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Response to Reviewer #1 

 

We thank the reviewer#1 for the insightful and detailed comments and suggestions, which helped to 

significantly improve the manuscript. The reviewer’s comments are shown in blue italics with the 

author responses in black. 

 

General comment:  

Kou et al. estimated biosphere carbon fluxes over China by applying a regional inversion system to 

GOSAT CO2 data. The inversion was designed to provide a higher spatialtemporal resolution than 

previous studies. While the topic is definitely interesting to the reader of ACP, the manuscript, in its 

current form, is not up to the standard. My main comments are as follows. 

 

(1) The paper lacks technical rigor. The authors present the high spatial-temporal resolution (64 km 

and 1 hour) as the innovation of the paper, but do not provide justification that the inversion of GOSAT 

CO2 data can meaningfully resolve hourly data, as GOSAT observations are daily observations at the 

same local solar time. A reader may be interested in quantitative information on to what extent the 

results are affected by prior information and to what extent they are constrained by observations. In 

addition, the authors claimed that the inversion is verified against "independent observations". But in 

fact these validation data are also taken from the same GOSAT CO2 dataset. Although these 

observations are not assimilated in the inversion, they may well have error distributions similar to 

those assimilated. Hence, these data cannot be regarded as "independent" validation data. 

Thank the review for the comment. First of all, measured CO2 concentrations are the result of upstream 

surface fluxes and atmospheric transport process. Generally speaking, the longer in the past a flux 

event occurred, the smaller its impact will be on a given sample of air. Therefore, we choose an 

“assimilation window” to represent how far back in time we expect to be able to pinpoint a given flux 

signal from available measurements. In an assimilation cycle, the fluxes for the 24-h assimilation 

window have been designed to be optimized hour by hour successively in this study. Accordingly, the 

fluxes have been adjusted 24 times before generating posterior fluxes. Actually, in this study the NOAA 

operational EnKF system, which is an EnSRF and modified with the ensemble Kalman smoother 

(EnKS) feature, is further extended to jointly assimilate the CO2 concentrations and fluxes to update 
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the flux and concentration fields, respectively. The EnKS allows for a sequential processing of the 

measurements in time, which updates the ensemble at prior times every time new observations are 

available. Thus, EnKS that can take into future observations into account is used to assimilate the 

concentrations and update the fluxes.  

 

In this study, the state vector 𝐱 includes the mass concentration 𝐂 