1
= 1

N
f f

i t i
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t
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of  1

+1 24 11

1f a p

t t j tj MM
   

 E E E  is determined by the assimilated CO2 flux at the same time 

on each day from the previous assimilation cycles among these M−1 days (i.e., 
 24 1

a

t M  
E , 260 

 24 2

a

t M  
E ,…, and 24 1 1, 2, ,1a

t j M M    ，E ) and the a priori CO2 flux 
1

p

tE . M refers to 

the length of the smoothing window, which was chosen as 4 days. 

 

This design follows Peters et al. (2007), in which the useful observational information from the 

previous assimilation cycle was made beneficial to the next assimilation cycle via a smoothing operator 265 

but was further modified to cooperate with the diurnal variation in CO2 biosphere flux. Then, +1

f

tE  

was used to recenter +1

p

tE . In contrast to previous flux models without diurnal variation, this new flux 

model is advantageous insofar as it facilitates the development of assimilation between regional CTM 

forecasts and observations at the hourly scale, so as to achieve high-resolution inversion. 

 270 

The inverse optimization updates EnSRF, originated from NOAA’s operational EnKF system 

(https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf), to assimilate the 

GOSAT observations in order to optimize the surface biosphere CO2 fluxes. The EnSRF algorithm has 

been extended to simultaneously assimilate multiple chemical initial conditions and emissions with the 

in situ measurements of their atmospheric observations, and produce one of the latest Chinese 275 

reanalysis datasets of atmospheric composition as well as an updated emissions inventory (Peng et al. 

2017, 2018, 2020; Kou et al., 2021). In the present study, the initial CO2 concentrations and fluxes were 

also designed to be concurrently assimilated within the JDAS framework, which indicates that both the 

CO2 concentrations and fluxes were regarded as state variables (i.e.,  ,
T

x C E ), and helpful 

observational information employed in the current assimilation cycle could be efficiently capitalized 280 

upon in the next assimilation cycle with reduced uncertainty in the initial CO2 conditions.  

 

CO2 flux was treated as the model input, with the result that ensemble samples of fluxes could not be 

prepared by the CTM’s forward forecasting. Consequently, besides the application of the CMAQ model 

to generate ensemble CO2 concentrations in JDAS, the forecast model also consisted of a novel flux 285 
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forecast model, which was designed to generate the background CO2 flux ensembles 
f

i,t+1E , where i = 

1,…, N refers to the ith ensemble member at time t (Equation 1). The superscripts a, f and p denote 

“assimilation”, “forecast” and “a priori”, respectively. First, following Peng et al. (2020), the a priori 

flux ensemble , 1

p

i tE  is created by using the ensemble CMAQ forecast CO2 concentration ,

f

i tC  

forced by the ,

f

i tE , where ,1

1 Nf f

t i tiN 
 C C  stands for the ensemble mean of ,

f

i tC  and 
1

p

tE  290 

refers to the a priori flux. The covariance inflation factor β is further used to keep the ensemble spread 

of the CO2 concentration scaling factor i,t . The ensemble mean of i,t
 

can be expressed as 

,
1

1
= 1

N
f f

i t i
i

t
N 

 C Cκ . Next, in the second part of Equation (1), the ensemble mean of 

 1

+1 24 11

1f a p

t t j tj MM
   

 E E E  is determined by the assimilated CO2 flux at the same time on 

each day from the previous assimilation cycles among these M − 1 days (i.e., 
 24 1

a

t M  
E , 295 

 24 2

a

t M  
E ,…, and 24 1 1, 2, ,1a

t j M M    ，E ) and the a priori CO2 flux 1

p

tE . M refers to 

the length of the smoothing window, which was chosen as 4 days. This design follows Peters et al. 

(2007), in which the useful observational information from the previous assimilation cycle was made 

beneficial to the next assimilation cycle via a smoothing operator but was further modified to cooperate 

with the diurnal variation in CO2 biosphere flux. Then, +1

f

tE  was used to recenter +1

p

tE . In contrast 300 

to previous flux models without diurnal variation, this new flux model is advantageous insofar as it 

facilitates the development of assimilation between regional CTM forecasts and observations at the 

hourly scale, so as to achieve high-resolution inversion. Thus, the background of the joint vector, 

,
T

f f f   x C E , can be prepared. Furthermore, the associated analyzed state vector, 

,
T

a a a   x C E , can be updated by applying the EnSRF constrained by GOSAT retrievals: 305 
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2.2.2 EnKS assimilation scheme 

The regional assimilation system used in this study, JDAS, was developed based on EnSRF originated 

from NOAA’s operational EnKF system 310 

(https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf). The EnSRF 

algorithm has been modified with the EnKS feature and further extended to simultaneously assimilate 

multiple chemical initial conditions and emissions with the in situ measurements of their atmospheric 

observations (Peng et al. 2017, 2018, 2020; Kou et al., 2021).  

 315 

In the present study, the GOSAT observations were introduced in the EnKS-based JDAS framework to 

constrain China’s biosphere sink, CO2 concentrations and natural fluxes were designed to be 

concurrently assimilated. Hence, both the CO2 concentrations (C) and natural fluxes (E) were regarded 

as state variables (i.e.,  ,
T

x C E ), and helpful observational information employed in the current 

assimilation cycle could be efficiently capitalized upon in the next assimilation cycle with reduced 320 

uncertainty in the initial CO2 conditions. Accordingly, the background of the state variables,

,
T

f f f   x C E , can be prepared by CMAQ and flux forecast model. 

 

Observation operator has been designed to converts the background forecast to observation space. To 

obtain the simulated observations ( )fH C , observation operator H performs the necessary 325 

interpolation from CMAQ forecasts to observation space XCO2. The simulated CO2 concentration 

profiles were mapped into the GOSAT satellite retrieval levels and then vertically integrated based on 

the satellite averaging kernel according to the following equation: 

 

In this study, by developing an observational operator, EnSRF was further extended to be able to 330 

assimilate the GOSAT XCO2 retrievals. The simulated CO2 concentration profiles were mapped into 

the satellite retrieval levels and then vertically integrated based on the satellite averaging kernel 

according to the following equation: 

  
levN

f p f p

2 2 k k k k

k=1

XCO = XCO + y y (1 )  
  A h w ,                       (2) 

域代码已更改

域代码已更改

域代码已更改

域代码已更改



13 
 

where the subscript k represents the retrieval level, 
p

2XCO  denotes the a priori XCO2 for retrieval, 335 

p

ky  is the a priori CO2 profile for retrieval, kA
 

stands for the satellite column-averaged kernel, kh  

is a pressure weighting function, and 
f

ky  denotes the CMAQ-simulated CO2 profile interpolated into 

the corresponding retrieval levels. As in Equation 1, the superscripts f and p refer to “forecast” and “a 

priori” in Equation 2. Moreover, w  denotes the RAMS water mole fraction, which was used to map 

from the CO2 concentrations to the dry mole fraction, as suggested by Feng et al. (2009). In addition, 340 

for the ( )fH E , it should be noted that H  includes not only interpolation (i.e. Equation 2) but also 

CMAQ to convert from flux to simulated XCO2. 

A brief description of the GOSAT retrievals and operations before assimilation is given in Section 2.3. 

 

The observation-minus-background, OMB, (i.e., ( )fy H C ) is denoted as “observational 345 

increments” or “innovations”, where y refers to GOSAT XCO2. The analysis a
x  is obtained by 

adding the innovations to the model forecast with weights K (i.e. Kalman gain matrix), that are 

determined based on the estimated statistical error covariance of the forecast and the observations 

based on Equation 3. 

( ( ))a f fK y H  x x x                                                (3) 350 

Consequently, after completing the “forecast step”, K is obtained by minimizing the analysis error 

covariance with evolved forecast error covariance over time. Then, the associated analyzed state 

variables, ,
T

a a a   x C E , can be updated by applying the EnKS constrained by GOSAT retrievals 

in the “analysis step”. Hereafter, AN denotes the analysis fields 
ax and BG denotes the model’s first 

guess background fields 
fx . 355 

 

The basic configuration of the JDAS CO2 inversion settings followed previous studies. For instance, 

the ensemble size N was set to 50 to sustain the balance between computational cost and ensemble 

performance. The horizontal covariance localization radius was chosen as 1280 km to localize the 

observation’s impact and ameliorate the spurious long-range correlations between state variables and 360 
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observations caused by the limited number of ensemble members (Peng et al., 2023; Houtekamer & 

Mitchell, 2001; Gaspari & Cohn, 1999). Moreover, the covariance inflation factor β was set to 80 to 

preserve the ensemble spread ranging from 0.2 to 0.8 in most areas. The horizontal covariance 

localization radius was chosen as 1280 km to localize the observation’s impact and ameliorate the 

spurious long-range correlations between state variables and observations caused by the limited number 365 

of ensemble members. Moreover, the covariance inflation factor β was set to 80 to preserve the 

ensemble spread. In this study, the assimilation window was set to 24 h, and hour-by-hour assimilation 

was adopted in the novel flux forecast model and fine-scale CMAQ background simulation. Hereafter, 

AN denotes the analysis fields ,a a  C E  and BG denotes the model’s first guess background fields 

,f f  C E  in the assimilation. 370 

 

2.3 GOSAT XCO2 retrievals 

GOSAT, launched by the Japan Aerospace Exploration Agency in January 2009, was designed to make 

near-global greenhouse gas measurements in a sun-synchronous orbit. It covers the whole globe in 3 d 

and has a sounding footprint of approximately 10.5 km. In this study, we assimilated GOSAT XCO2 375 

retrievals from NASA’s Atmospheric CO2 Observations from Space Level 2 standard data products 

(version ACOS_L2_Lite_FP.9r; data available at 

https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/). The XCO2 data from Lite 

products were bias-corrected (Wunch et al. 2017; O’Dell et al. 2018). Typically, Level 2 Lite products 

contain 10–200 useful soundings per orbit, noting that more than 50% of the spectral data were not 380 

processed during retrieval because they did not pass the first cloud screening pre-processing step. 

 

Before being applied in the JDAS inversion system, the GOSAT retrievals were operated in three steps. 

First, the XCO2 retrievals were filtered with the “outcome_flag” parameter, which indicates the 

retrieval quality. and are provided along with the ACOS product. Only data retrievals . Only data 385 

tagged with “RetrievalResults/outcome_flag =1” were selected, particularly where soundings 

converged. Second, to achieve the most extensive spatial coverage with the assurance of using the best 

quality data available, a thinning strategy was used when multiple observations appeared in the same 
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model grid at the same hour on each day after interpolation of the model’s horizontal coordinates. Only 

retrievals with the minimum value of uncertainty, i.e., “RetrievalResults/xco2_uncert”, were selected, 390 

which represented a higher quality of retrieval data. According to the statistics listed in Table 2, the 

total number of thinned XCO2 values in 2016 was 19267, with the highest coverage in January (~2300) 

and lowest coverage in July (~730). Third, OMB quality control method is used to check the 

background fields and adopted by many assimilation systems to maintain stability in the assimilation. 

In this study, the records with absolute biases (i.e., |o − b|) greater than 5 ppm were removed, which are 395 

considered to have a lack of regional representativeness. The scenario of |o − b| > 5.00 (i.e., the 

absolute value of o − b) was mostly found near the boundary of the model domain. 

 the difference between the observation and first guess of the model (denoted as o − b) was further 

tested, based upon which, if the difference between the XCO2 retrieval and the CMAQ background–

simulated XCO2 was greater than a certain threshold value (±5.00 ppm), the retrieval was further 400 

excluded from the JDAS inversion to maintain stability in the assimilation. The total number of 

assimilated XCO2 values in 2016 reached 15264 (i.e., 79.22% of the thinned amount), with the monthly 

ratio of “assimilated-to-thinned” ranging from 74.19% (in August) to 98.91% (in July). It should be 

noted that the maximum median XCO2 uncertainty occurred in July (0.99 ppm) and the minimum in 

December (0.64), indicating a better quality of XCO2 retrievals in winter and less stable retrievals in 405 

summer. The scenario of |o − b| > 5.00 (i.e., the absolute value of o − b) was mostly found near the 

boundary of the model domain. 

 

Non-assimilated XCO2 observations were used for verification purposes after another process of 

repeated sifting, whose steps were as follows: (1) observations were marked with “outcome_flag = 1”, 410 

which selected the XCO2 values that passed the internal quality check; (2) XCO2 values with the 

minimum “xco2_uncert” in the same model grid and at the same hour were excluded, which filtered out 

all of the assimilated XCO2; (3) outliers were precluded if the |o − b| was larger than 5.00 ppm. 

outliers were precluded if the absolute bias between the XCO2 of the analysis concentration field and 

the corresponding XCO2 measurements was larger than 5.00 ppm (i.e., the same threshold as in the 415 

assimilation). In general, the total number of XCO2 retrievals used for validation in 2016 was 14660, 

ranging from ~2300 in January to ~730 in July (Table 2). 
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2.4 Experimental design and evaluation method 

Following previous GOSAT inversion work (Maksyutov et al., 2013; Feng et al., 2017; Wang et al., 

2019; Liu et al., 2021; Jiang et al., 2022), in this study, the natural flux (i.e., biosphere–atmosphere 420 

exchange and ocean–atmosphere exchange) were  optimizedassimilated, while the fossil-fuel and 

biomass-burning fluxes were kept unchanged. This design, in which the natural fluxes were a subset of 

the state variablesvector, further allowed us to focus on investigating the uncertainty of China’s carbon 

sink, since the uncertainty in prescribed biomass-burning and fossil-fuel emissions are minor compared 

to that of the biosphere fluxes in the model domain (van der Werf et al., 2017; Zheng et al., 2018; 425 

Kurokawa et al., 2020). Fully reconciling the differences between bottom-up and inversion-estimated 

fossil-fuel emissions is outside the scope of this work and is therefore not discussed any further in this 

paper.  study. Consequently, the selected XCO2 observations were assimilated hourly to adjust the CO2 

concentrations and fluxes. The assimilation was performed for the period 0000 UTC 25 December 

2015 to 2300 UTC 31 December 2016, using the perturbed initial conditions and boundary conditions 430 

by adding Gaussian random noise with a standard deviation of 5%. Consequently, the selected XCO2 

observations were assimilated hourly to adjust the initial CO2 concentrations and fluxes. The ensemble 

assimilation was performed for the period 0000 UTC 25 December 2015 to 2300 UTC 31 December 

2016 using the perturbed initial conditions, boundary conditions, and natural fluxes by adding Gaussian 

random noise with a standard deviation of 5% and 10% of the corresponding variables, respectively. 435 

The first 7 days were set as spin-up, and results for the period 1 January to 31 December 2016 are 

discussed and validated in detail in this paper. 

 

Then, additionally, to assess the quality of the inversion results, two sets of forward simulations were 

performed throughout the year of 2016. One set of experiments was forced by the optimized a 440 

posteriori fluxes (denoted as FC), and the other was forced by the prescribed a priori fluxes as a 

control experiment (denoted as CTRL). Both forward runs used the same initial and boundary 

concentrations from the CT2019B product. Generally, it is hard to validate the optimized flux, because 

comparison with in situ flux measurements is difficult high-risk on account of the discrepancy in scales 

between fluxes assimilated in the model grid and eddy-covariance measurements over a very large 445 

uniform underlying surface. Therefore, this traditional approach was adopted as a compromise to assess 
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whether the a posteriori fluxes would enable improvements in the fit to observed CO2 concentrations, 

including non-assimilated GOSAT as well as surface observations from 14 sites.independent (i.e., 

non-assimilated) observed CO2 concentrations. 

3 Results 450 

3 Results and Discussion 

3.1 Performance of observational and analysis increments 

We begin by analyzing the observational and analysis increment performance of JDAS. According to 

the statistics listed in Table 1, the total number of assimilated XCO2 values in 2016 reached 15264 (i.e., 

79.22% of the thinned amount), with the monthly ratio of “assimilated-to-thinned” ranging from 74.19% 455 

(in August) to 98.91% (in July). The available XCO2 data amount for JDAS decreases from 1788 in 

January, to 1870 in February, to 734 in June, and to 728 in July, which represents an approximate 61% 

reduction in the year-round monthly comparison. Also, it should be noted that the maximum median 

XCO2 uncertainty occurred in July (0.99 ppm) and the minimum in December (0.64), indicating a 

better quality of XCO2 retrievals in winter and less stable retrievals in summer. As shown in Table 1, 460 

both the mean absolute error (MAE) and root-mean-square error (RMSE) exhibit a maximum in July 

(1.99 and 2.41, respectively) and a minimum in April and September (MAE: 1.76 and 1.76 ppm; 

RMSE: 2.18 and 2.15 ppm), indicating that the point-by-point uncertainty is larger in summer and 

lower in spring and autumn, which is consistent with the seasonal performance from previous model 

studies (Li et al., 2017). This discrepancy of the seasonal scale could be partly due to the uncertainties 465 

in the spatial and temporal variations of the biosphere flux estimation and fossil-fuel inventories. 

We begin by assessing the GOSAT observational performance in CO2 concentration and flux joint 

assimilation. In CO2 inversion, usually, the o − b is denoted as “innovations”, and the analysis 

concentration and flux are obtained by adding the innovations to the model first guess with the weights 

that are determined based on the estimated statistical error covariance of the forecast and observations.  470 

 

Fig. 1 demonstrates the distribution of XCO2 observation increments and CO2 flux analysis increments 

over the model domain, including January (Figs. 1a and b), July (Figs. 1c and d) and the whole year 

(Figs. 1e and f). Also, detailed statistical information on the assimilated XCO2 is given in Table 2. The 

带格式的: 字体: (中文) +中文正
文 (宋体), (中文) 中文(中国)
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number of observations corresponding to each grid point in 2016 in the domain is approximately 475 

between 0 and 60, covering every province of China. Using January and July as the reference, 

predominant seasonal variation in the spatial coverage of XCO2 occurs, with the most abundance in 

winter and the least in summer (Fig. 1), which is primarily associated with the screening depending 

upon the extent of cloud coverage and aerosol filtering (Wunch et al. 2017). The available XCO2 data 

amount for JDAS decreases from 1788 in January, to 1870 in February, to 734 in June, and to 728 in 480 

July, representing an approximate 61% reduction in the year-round monthly comparison (Table 2). In 

particular, most of the available XCO2 in July appears in the north and central region of China, but the 

south and northwest tend to be blank. The XCO2 innovation range is usually between −3 and 3 ppm in 

the corresponding model grid, with a monthly mean value between −0.12 and −0.96 ppm over the 

model domain. Moreover, the pattern of CO2 flux analysis increments (i.e., AN–FC flux) preserve 485 

features from innovations and certifies that GOSAT XCO2 is effectively absorbed in JDAS. As 

expected, the observational increments show an ability to depict the fine-scale features with strong 

spatial heterogeneity whilst in general retaining the large-scale spatial patterns, which can be attributed 

to the CMAQ simulation performance in differentiating the nuances of anthropogenic and natural 

conditions. In contrast, Fu et al. (2022) found that the results of a global model (i.e., GEOS-Chem) 490 

tended to be generally lower than GOSAT’s XCO2 in China from the weighted ensemble mean of 

various terrestrial models with a mean bias of about 2 ppm in winter, while Lei et al. (2014) found 

GEOS-Chem simulations tended to produce higher values than GOSAT (by 5.8 ppm) in China during 

summer. As shown in Table 2, the correlation between the CMAQ background simulation and the 

GOSAT assimilation is highest in July (0.80) and lowest in May (0.16). In addition, both the mean 495 

absolute error (MAE) and root-mean-square error (RMSE) exhibit a maximum in July (1.99 and 2.41, 

respectively) and a minimum in April and September (MAE: 1.76 and 1.76 ppm; RMSE: 2.18 and 2.15 

ppm), indicating that the point-by-point uncertainty is larger in summer and lower in spring and autumn, 

which is consistent with the seasonal performance from previous model studies (Li et al., 2017). This 

discrepancy of the seasonal scale could be partly due to the uncertainties in the spatial and temporal 500 

variations of the biosphere flux estimation and fossil-fuel inventories. Generally, the shortwave 

near-infrared detectors mounted on GOSAT have been testified as being more sensitive to near-surface 

CO2 changes (Buchwitz et al., 2013; O’Dell et al. 2018), which further demonstrates the potential to 

reduce the uncertainty of surface CO2 flux estimates by assimilating GOSAT column concentration 
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values. 505 

 

The pattern of CO2 flux analysis increments (i.e., AN–FC flux) demonstrated in Fig. 1 preserves 

features from innovations and certifies that GOSAT XCO2 is effectively absorbed in JDAS. GOSAT 

retrievals were found to display impacts within a certain range near the observation points after 

entering the assimilation system. The monthly flux analysis increments vary from −0.2 to 0.1 μmol m
−2

 510 

s
−1

 in January, and from −1.0 to 1.0 μmol m
−2

 s
−1

 in July, respectively. The higher variation in monthly 

flux analysis increments for July than those for January indicates that the uncertainties of forecast flux 

in summer are larger than those of the variation in winter. In this study, the biosphere flux first-guess 

fields were derived from the novel flux forecast model by taking the a priori flux, the analysis flux 

from the previous assimilation cycle, and the forecast concentration as independent variables (Equation 515 

1), which is a great help in assisting with improving the background information and initial 

perturbation for ensemble forecasting. On the other hand, the EnSRF analysis increments depend not 

only on the innovations, but also on how well the Kalman gain matrix computes the contribution 

weighting factors based on the time-dependent forecast error covariance. Considering the peculiarities 

of atmospheric CO2, such as its long atmospheric lifetime, long-range transport, high background 520 

concentrations, and strong biosphere–atmosphere exchanges, there are both wide-ranging overall 

increases (e.g., −0.01 to 0.1 over central China) and decreases (e.g., −0.2 to −0.01 over South China) 

and small-scale adjustment taking place in 2016 (Fig. 1f). In general, the flux analysis increments are 

reasonably and effectively calculated, which may be attributable to the novel flux forecast model, the 

favorable CMAQ forecast concentration, the representative observation increments, and the 525 

well-designed assimilation framework. 

3.2 Size of the annual carbon sink in China 

Before presenting the a posteriori biosphere fluxes in China from JDAS, the total annual carbon sink in 

previous research along with our study are summarized (Table 21). The aim is mainly to check that 

different methods—for instance, inventories, ecosystem process models, and atmospheric 530 

inversions—actually improve the carbon sink international comparability and mutual recognition. The 

aim was mainly to check that all methods—for instance, inventories, ecosystem process models, and 

atmospheric inversions—actually improve the carbon sink comparability, but also to check the 
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reliability and credibility of the inversions. Based on national ecosystem inventory data, China’s 

terrestrial carbon sink increased from −0.18 PgC yr
−1

 in the 1980s to −0.33 PgC yr
−1

 in the 2000s 535 

owing to forest area expansion and afforestation during recent years (Piao et al, 2009; Jiang et al., 2016; 

Wang et al., 2022). Meanwhile, the results from several ecosystem process-based models display a 

carbon sink ranging from −0.13 to −0.22 PgC yr
−1

 during 1980–2010, achieved by assessing the effect 

of changes in climate and CO2 (Piao et al, 2009; He et al., 2019). In addition, according to the flux gap 

between top-down and bottom-up estimations mentioned above, a recent estimate of the lateral flux for 540 

China is −0.14 PgC yr
−1

, which include the carbon exchange between the land and atmosphere in 

non-CO2 forms as well as the imported wood and crop products (Wang et al., 2022). The terrestrial 

carbon sink in 2016 with lateral fluxes adjustment amounts to approximately −0.33 PgC yr
−1

, 

constrained by the GOSAT XCO2 in JDAS (−0.47 PgC yr
−1

).  In addition, according to the flux gap 

between top-down and bottom-up estimations mentioned above, those atmospheric inversion results 545 

with lateral flux adjustment are also reported in Table 1 (italic and shaded parts). The lateral fluxes 

include the carbon exchange between the land and atmosphere in non-CO2 forms as well as the 

imported wood and crop products, and a recent estimate of the lateral flux for China is −0.14 PgC yr
−1

 

(Wang et al., 2022). The terrestrial carbon sink in 2016 after correcting for lateral fluxes amounts to 

approximately −0.33 PgC yr
−1

 (i.e., −0.47 + 0.14 = −0.33), constrained by the GOSAT XCO2 in the 550 

JDAS inversion system. This result is consistent with inventory-based and ecosystem model–based 

estimations within the recognized interannual variability. Correspondingly, we also provide a corrected 

carbon sink estimate of −0.54 PgC yr
−1

 (i.e., −0.68 + 0.14 = −0.54) inferred from in situ CO2 data 

provided by JDAS (Peng et al., 2023), which is the optimal mathematical solution under the current 

sparse observational coverage with daytime photosynthetic uptake, and likely leads to a slight 555 

overestimation to some extent. 

 

Furthermore, as well as results for China’s annual carbon sink, Table 1 2 also provides an overview of 

most of the well-known inversion modeling systems, configurations of inversions, atmospheric 

transport models, spatiotemporal resolutions, and observations. The inversion systems differ by the 560 

transport model, the inversion approach, the choice of observation and prior constraints, enabling us to 

facilitate the international comparison and mutual recognition.In general, most research into the 

inversion of China’s carbon sink has commonly used global transport models. The limited resolution 
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and distribution of observations are deemed to lead to large uncertainties in inversion in small regions, 

especially at national scales (Scrowell et al., 2019; Monteil et al., 2020; Piao et al., 2022). The 565 

resolution-related performance of transport models tends to magnify the uncertainty in China’s carbon 

sink estimates, which can be attributed to the significant bias in representing atmospheric CO2 

concentrations with a coarse model resolution. For example, either in situ CO2 or GOSAT XCO2 

constrained flux (i.e., −1.11 and −0.83 PgC yr
−1

) demonstrates much higher sink estimates from 

GEOS-Chem-based inversion with a 4° × 5° horizontal resolution. Excluding the outliers, most global 570 

inversions report a carbon sink in China of −0.27 to −0.56 PgC yr
−1

 from in situ CO2, and −0.34 to 

−0.68 PgC yr
−1

 from satellite retrievals. In contrast, our estimates constrained by analogous observation 

(−0.68 and −0.47 PgC yr
−1

 from in situ CO2 and GOSAT, respectively) agree reasonably well with the 

previous estimates mentioned above. 

, implying that the underlying regional transport model (i.e., CMAQ) is reliable in presenting robust 575 

local signals. Overall, the good agreement between JDAS ground-based and satellite-based estimates, 

together with the comparable results from previous studies, suggests that the JDAS inversion 

configuration is sufficient to robustly constrain the control vector, and that the limited observations are 

effectively absorbed at the regional scale. This reinforces our confidence in analyzing and interpreting 

the optimized fluxes in terms of spatial variability over China. 580 

3.3 Regional characteristics of posterior fluxes 

3.3 Spatial variability of optimized fluxes 

As can be seen in Fig. 2a, the annual horizontal distribution patterns of biosphere flux show significant 

spatial heterogeneity and fairly large gradients in most areas. Fig. 2b further illustrates annual 

differences between a priori and a posteriori fluxes over the model domain. Although China’s total 585 

carbon sink of a posteriori fluxes (−0.47 PgC yr
−1

) are approximately equal to the a priori fluxes 

(−0.43 PgC yr
−1

), the spatial distribution has been modified through assimilation. Compared to the 

prescribed a priori biosphere flux, not only large-scale vegetation adjustments but also small-scale 

conditions can be detected throughout the year after assimilating atmospheric observations (Fig. 2b). 

Compared to the prescribed a priori biosphere flux, not only large-scale vegetation adjustments but 590 

also small-scale conditions can be detected throughout the year after assimilating atmospheric 

observations under the UNFCCC’s MVS framework (Fig. 2b). Although China’s total carbon sink of a 
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posteriori fluxes (−0.47 PgC yr
−1

) are approximately equal to the a priori fluxes (−0.43 PgC yr
−1

), the 

spatial distribution has been modified through assimilation. Generally, the a priori biosphere fluxes are 

overestimated (~0.1–0.3 μmole m
−2

 s
−1

) in the north (dominated by forest, grassland and cropland) and 595 

south (dominated by forest and grassland) of China where there is a large area of cropland., while they 

are underestimated (~0.1–0.5 μmole m
−2

 s
−1

) primarily in central China where there is a large area of 

cropland (He et al., 2022). This change in flux pattern needs to be further assessed and discussed. The 

good response of the vegetation condition to the a posteriori results provides a strong foundation for a 

meaningful interpretation of biosphere fluxes. 600 

 

Figs. 2c–f show the seasonal spatial differences before and after assimilation, taking January, April, 

July and October as representatives of winter, spring, summer and autumn. The monthly averages were 

calculated from the daily averages based on hourly outputs. The seasonal spatial variation of biosphere 

flux is considerably affected by the seasonal growth and decay of terrestrial ecosystems, which is 605 

mainly driven by the variation in temperature, precipitation, photosynthetically active solar radiation, 

and other meteorological factors (Fu et al., 2022). Accordingly, the difference between the analysis and 

a priori flux tends to be larger in July (Fig. 2e; approximately −1.0 to 1.0 μmole m
−2

 s
−1

), lower in 

April and October, and lowest in January, which indicates a larger uncertainty in biosphere flux 

estimates in the growing season. This is consistent with the findings of previous studies (Jiang et al., 610 

2016; Chen et al, 2021). Nevertheless, summer is also the season with the largest percentage of satellite 

data rejection and retrieval uncertainty, making it a tough test still for inversion systems. As a result, 

JDAS maintains a robust and stable capability with better use of observational information throughout 

the whole year, owing to the joint assimilation of CO2 concentrations and fluxes helping to fully utilize 

and absorb observations as well as reduce the uncertainties in initial concentrations fields. Moreover, it 615 

should be noted that an obvious underestimation of a priori flux (approximately 0.1–0.5 μmole m
−2

 s
−1

) 

occurs in the northern, central and southern vegetation growth regions, where there are several of 

China’s key ecological engineering construction areas, which will be further discussed later in detail. 

On the other hand, the central part of China, dominated by cropland, shows relatively larger a 

posteriori flux in winter and smaller a posteriori flux in summer and autumn, in contrast with the a 620 

priori flux constrained by the limited background observation sites (Zhang et al., 2014; Jacobson et al., 

2020). Satellites, with their better spatial coverage, as well as regional transport models, with their 
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improved stability, can help in assessing the real conditions of local terrestrial ecosystems with 

complex conditions, such as over central China. Additionally, compared with the weekly temporal 

resolution of global inversion, the hourly observational increments as well as the hourly first-guess 625 

fields in this study hold some advantage in evaluating the monthly variations of fluxes. As expected, 

some distinguishing features are thus demonstrated in the assimilated fluxes, such as the carbon sources 

in parts of central, eastern and southwest China, which is more consistent with the underlying surface 

situation. In this way, the JDAS inversion system has the potential to depict the fine-scale 

characteristics of biosphere flux well. 630 

 

Next, we analyze the monthly and annual fluxes in five large regions—west, north, central, south, and 

mainland China (denoted by the red frame in Fig. 2a)—to analyze the regional inversion in 

subcontinental-scale flux variation as well as to contrast with the previous inversion analysisto evaluate 

the effectiveness of the regional inversion in subcontinental-scale flux variation as well as to contrast 635 

with the previous inversion analysis over China (Fig. 3). Given the representative background and 

observation information, the seasonality patterns were modified by JDAS assimilation, with larger 

annual sinks relative to the a priori ones and a growing season that is shifted earlier in the year over 

central and south China. The flux forecast model that includes a smoothing operator with diurnal 

variation provides reasonable background flux information. Given the representative background and 640 

observation information, the seasonality patterns are reproduced well by the JDAS assimilation, with 

larger annual sinks relative to the a priori ones and a growing season that is shifted earlier in the year 

over central and south China. This indicates that the regional carbon assimilation system is calibrated 

well and performs reliably. As shown in Fig. 3, there is an evident difference in the a posteriori annual 

carbon sink magnitude in these regions, gradually decreasing in the north (e.g., forest, grassland and 645 

cropland), south (e.g., forest and grassland), west (e.g., grassland and tundra), and central region (e.g., 

cropland) in turn, which is consistent with the primary corresponding ecosystem types, while the a 

priori sink of the west tends to be larger than that of the south. Using the north as a reference, the 

annual carbon sink of the a priori estimates for the north, south, west and central regions are 1.00, 0.57, 

0.62 and 0.44, respectively, while those of the a posteriori estimates are 1.00, 0.62, 0.56 and 0.38. On 650 

the other hand, the a priori and a posteriori amplitudes of the seasonal variation [i.e., the difference 

between the maximum and minimum monthly estimates, as defined in Scrowell et al. (2016)] range 
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from 374.33/333.74, 87.01/80.41, 120.33/113.98, 82.34/88.00 to 413.17/389.48 TgC month
−1

 in north, 

south, west, central and mainland China, respectively. Moreover, the drastic fluctuation in the daily 

variation of prior fluxes has been modified by observational constraints in JDAS (sub-graph in the 655 

left-hand panel of Fig. 3). Therefore, this implies the potential for regional inversion in interpreting 

underlying processes in large regions such as China where the ecosystems and climate are quite varied. 

The decreased annual sink and increased seasonal variability in central China deduced by the a 

posteriori flux with satellite observations may in fact reflect the atmospheric CO2 fixed by cropland 

vegetation, where ~60% of the area is cropland with relative few in situ observations used for 660 

constraining the a priori flux (Piao et al., 2009, 2022). Moreover, for daily flux estimation, the 

day-to-day variability demonstrated by a posteriori fluxes is substantially smaller than that of the a 

priori estimation (sub-graph in the left-hand panel of Fig. 3). The drastic fluctuation in the daily 

variation of a priori fluxes has been modified by observational constraints, which appears more 

realistic than that of the a priori estimates. This implies the potential for regional inversion in 665 

interpreting underlying processes in large regions such as China where the ecosystems and climate are 

quite varied. 

 

Nevertheless, achieving robust and reliable flux signals at smaller regional scales is quite demanding 

and rather challenging, because of the limited observations and low accuracy of transport models as 670 

well as the a priori information. In this paper, we further try to investigate the condition of the regional 

biosphere carbon sink over several of China’s key ecological areas (denoted by the blue frame in Fig. 

2a)—for example, Daxing’anling (DX), the Loess Plateau (HT), the Qinling Mountains (QL), the rocky 

desert in Guangxi (SM), Mount Wuyi (WY), and Xishuangbanna (XS). These regions are characterized 

by their unique vegetation and climatic conditions. Generally, the duration of the carbon sink extends 675 

gradually from north to south, such as four months in DX, five months in HT, and seven months in SM 

and XS, due to the seasonal growth and decay of biosphere ecosystems, which is principally 

determined by meteorological conditions including solar radiation, temperature and precipitation. In 

particular, the a priori and a posteriori seasonal amplitudes amount to 43.64/39.56, 24.03/23.39, 

35.73/37.96, 29.36/31.80, 2.70/3.64 and 7.93/7.04 TgC month
−1

 in DX, HT, QL, SM, WY and XS, 680 

respectively. The region of DX is characterized by abundant forest and far more satellite retrievals to 

constrain fluxes, with annual a priori and a posteriori carbon sinks of −25.13/−29.64 TgC yr
−1

. 
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Favorable meteorological conditions [e.g., precipitation in the growing season being 20% higher than 

that in 2015 (China Climate Bulletin 2016)] have also been reported, which further supports the 

improved ecological quality, indicating JDAS’s potential in tracking biosphere CO2 fluxes from space. 685 

Compared to a priori fluxes, relatively stronger a posteriori sinks are also found in QL (−60.05/−62.53 

TgC yr
−1

), SM (−62.10/−71.27 TgC yr
−1

), WY (0.36/−2.19 TgC yr
−1

) and XS (−10.12/−10.79 TgC yr
−1

), 

which is consistent with the improved ecological conditions due to ecological engineering construction 

as well as generally favorable climatic conditions. The XS region is unique and worthy of attention in 

contrast to the other regions not only because it shows different seasonality in its release of CO2 to the 690 

atmosphere in summer and removal of CO2 from the atmosphere in other seasons, but also because of 

the large transport model errors that are included in the model–data mismatch error involved in 

previous inversion studies (Wang et al., 2020; He et al., 2022; Schuh et al., 2022; Wang et al., 2022). As 

can be seen in Fig. 4, JDAS demonstrates potential in reproducing a reasonable biosphere flux 

dominated by complex underlying conditions, with a reliable and robust CMAQ performance in 695 

providing first-guess concentration fields. Thus, the abovementioned spatial variations of a posteriori 

fluxes might unlock some of the potential local signals in areas where regional transport models are 

more reliable and observations are plentiful.  

3.4 Provincial patterns of optimized fluxes 

3.4 Provincial patterns of optimized fluxes in China 700 

In this section, we investigate the provincial patterns of biosphere flux (Fig.5).In this section, we 

investigate the provincial patterns of biosphere flux. At this scale, both the a priori and a posteriori 

fluxes indicate the strongest carbon sink intensity per unit area being in Shaanxi, Guangxi and Guizhou, 

but the a priori fluxes produce an underestimation in Shanxi and overestimations in Guangxi and 

Guizhou, respectively. Next, the second strongest carbon sink intensity is commonly seen in Shaanxi, 705 

Sichuan, Chongqing and Hubei, whereas a comparatively low level of carbon sink intensity appears in 

Xinjiang, Liaoning, Anhui and Yunnan as well as in Tibet and Fujian. Furthermore, some provinces 

with neutral (i.e., close to 0), source or sink statuses are re-evaluated by the GOSAT constrained fluxes 

(Figs. 5a and b). For instance, the a posteriori flux in Ningxia is −0.01–0.01 μmole m
−2

 s
−1

, while the a 

priori flux displays a weak carbon sink of −0.01 to −0.05 μmole m
−2

 s
−1

, due to the complexity in the 710 

estimation related to the grassland and cropland land surfaces in this province. On the contrary, the a 
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priori fluxes in Fujian and Jiangsu are close to 0, but we find a carbon sink ranging from approximately 

−0.01 to −0.05 μmole m
−2

 s
−1

 and a carbon source from 0.05 to 0.1 μmole m
−2

 s
−1

, respectively. For 

Liaoning, the a priori fluxes are characterized by CO2 sources (0.01–0.05 μmole m
−2

 s
−1

), while the 

assimilated fluxes with satellite measurements are slightly adjusted to a carbon sink (−0.05–0.1 μmole 715 

m
−2

 s
−1

). 

Based on the gridded a posterior flux dataset, we first assess the annual CO2 biosphere sink levels in 31 

provinces in mainland China (Taiwan, Hong Kong, Macao and Shanghai are not discussed because of 

the insufficient grid resolution). Fig. 5 shows the a priori, a posteriori annual biosphere flux 

estimations and their differences (in units of μmole m
−2

 s
−1

) on the provincial scale over mainland 720 

China. At this scale, the inversion fluxes are associated with regional differences partly controlled by 

the a priori flux and the atmospheric measurements. Both the a priori and a posteriori fluxes indicate 

the strongest carbon sink intensity per unit area (> 0.3 μmole m
−2

 s
−1

) being in Shaanxi, Guangxi and 

Guizhou, but the a priori fluxes produce an underestimation in Shanxi (~0.01–0.05 μmole m
−2

 s
−1

) and 

overestimations in Guangxi and Guizhou (~0.1–0.2 μmole m
−2

 s
−1

), respectively. Next, the second 725 

strongest carbon sink intensity (0.2–0.3 μmole m
−2

 s
−1

) is commonly seen in Shaanxi, Sichuan, 

Chongqing and Hubei, whereas a comparatively low level of carbon sink intensity appears in Xinjiang, 

Liaoning, Anhui and Yunnan, at approximately 0.05–0.1 μmole m
−2

 s
−1

, as well as in Tibet and Fujian, 

at 0.01–0.05 μmole m
−2

 s
−1

. Furthermore, some provinces with neutral (i.e., close to 0), source or sink 

statuses are re-evaluated by the GOSAT constrained fluxes (Figs. 5a and b). For instance, the a 730 

posteriori flux in Ningxia is −0.01–0.01 μmole m
−2

 s
−1

, while the a priori flux displays a weak carbon 

sink of −0.01 to −0.05 μmole m
−2

 s
−1

, due to the complexity in the estimation related to the grassland 

and cropland land surfaces in this province. On the contrary, the a priori fluxes in Fujian and Jiangsu 

are close to 0, but we find a carbon sink ranging from approximately −0.01 to −0.05 μmole m
−2

 s
−1

 and 

a carbon source from 0.05 to 0.1 μmole m
−2

 s
−1

, respectively. For Liaoning, the a priori fluxes are 735 

characterized by CO2 sources (0.01–0.05 μmole m
−2

 s
−1

), while the assimilated fluxes with satellite 

measurements are slightly adjusted to a carbon sink (−0.05–0.1 μmole m
−2

 s
−1

). In general, (1) 

widespread underestimation of the a priori flux (0.01–0.1 μmole m
−2

 s
−1

) is found in central China, 

which is dominated by cropland and where dense satellite retrievals are accordingly available; (2) 

overestimates are distribute in the northeast and south of China over a considerable spatial extent and 740 

should be modified; and (3) smaller changes between a posteriori and a priori estimates are primarily 
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located in the west of China, which tends to agree with the XCO2 o − b pattern. 

 

Lastly, the sizes of the provincial biosphere fluxes are summarized and sorted quantitatively in Fig. 6. 

The maximum and minimum provincial biosphere flux sizes are in Inner Mongolia (a posteriori: –745 

53.65 TgC yr
−1

; a priori: −53.41 TgC yr
−1

) and Shandong (a posteriori: 5.99 TgC yr
−1

; a priori: 3.05 

TgC yr
−1

), respectively. Moreover, satellites observations can facilitate the evaluation of biosphere flux 

in combination with atmospheric inversions. The difference between the a posteriori and a priori 

provincial flux ranges from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong, with an 

underestimation greater than 2.00 TgC yr
−1

 appearing in Shandong (2.95), Jiangsu (2.31) and Hebei 750 

(2.25), and an overestimation greater than 5.00 TgC yr
−1

 appearing in Heilongjiang (7.03), Liaoning 

(5.68), Yunnan (5.59) and Guangxi (5.10). On the other hand, a smaller percentage of modification 

between the a posteriori and a priori flux [i.e. (a posteriori − a priori) / a priori × 100% in absolute 

value] arises in Xinjiang (0.28%), Inner Mongolia (0.46%), Tibet (1.10%), Qinghai (2.45%), Gansu 

(3.21%), Shaanxi (3.50%), Sichuan (4.34%) and Shanxi (4.65%), indicating a lower level of 755 

uncertainty in these larger carbon-sink provinces. Nevertheless, an increased percentage of 

modification in provincial flux appears in Jiangsu (a posteriori: 2.29 TgC yr
−1

; a priori: −0.02 TgC 

yr
−1

), Liaoning (a posteriori: −4.27 TgC yr
−1

; a priori: 1.40 TgC yr
−1

), Fujian (a posteriori: −1.15 TgC 

yr; a priori: 0.29 TgC yr
−1

), and Shandong (already listed above). As discussed earlier, all provinces in 

China differ in both their terrestrial vegetation and anthropogenic activity. The abovementioned 760 

magnitude of uncertainty between a posteriori and a priori estimates is closely related to the degree of 

human activity intervention. Several factors could account for the provincial spatial distribution 

constrained from GOSAT; for instance, the increased precipitation along with the strong El Niño in 

2016, the levels of reforestation and afforestation, and the reductions in biofuels in rural areas bringing 

about a shrubland carbon sink. 765 

3.5 Evaluation against observations  

3.5 Evaluation of a posteriori fluxes against independent data  

We further assess the performance of the a posteriori CO2 fluxes by comparing the CTRL, FC and AN 

results in the fit to non-assimilated GOSAT as well as surface observations.In this section, we further 

assess the performance of the a posteriori CO2 fluxes by comparing the CTRL, FC and AN results. The 770 
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monthly and annual statistics were computed from the hourly outputs from the assimilation, simulation 

and observation. GOSAT retrievals. Table 2 1 demonstrates (as expected) that the concentration from 

the analysis fields (AN) performs best when fitted to the non-assimilated independent XCO2 

observations. It is notable that the column-averaged satellite signals have limited capacity in facilitating 

the tropospheric variation in CO2 concentration compared to surface observations. Thus the response to 775 

changes in the simulated XCO2 signal is weak, and improvement is rather moderate.Generally, the 

simulation with a posteriori fluxes (i.e., FC) shows improvements, with decreased RMSE and MAE as 

well as an increased correlation coefficient, when compared to the a priori flux simulation (CTRL) 

using the non-assimilated XCO2 for validation. It is notable that the column-averaged satellite signals 

have limited capacity in facilitating the tropospheric variation in CO2 concentration, and thus the 780 

response to changes in the simulated concentration signal is weak, but improvements are still apparent. 

For instance, the annual RMSE, MAE and correlation coefficient for AN are 2.34 ppm, 1.93 ppm and 

0.73; for FC, they are 2.63 ppm, 2.02 ppm and 0.66; and for CTRL, they are 2.65 ppm, 2.03 ppm and 

0.66, respectively. Additionally, the AN, FC and CTRL biases from non-assimilated XCO2independent 

observations were further calculated (Table 3),. and tThe outliers in CTRL have been effectively 785 

amended. When FC is compared with the CTRL results, the frequency of bias in [−4, 4] increases by 

0.25%, in [−3, 3] by 0.36%, in [−2, 2] by 0.32%, and in [−1, 1] by 0.14%. Furthermore, Tthe error 

standard deviation decreases from 2.63 ppm in CTRL to 2.61 ppm in FC and to 2.27 ppm in AN. 

 

Furthermore, surface in situ observations from 14 sites are further used as independent observations to 790 

evaluate the inversion results. The modeled CO2 concentrations were extracted from the simulated 

hourly CO2 fields according to the locations, elevation, and time of each observation. The averages of 

observation, CTRL, FC, and AN over these 14 stations are 410.97, 413.01, 412.82, and 412.21 ppm, 

respectively. The statistics of the analytical field (AN) in Table 4 are better than FC and CTRL, 

including RMSE and MAE, which gives a direct indication that the assimilation performs well. Taking 795 

improvement rate as example, the RMSE improvement rate between the FC and CTRL mostly ranges 

from –2.13% to 12.34% with an average of 2.48%, and the MAE improvement rate ranges from 0.08% 

to 9.73% with an average of 2.37%. Although the RMSE and MAE of AN are lower than CTRL and 

FC, those of FC are higher than CTRL in Lin’an (in Wuhan, Hubei) and Jinsha (in Yangtze River Delta), 

which are in the vicinity of urban clusters with increased human activity (Liang et al., 2023). Thus, this 800 

带格式的: 下标
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helps to check that the inversions actually improve the model fits to the observations but also to 

determine whether some sites are particularly problematic for natural flux inversions. Inversions 

actually improve the model fits to the surface observations in forest areas (in Northeast, East and 

Southeast China), cropland areas (in North China), grassland areas (in Mongolia), Ocean (in Korea and 

Japan) and coastal areas (in Korea). 805 

 

Moreover, Tthe annual-averaged horizontal distributions of CO2 concentration (unit: ppm) near the 

surface in 2016 are also presented (Fig. 7). Fig. 7a displays the surface CO2 concentration analysis 

fields, from which it can be seen that the high CO2 concentrations are mainly distributed over regions 

with intense human activities. Thus, the AN can be used as a closer representation of the real condition, 810 

and the much-refined description in the CO2 analysis concentration fields allows for a more detailed 

characterization of the spatiotemporal distribution of CO2 concentration and can further facilitate an 

interpretation of satellite data in a regional context over China. As shown in Figs. 7b and c, compared 

to the CTRL fields, the FC fields tend to be considerably closer to the AN fields, suggesting that the a 

posteriori fluxes are calibrated well and perform acceptably. Furthermore, Fig. 7d shows the 815 

year-round statistic of XCO2 error reduction [defined as (1 – δFC / δCTRL) × 100%)], as well as the 

amounts of non-assimilated independent observations, where δFC represents the FC XCO2 error 

standard deviation and δCTRL the CTRL XCO2 error standard deviation. The region of 8°–57°N and 

105°–120°E is used as a reference because there is a relatively larger difference between the a priori 

and a posteriori fields, including the concentration as well as flux. In general, the error reduction is 820 

primarily found to be positive and ranges from approximately 0.80% to 32.13% with a median of 5.65% 

and mean of 7.23%. This zonal evaluation further verifies the improvement in the a posteriori flux 

compared to the a priori flux. 

4 Discussion 

4.1 To what extent the JDAS’s posterior flux is different from prior flux? 825 

In general, most research into the inversion of China’s carbon sink has commonly used global transport 

models. The limited resolution and distribution of observations are deemed to lead to large 

uncertainties in inversion in small regions, especially at national scales (Scrowell et al., 2019; Monteil 
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et al., 2020; Piao et al., 2022). The resolution-related performance of transport models tends to magnify 

the uncertainty in China’s carbon sink estimates. For instance, Fu et al. (2022) found that the results of 830 

global model (i.e., GEOS-Chem) tended to be generally lower than GOSAT’s XCO2 in China from the 

various terrestrial models with a mean bias of about 2 ppm in winter, while Lei et al. (2014) found 

GEOS-Chem simulations tended to produce higher values than GOSAT (by 5.8 ppm) in China during 

summer. In contrast, the observational increments of JDAS show an ability to depict the fine-scale 

features with strong spatial heterogeneity whilst in general retaining the large-scale spatial patterns, 835 

which can be attributed to the CMAQ simulation performance in differentiating the nuances of 

anthropogenic and natural conditions. On the other hand, the analysis increments depend not only on 

the innovations, but also on how well the Kalman gain matrix computes the contribution weighting 

factors based on the time-dependent forecast error covariance. The biosphere flux first-guess fields 

were derived from the novel flux forecast model by taking the a priori flux, the analysis flux from the 840 

previous assimilation cycle, and the forecast concentration (Equation 1), which is a great help in 

assisting with improving the background information and initial perturbation for ensemble forecasting. 

 

The good response of the vegetation condition to the a posteriori results provides a strong foundation 

for a meaningful interpretation of biosphere fluxes. Satellites, with their better spatial coverage, as well 845 

as regional transport models, with their improved stability, can help in assessing the real conditions of 

local terrestrial ecosystems with complex conditions, such as over central China. The decreased annual 

sink and increased seasonal variability in central China deduced by the a posteriori flux with satellite 

may in fact reflect the atmospheric CO2 fixed by cropland vegetation, where ~60% of the area is 

cropland with relative few in situ observations used for constraining the a priori flux (Piao et al., 2009, 850 

2022). Actually, downward correction over forest and grassland and upward correction for cropland 

areas has been validated against independent data. Inversions actually improve the model fits to the 

surface observations in cropland, forest and grassland areas. In general, (1) widespread underestimation 

of the a priori flux (0.01–0.1 μmole m
−2

 s
−1

) is found in central China, which is dominated by cropland 

and where dense satellite retrievals are accordingly available; (2) overestimates are distributed in the 855 

northeast and south of China over a considerable spatial extent; and (3) smaller changes between a 

posteriori and a priori estimates are primarily located in the west of China, which tends to agree with 

the XCO2 OMB pattern. Nevertheless, summer is the season with the largest percentage of satellite data 
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rejection and retrieval uncertainty, making it a tough test still for inversion systems.  

 860 

At the provincial scale, the provinces in China differ in both the terrestrial vegetation and 

anthropogenic activity. As discussed earlier, the difference between a posteriori and a priori estimates 

is closely related to the degree of human activity intervention. Several factors could account for the 

provincial spatial distribution constrained from GOSAT; for instance, the increased precipitation along 

with the strong El Niño in 2016, the levels of reforestation and afforestation, and the reductions in 865 

biofuels in rural areas bringing about a shrubland carbon sink. 

4.2 How well can JDAS inversion constrain the carbon sink of China? 

Quantitative information on to what extent the posterior flux are constrained by observations have been 

further checked. The prior information has been embodied in a priori flux simulated concentrations, 

and observation information has been embodied in the a posteriori flux simulation, whose fluxes are 870 

constrained by observations. By evaluating the differences between these two sets of simulation results, 

the prior information and observation information now have access to be accessed quantitatively. At the 

site scale (Table 4), some sites tend to systematically be poorly fitted by the inversions, in particular 

those in the vicinity of large urban areas with large anthropogenic emissions, such as Jinsha and Lin’an. 

Besides these two sites, the difference between CTRL and FC is affected by the observation 875 

information through assimilation ranges from 0.25% to 12.34% (i.e. RMSE decreasing rates), with an 

average of 2.48% among all surface observation sites. According to the statistics, the observations have 

played a positive role in improving carbon sink over the model domain. The non-assimilated GOSAT 

XCO2 has been also used to assess the difference between prior and posterior flux simulation. The 

decrease in the misfits is rather moderate (Table 1).  880 

 

In addition, smaller correlation coefficient improvement in the contrast of CTRL and FC imply that 

prior flux patterns play an important role in posterior flux. On the other hand, favorable meteorological 

conditions [e.g., precipitation in the growing season being 20% higher than that in 2015 (China Climate 

Bulletin 2016)] have also been reported, which further supports the improved ecological quality, 885 

indicating JDAS’s potential in tracking biosphere CO2 fluxes from space. 
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5 Summary and Outlook 

4 Summary and Outlook 

Top-down estimations of carbon budgets have been included in the UNFCCC’s MVS framework. At 890 

present, most carbon sink inversions in China utilize a global transport model with relatively coarse 

resolution. Characterized by large heterogeneity in its biospheric spatiotemporal distribution, the 

transport model error, as well as the sparseness of in situ observations, leads to large uncertainties in 

the assimilation of carbon flux in China. In this study, a regional high-resolution inversion model 

(JDAS) was used, which has been extended to incorporate GOSAT constraints, along with a joint 895 

assimilation of CO2 flux and concentration at high spatial (64 km) and temporal (1 h) resolution. The 

annual, monthly and daily variation in biosphere flux was reproduced reasonably well, which was 

attributable to the novel flux forecast model with diurnal variation, the reliable CMAQ background 

simulation, carefully chosen XCO2 retrievals, and the well-designed EnKS assimilation configuration. 

carefully chosen XCO2 retrievals, and the well-designed EnSRF assimilation configuration. 900 

 

The size of the biosphere carbon sink in China amounted to −0.47 PgC yr
−1

 with JDAS by GOSAT 

constraints, which is comparable consistent with previous global estimates (i.e., −0.27 to −0.56 PgC 

yr
−1

 from in situ observations and −0.34 to −0.68 PgC yr
−1

 from satellite retrievals), indicating that the 

regional inversion system is sufficient to robustly constrain the control vector. Next, the much-refined 905 

CMAQ resolution in JDAS inversion was found to allow for a more detailed characterization of the 

spatiotemporal distribution of CO2 and to further facilitate an interpretation of carbon flux in a regional 

context over China. The a priori and a posteriori seasonal amplitudes ranged from 374.33/333.74, 

87.01/80.41, 120.33/113.98, 82.34/88.00 to 413.17/389.48 TgC month
−1

 in north, south, west, central 

and mainland China, respectively. Also, the drastic fluctuation in the daily variation of a priori fluxes 910 

was modified by observational constraints, which appeared more realistic than that of the a priori 

estimates. Moreover, we further investigated the condition of the biosphere carbon sink in several of 

China’s key ecological areas. Using XS as an example, the large transport model errors that were 

included in the model–data mismatch error involved in previous global inversion studies were 

effectively reduced by JDAS, and XS was reported to be a relatively stronger sink in contrast to prior 915 

estimates (−10.12/−10.79 TgC yr
−1

). Furthermore, the provincial patterns of biosphere flux were 
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investigated and re-estimated. As seen from GOSAT, the difference between the a posteriori and a 

priori provincial flux ranged from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong. 

Finally, an evaluation against non-assimilated XCO2 and surface observations demonstrated better 

performance of the a posteriori flux when fitted to the observations, an evaluation against independent 920 

data demonstrated better performance of the a posteriori flux when fitted to the non-assimilated XCO2 

observations, indicating improved results in the regional inversion. Considering our prior estimates 

from CT2019B, the discrepancy could be because our study (a) relied on a fine-scale regional transport 

model; (b) was constrained by GOSAT XCO2 retrievals with better spatial coverage rather than sparse 

and inhomogeneous in situ observations; (c) performed a joint assimilation of CO2 flux and 925 

concentration, which helped reduce the uncertainty in both the initial CO2 fields and the fluxes; and (d) 

carried out hourly assimilation based on hourly simulation and observation, which was more realistic. 

 

The regional inversion methodology and results presented here prove the feasibility and superiority of 

regional CTMs and satellite observations in investigating China’s carbon sink. On account of the 930 

obvious interannual variation in the biosphere sink, this work also serves as a foundation for future 

multi-year retrospective analyses of biosphere–atmosphere exchanges under different meteorological 

conditions. On the one hand, although the ACOS retrieval technology has been substantially improved 

and provides unprecedented spatial coverage, more XCO2 retrievals with better quality and lower 

retrieval uncertainty are still needed, especially during summertime and over west China. On the other 935 

hand, a knowledge gap also exists in inversion-based estimates, in which fossil-fuel emissions are 

generally assumed to be accurate. Besides uncertainties in natural flux, our current knowledge of urban 

emissions is far from adequate. Around 70% of fossil-fuel emissions are derived from cities in 

combination with considerable uncertainties. Within the framework of the Paris Agreement, inversions 

at higher spatial resolution are an increasing demand, making it crucial to develop the capacity for 940 

inversions to quantify urban emissions and assess the effectiveness of emission mitigation strategies, 

alongside calls for improvements in observations, a priori information, anthropogenic emission 

inventories, transport models, and inversion technology.  
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Figures and Tables 

Captions: 

Table 1.  Evaluation results between the observations and model (unit: ppm), including model results 

from CTRL (black, a priori flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, 1320 

analysis fields from JDAS). 

Table 2.  China’s annual carbon sink estimated by different methods, including the inventory method, 

ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). 

Table 3.  Probability distribution of hourly bias (unit: %) and bias standard deviation (unit: ppm) of 

XCO2 validation including CTRL, FC and AN in 2016. 1325 

Table 4.  Evaluation results between in situ observations and model, including CTRL (black, a priori 

flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields from JDAS). 

Table 1.  China’s annual carbon sink estimated by different methods, including the inventory method, 
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ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). Italic font and gray shading 

denote the inversion results after correcting for lateral fluxes according to the flux gap between 1330 

top-down and bottom-up estimation. The abbreviations used in the table are as follows: CAMS, 

Copernicus Atmosphere Monitoring Service; BI, Bayesian Inversion; JCS, Jena CarboScope; CCDAS, 

Carbon Cycle Data Assimilation System; FAPAR, remotely sensed Fraction of Absorbed 

Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie Dynamique Zoom, a global 

transport model; and TM5, the global atmospheric Tracer Model 5. 1335 

Table 2. Evaluation results between the observations and model (unit: ppm). “XCO2 (validation)” 

denotes the independent GOSAT XCO2 retrievals for validation, including model results from CTRL 

(black, a priori flux simulation), FC (blue, a posteriori flux simulation), and AN (red, analysis fields 

from JDAS). “XCO2 (assimilation)” represents the observations used for assimilation, and the 

corresponding model results come from BG (JDAS background fields). RMSE refers to the 1340 

root-mean-square error; CORR refers to the correlation coefficient; MAE refers to the mean absolute 

bias; and NUM refers to the XCO2 data amount. The monthly and annual averages were calculated 

from the hourly outputs. 

Table 3.  Probability distribution of hourly bias (unit: %) and bias standard deviation (unit: ppm) of 

XCO2 validation including CTRL, FC and AN in 2016. 1345 

Figure 1. Observation increments (XCO2; unit: ppm) and analysis increments (biosphere flux; unit: 

μmole m
−2

 s
−1

) in (a, b) January, (c, d) July, and (e, f) the whole year of 2016. 

Figure 2. Horizontal distribution of CO2 biosphere fluxes (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎 in 2016, the a 

posteriori fluxes; (b) 𝐸𝑎–𝐸𝑝 in 2016, the differences between the a posteriori and a priori CO2 fluxes; 

(c) 𝐸𝑎–𝐸𝑝 in January; (d) 𝐸𝑎– 𝐸𝑝 in April; (e) 𝐸𝑎–𝐸𝑝 in July; (f) 𝐸𝑎– 𝐸𝑝 in October. The red 1350 

frames mark west China (28°–48°N, 85°–104°E), north China (37°–52°N, 105°–135°E), central China 

(30°–36°N, 105°–120°E), and south China (18°–29°N, 105°–123°E). The blue frames mark six key 

ecological areas of China: Daxing’anling (50°–53°N, 121°–127°E); the Loess Plateau (35°–40°N, 

105°–112°E); the Qinling Mountains (32°–34°N, 104°–115°E); the rocky desert in Guangxi (22°–25°N, 

106°–111°E); Mount Wuyi (26.5°–28.0°N, 117.5°–119.0°E); and Xishuangbanna (21.0°–22.6°N, 1355 

100.0°–102.0°E). 

Figure 3. Time series of CO2 biosphere fluxes over (a) mainland China, (b) west China, (c) north China, 

(d) central China, and (e) south China, marked by the red frames in Fig. 2a (unit: TgC month
−1

), in each 
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month of 2016, obtained from a priori values (PR, black), a posteriori values (AN, red), and the flux 

forecast model (FC, blue). The bars on the right-hand side represent the 12-month average (unit: TgC 1360 

month
−1

). The boxes on the left-hand side denote the daily flux (unit: TgC day
−1

), with the whiskers 

indicating the minimum and maximum and the horizontal lines across the box indicating the 25
th
 

percentile, the median, and the 75th percentile, respectively. 

Figure 4. Time series of CO2 biosphere fluxes over six ecological areas of China (blue frames in Fig. 

2a; unit: TgC month
−1

), in each month of 2016, obtained from a priori values (PR, black bars) and a 1365 

posteriori values (AN, red bars). The bars on the right-hand side represent the 12-month average (unit: 

TgC month
−1

). The subfigures at the bottom denote the daily temperature (blue lines; unit: ℃; left-hand 

y-axis), total solar radiation (red stars; unit: MJ d
−1

; left-hand y-axis), and precipitation (grey bars; unit: 

mm d
−1

; right-hand y-axis), with the right-hand bars representing the annual average. 

Figure 5. Horizontal distribution of CO2 biosphere fluxes averaged over each province of mainland 1370 

China in 2016 (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎: the a posteriori fluxes; (b) 𝐸𝑝: the a priori fluxes; (c) 

𝐸𝑎–𝐸𝑝: the differences between the a posteriori and a priori CO2 fluxes. Note that Taiwan, Hong 

Kong, Macao and Shanghai are not discussed owing to the insufficient grid resolution. 

Figure 6. The total a priori (black) and a posteriori (red) CO2 biosphere fluxes over each province of 

mainland China in 2016 (unit: TgC yr
−1

). The abbreviations of the provinces are: NM, Neimenggu; SC, 1375 

Sichuan; GZ, Guizhou; XJ, Xinjiang; QH, Qinghai; SX’, Shaanxi; GX, Guangxi; HL, Heilongjiang; GS, 

Gansu; SX, Shanxi; HUN, Hunan; HUB, Hubei; HEB, Hebei; NEN, Henan; JL, Jilin; XZ, Xizang; GD, 

Guangdong; JX, Jiangxi; CQ, Chongqing; YN, Yunnan; AH, Anhui; ZJ, Zhejiang; NX, Ningxia; BJ, 

Beijing; JS, Jiangsu; SH, Shanghai; FJ, Fujian; TJ, Tianjin; HAN, Hainan; LN, Liaoning; and SD, 

Shandong. 1380 

Figure 7. The annual-averaged horizontal distribution of CO2 concentrations (unit: ppm) near the 

surface in 2016: (a) AN: the analysis concentration; (b) FC−AN: the difference between the a 

posteriori flux simulation and analysis concentration fields; (c) CTRL−AN: the difference between the 

a priori flux simulation and analysis concentration fields; (d) the XCO2 error reduction [see text for 

calculation; blue, with the standard deviation (±) of the analysis XCO2 provided] and independent 1385 

XCO2 data amount (black stars, rescaled to 1:10) over 8°–57°N and 105°–120°E at different latitudes. 



49 
 

 

Figure 1. Observation increments (XCO2; unit: ppm) and analysis increments (biosphere flux; unit: 

μmole m
−2

 s
−1

) in (a, b) January, (c, d) July, and (e, f) the whole year of 2016. 

  1390 
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Figure 2. Horizontal distribution of CO2 biosphere fluxes (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎 in 2016, the a 

posteriori fluxes; (b) 𝐸𝑎–𝐸𝑝 in 2016, the differences between the a posteriori and a priori CO2 fluxes; 

(c) 𝐸𝑎–𝐸𝑝 in January; (d) 𝐸𝑎– 𝐸𝑝 in April; (e) 𝐸𝑎–𝐸𝑝 in July; (f) 𝐸𝑎– 𝐸𝑝 in October. The red 

frames mark west China (28°–48°N, 85°–104°E), north China (37°–52°N, 105°–135°E), central China 1395 

(30°–36°N, 105°–120°E), and south China (18°–29°N, 105°–123°E). The blue frames mark six key 

ecological areas of China: Daxing’anling (50°–53°N, 121°–127°E); the Loess Plateau (35°–40°N, 

105°–112°E); the Qinling Mountains (32°–34°N, 104°–115°E); the rocky desert in Guangxi (22°–25°N, 

106°–111°E); Mount Wuyi (26.5°–28.0°N, 117.5°–119.0°E); and Xishuangbanna (21.0°–22.6°N, 

100.0°–102.0°E).  1400 
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Figure 3. Time series of CO2 biosphere fluxes over (a) mainland China, (b) west China, (c) north China, 

(d) central China, and (e) south China, marked by the red frames in Fig. 2a (unit: TgC month
−1

), in each 

month of 2016, obtained from a priori values (PR, black), a posteriori values (AN, red), and the flux 

forecast model (FC, blue). The bars on the right-hand side represent the 12-month average (unit: TgC 1405 

month
−1

). The boxes on the left-hand side denote the daily flux (unit: TgC day
−1

), with the whiskers 

indicating the minimum and maximum and the horizontal lines across the box indicating the 25
th
 

percentile, the median, and the 75th percentile, respectively. 
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 1410 

Figure 4. Time series of CO2 biosphere fluxes over six ecological areas of China (blue frames in Fig. 

2a; unit: TgC month
−1

), in each month of 2016, obtained from a priori values (PR, black bars) and a 

posteriori values (AN, red bars). The bars on the right-hand side represent the 12-month average (unit: 

TgC month
−1

). The subfigures at the bottom denote the daily temperature (blue lines; unit: ℃; left-hand 

y-axis), total solar radiation (red stars; unit: MJ d
−1

; left-hand y-axis), and precipitation (grey bars; unit: 1415 

mm d
−1

; right-hand y-axis), with the right-hand bars representing the annual average. 
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Figure 5. Horizontal distribution of CO2 biosphere fluxes averaged over each province of mainland 

China in 2016 (unit: μmole m
−2

 s
−1

): (a) 𝐸𝑎: the a posteriori fluxes; (b) 𝐸𝑝: the a priori fluxes; (c) 1420 

𝐸𝑎–𝐸𝑝: the differences between the a posteriori and a priori CO2 fluxes. Note that Taiwan, Hong 

Kong, Macao and Shanghai are not discussed owing to the insufficient grid resolution. 
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Figure 6. The total a priori (black) and a posteriori (red) CO2 biosphere fluxes over each province of 1425 

mainland China in 2016 (unit: TgC yr
−1

). The abbreviations of the provinces are: NM, Neimenggu; SC, 

Sichuan; GZ, Guizhou; XJ, Xinjiang; QH, Qinghai; SX’, Shaanxi; GX, Guangxi; HL, Heilongjiang; GS, 

Gansu; SX, Shanxi; HUN, Hunan; HUB, Hubei; HEB, Hebei; NEN, Henan; JL, Jilin; XZ, Xizang; GD, 

Guangdong; JX, Jiangxi; CQ, Chongqing; YN, Yunnan; AH, Anhui; ZJ, Zhejiang; NX, Ningxia; BJ, 

Beijing; JS, Jiangsu; SH, Shanghai; FJ, Fujian; TJ, Tianjin; HAN, Hainan; LN, Liaoning; and SD, 1430 

Shandong. 
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Figure 7. The annual-averaged horizontal distribution of CO2 concentrations (unit: ppm) near the 

surface in 2016: (a) AN: the analysis concentration; (b) FC−AN: the difference between the a 1435 

posteriori flux simulation and analysis concentration fields; (c) CTRL−AN: the difference between the 

a priori flux simulation and analysis concentration fields; (d) the XCO2 error reduction [see text for 

calculation; blue, with the standard deviation (±) of the analysis XCO2 provided] and independent 

XCO2 data amount (black stars, rescaled to 1:10) over 8°–57°N and 105°–120°E at different latitudes.  

  1440 
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Table 1.  Evaluation results between the observations and model (unit: ppm), including model results 

from CTRL (black, a priori flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, 

analysis fields from JDAS). 

 XCO2 (assimilation) XCO2 (validation) 

 
NUM 

RMSE 

(BG) 

CORR 

 (BG) 

MAE 

(BG) 

Median of 

XCO2 uncertainty 

RMSE 

(CTRL/FC/AN) 

CORR 

(CTRL/FC/AN) 

MAE 

(CTRL/FC/AN) 
NUM 

Jan 1788 2.38 0.53 1.97 0.66 3.80/3.79/2.45 0.19/0.19/0.46 2.45/2.45/2.05 2024 

Feb 1870 2.29 0.52 1.87 0.72 2.42/2.40/2.37 0.42/0.42/0.43 1.99/1.98/1.97 1902 

Mar 1617 2.26 0.49 1.83 0.78 2.48/2.46/2.40 0.36/0.37/0.38 2.05/2.03/2.00 1409 

Apr 1346 2.18 0.36 1.76 0.91 1.90/1.90/1.79 0.31/0.32/0.35 1.91/1.91/1.84 1037 

May 1090 2.36 0.16 1.95 0.91 2.70/2.71/2.47 0.18/0.18/0.17 2.23/2.23/2.10 826 

Jun 734 2.21 0.72 1.78 0.97 2.34/2.35/2.26 0.70/0.70/0.73 1.84/1.83/1.82 615 

Jul 728 2.41 0.80 1.99 0.99 2.45/2.44/2.37 0.82/0.82/0.83 2.02/2.02/1.98 560 

Aug 842 2.38 0.69 1.98 0.95 2.49/2.50/2.42 0.65/0.65/0.66 2.03/2.03/2.01 742 

Sep 854 2.15 0.47 1.76 0.82 2.26/2.22/2.11 0.37/0.38/0.43 1.82/1.80/1.71 879 

Oct 1190 2.29 0.45 1.88 0.75 2.37/2.28/2.22 0.37/0.40/0.44 1.91/1.86/1.84 1192 

Nov 1517 2.27 0.60 1.85 0.67 2.39/2.36/2.25 0.54/0.55/0.58 1.91/1.89/1.84 1627 

Dec 1688 2.26 0.60 1.85 0.64 2.36/2.35/2.34 0.52/0.52/0.53 1.94/1.93/1.91 1847 

2016 15264 2.29 0.72 1.87 0.77 2.65/2.63/2.34 0.66/0.66/0.73 2.03/2.02/1.93 14660 

Note. “XCO2 (validation)” denotes the independent GOSAT XCO2 retrievals for validation. “XCO2 

(assimilation)” represents the observations used for assimilation, and the corresponding model results 1445 

come from BG (JDAS background fields). RMSE refers to the root-mean-square error; CORR refers to 

the correlation coefficient; MAE refers to the mean absolute bias; and NUM refers to the XCO2 data 

amount. The monthly and annual averages were calculated from the hourly outputs. 

 

Table 1.  China’s annual carbon sink estimated by different methods, including the inventory method, 1450 

ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). Italic font and gray shading 

denote the inversion results after correcting for lateral fluxes according to the flux gap between 

top-down and bottom-up estimation. The abbreviations used in the table are as follows: CAMS, 

Copernicus Atmosphere Monitoring Service; BI, Bayesian Inversion; JCS, Jena CarboScope; CCDAS, 

Carbon Cycle Data Assimilation System; FAPAR, remotely sensed Fraction of Absorbed 1455 

Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie Dynamique Zoom, a global 

transport model; and TM5, the global atmospheric Tracer Model 5. 

Method Carbon sink Period covered     Reference 

Inventory 

–0.18± 0.07 1980–1999  Piao et al., 2009 

–0.29± 0.12 2000–2009  Jiang et al., 2016 

–0.28 2009–2018  Wang et al., 2022 

Ecosystem  

process 

models 

–0.17± 0.04 1980–2002  Piao et al., 2009 

–0.18 1961–2005  Tian et al., 2011 

–0.12±0.08 1982–2010  He et al., 2019 

Inversion   Observations Transport 

models 

Optimization Resolution  

CAMS –0.35± 0.033 1996–2005 in situ CO2 LMDZ  Bayesian  3.75°×2.5°, 

monthly 

Piao et al, 2009 
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CAMS-v19 –0.25 2010–2016 in situ CO2 LMDZ  Variational 3.75°×1.875°,  

8 days, 

Wang et al., 2022 

BI –0.51 ± 0.18 2006–2009 in situ CO2 TM5 Bayesian 3°×2°, weekly Jiang et al., 2016 

CT-China –0.39 ± 0.33 2006–2009 in situ CO2 TM5 EnSRF 1°×1°, weekly Jiang et al., 2016 

CT-China –0.33 2001–2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Zhang et al., 2014 

CT-China –0.27±0.20 2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-China –0.41±0.22 2010–2012 GOSAT XCO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-Europe –0.32 2010-2015 in situ CO2 TM5 EnSRF 1°×1°, weekly van der Laan-Luijkx et al., 

2017 

UoE –1.11 ± 0.38 2010–2016 in situ CO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.83 ± 0.47 2010–2015 GOSAT XCO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.68 2015 OCO-2 XCO2 GEOS-Chem EnKF 2°×2.5°, 8 days Schuh et al., 2022 

JCS –0.48 2010-2015 in situ CO2 TM3 Bayesian 4°×5°, monthly Rödenbeck et al., 2018 

GCASv2 –0.34 ± 0.14 2010–2015 GOSAT XCO2 MOZART-4 EnSRF 1°×1°, weekly He et al., 2022 

CCDAS –0.43 ± 0.09 2010–2015 in situ CO2, FAPAR TM2 4D-Var 2°×2°, monthly He et al., 2022 

CT-2019B −0.43 2016 in situ CO2 TM5 EnSRF 1°×1°, weekly Jacobson et al., 2020 

JDAS −0.68 2016 in situ CO2 CMAQ EnSRF 64×64km, hourly This study 

JDAS −0.47 2016 GOSAT XCO2 CMAQ EnSRF 64×64km, hourly This study 
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Table 2.  China’s annual carbon sink estimated by different methods, including the inventory method, 1460 

ecosystem process models, and atmospheric inversion (unit: PgC yr
−1

). 

Method Carbon sink Period covered     Reference 

Inventory 

–0.18± 0.07 1980–1999  Piao et al., 2009 

–0.29± 0.12 2000–2009  Jiang et al., 2016 

–0.28 2009–2018  Wang et al., 2022 

Ecosystem  

process 

models 

–0.17± 0.04 1980–2002  Piao et al., 2009 

–0.18 1961–2005  Tian et al., 2011 

–0.12±0.08 1982–2010  He et al., 2019 

Inversion   Observations Transport 

models 

Optimization Resolution  

CAMS –0.35± 0.033 1996–2005 in situ CO2 LMDZ  Bayesian  3.75°×2.5°, 

monthly 

Piao et al, 2009 

CAMS-v19 –0.25 2010–2016 in situ CO2 LMDZ  Variational 3.75°×1.875°,  

8 days, 

Wang et al., 2022 

BI –0.51 ± 0.18 2006–2009 in situ CO2 TM5 Bayesian 3°×2°, weekly Jiang et al., 2016 

CT-China –0.39 ± 0.33 2006–2009 in situ CO2 TM5 EnSRF 1°×1°, weekly Jiang et al., 2016 

CT-China –0.33 2001–2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Zhang et al., 2014 

CT-China –0.27±0.20 2010 in situ CO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-China –0.41±0.22 2010–2012 GOSAT XCO2 TM5 EnSRF 1°×1°, weekly Chen et al., 2021 

CT-Europe –0.32 2010-2015 in situ CO2 TM5 EnSRF 1°×1°, weekly van der Laan-Luijkx et al., 

2017 

UoE –1.11 ± 0.38 2010–2016 in situ CO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.83 ± 0.47 2010–2015 GOSAT XCO2 GEOS-Chem EnKF 4°×5°, 8 days Wang et al., 2020 

UoE –0.68 2015 OCO-2 XCO2 GEOS-Chem EnKF 2°×2.5°, 8 days Schuh et al., 2022 

JCS –0.48 2010-2015 in situ CO2 TM3 Bayesian 4°×5°, monthly Rödenbeck et al., 2018 

GCASv2 –0.34 ± 0.14 2010–2015 GOSAT XCO2 MOZART-4 EnSRF 1°×1°, weekly He et al., 2022 

CCDAS –0.43 ± 0.09 2010–2015 in situ CO2, FAPAR TM2 4D-Var 2°×2°, monthly He et al., 2022 

CT-2019B −0.43 2016 in situ CO2 TM5 EnSRF 1°×1°, weekly Jacobson et al., 2020 

JDAS −0.68 2016 in situ CO2 CMAQ EnKS 64×64km, hourly Peng, et al., 2023 

JDAS −0.47 2016 GOSAT XCO2 CMAQ EnKS 64×64km, hourly This study 

Note. Italic font and gray shading denote the inversion results after correcting for lateral fluxes 

according to the flux gap between top-down and bottom-up estimation. The abbreviations used in the 

table are as follows: CAMS, Copernicus Atmosphere Monitoring Service; BI, Bayesian Inversion; JCS, 

Jena CarboScope; CCDAS, Carbon Cycle Data Assimilation System; FAPAR, remotely sensed 1465 

Fraction of Absorbed Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie 

Dynamique Zoom, a global transport model; and TM5, the global atmospheric Tracer Model 5. 

 

Table 2.  Evaluation results between the observations and model (unit: ppm). “XCO2 (validation)” 

denotes the independent GOSAT XCO2 retrievals for validation, including model results from CTRL 1470 

(black, a priori flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields 

from JDAS). “XCO2 (assimilation)” represents the observations used for assimilation, and the 

corresponding model results come from BG (JDAS background fields). RMSE refers to the 

root-mean-square error; CORR refers to the correlation coefficient; MAE refers to the mean absolute 
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bias; and NUM refers to the XCO2 data amount. The monthly and annual averages were calculated 1475 

from the hourly outputs. 

 XCO2 (validation) XCO2 (assimilation) 

 RMSE 

(CTRL/FC/AN) 

CORR 

(CTRL/FC/AN) 

MAE 

(CTRL/FC/AN) 
NUM NUM 

RMSE 

(BG) 

CORR 

 (BG) 

MAE 

 (BG) 

Median of 

XCO2 uncertainty 

Jan 3.80/3.79/2.45 0.19/0.19/0.46 2.45/2.45/2.05 2024 1788 2.38 0.53 1.97 0.66 

Feb 2.42/2.40/2.37 0.42/0.42/0.43 1.99/1.98/1.97 1902 1870 2.29 0.52 1.87 0.72 

Mar 2.48/2.46/2.40 0.36/0.37/0.38 2.05/2.03/2.00 1409 1617 2.26 0.49 1.83 0.78 

Apr 1.90/1.90/1.79 0.31/0.32/0.35 1.91/1.91/1.84 1037 1346 2.18 0.36 1.76 0.91 

May 2.70/2.71/2.47 0.18/0.18/0.17 2.23/2.23/2.10 826 1090 2.36 0.16 1.95 0.91 

Jun 2.34/2.35/2.26 0.70/0.70/0.73 1.84/1.83/1.82 615 734 2.21 0.72 1.78 0.97 

Jul 2.45/2.44/2.37 0.82/0.82/0.83 2.02/2.02/1.98 560 728 2.41 0.80 1.99 0.99 

Aug 2.49/2.50/2.42 0.65/0.65/0.66 2.03/2.03/2.01 742 842 2.38 0.69 1.98 0.95 

Sep 2.26/2.22/2.11 0.37/0.38/0.43 1.82/1.80/1.71 879 854 2.15 0.47 1.76 0.82 

Oct 2.37/2.28/2.22 0.37/0.40/0.44 1.91/1.86/1.84 1192 1190 2.29 0.45 1.88 0.75 

Nov 2.39/2.36/2.25 0.54/0.55/0.58 1.91/1.89/1.84 1627 1517 2.27 0.60 1.85 0.67 

Dec 2.36/2.35/2.34 0.52/0.52/0.53 1.94/1.93/1.91 1847 1688 2.26 0.60 1.85 0.64 

2016 2.65/2.63/2.34 0.66/0.66/0.73 2.03/2.02/1.93 14660 15264 2.29 0.72 1.87 0.77 
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Table 3. Probability distribution of hourly bias (unit: %) and bias standard deviation (unit: ppm) of 

XCO2 validation including CTRL, FC and AN in 2016. 1480 

Bias probability distribution CTRL FC AN 

[-4,4] 89.64 89.89 91.02 

[-3,3] 75.63 75.99 76.84 

[-2,2] 56.13 56.45 56.88 

[-1,1] 30.22 30.08 30.24 

[0,4] 53.43 53.62 55.74 

[0,3] 44.65 44.86 46.21 

[0,2] 32.26 32.46 33.07 

Bias standard deviation 2.6268 2.6072 2.2674 

 

  



61 
 

Table 4.  Evaluation results between in situ observations and model, including CTRL (black, a priori 

flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields from JDAS). 

 Lat.(°N) 

/Lon.(°E) 

OBS. 

NUM 

OBS. 

Freq. 

RMSE 

(CTRL/FC/AN) 

RMSE Imp. Rate 

FC/AN (%) 

MAE 

(CTRL/FC/AN) 

MAE Imp. Rate 

FC/AN (%) 

General Site 

Description 

Longfengshan 44.73/127.60 840 Hourly 10.94/10.87/10.38 0.63/5.16 7.83/7.81/7.72 0.30/1.40 Forest (Northeast China) 

Shangdianzi 40.65/117.12 1620 Hourly 10.00/9.87/9.74 1.34/2.58 6.87/6.62/6.64 3.53/3.26 Cropland (North China) 

Mt. Waliguan 36.28/100.90 338 Daily 7.05/6.64/6.31 5.78/10.43 4.63/4.38/4.15 5.35/10.35 Tibet Plateau (China) 

Shangri-La 28.00/99.40 1709 Hourly 9.76/9.62/9.44 1.42/3.21 7.21/7.08/7.02 1.72/2.61 Forest (Southeast China) 

Lin’an 30.30/119.72 1410 Hourly 9.42/9.49/8.60 −0.73/8.70 6.63/6.78/6.14 −2.16/7.45 Forest (East China) 

Jinsha 29.63/114.22 30 Weekly 9.21/9.41/8.94 −2.13/2.96 6.96/7.04/6.46 −1.15/7.13 Urban (Central China) 

King’s Park 22.31/114.17 364 Daily 22.12/21.63/21.10 2.22/4.63 17.02/16.68/16.06 1.98/5.06 Urban (Hong Kong, China) 

Ulaan Uul 44.45/111.08 49 Weekly 5.50/5.41/5.22 1.62/5.06 3.70/3.63/3.52 2.02/5.09 Grassland (Mongolia) 

Ryori 39.03/141.82 8553 Hourly 6.85/6.77/6.06 1.08/11.51 4.59/4.48/3.91 2.21/14.68 Mountain (Japan) 

Mt. Dodaira 36.00/139.20 7928 Hourly 7.62/7.51/7.12 1.45/6.50 5.37/5.31/5.00 1.22/6.95 Mountain (Japan) 

Kisai 36.08/139.55 8686 Hourly 17.09/15.90/15.80 6.99/7.56 13.00/12.22/12.24 5.99/5.83 Urban (Japan) 

Anmyeon-do 36.53/126.32 3228 Hourly 16.00/14.03/13.81 12.34/13.70 10.42/9.41/8.85 9.73/15.06 Coastal (Korea) 

Jeju Gosan 33.30/126.21 4373 Hourly 10.10/9.85/8.79 2.42/12.97 7.29/7.12/6.34 2.39/13.10 Ocean (Korea) 

Yonagunijima 24.47/123.02 8085 Hourly 9.24/9.21/8.60 0.25/6.86 7.39/7.38/6.91 0.08/6.41 Ocean (Japan) 

AVE    10.78/10.44/9.99 2.48/7.27 7.78/7.57/7.21 2.37/7.49  

Note. ‘Lat./Lon.’ refers to the latitude and longitude of site; ‘OBS. NUM’ refers to the observation 1485 

amount; ‘OBS. Freq.’ refers to the observation time frequency; ‘RMSE Imp. Rate’ refers to the 

improvement rate of RMSE, i.e., (RMSECTRL–RMSEFC)/RMSECTRL×100% and (RMSECTRL–

RMSEAN)/RMSECTRL×100%; ‘MAE Imp. Rate’ refers to the improvement rate of MAE, i.e., 

(MAECTRL–MAEFC)/MAECTRL×100% and (MAECTRL–MAEAN)/MAECTRL×100%, respectively. The 

annual averages were calculated from the hourly output. 1490 

 


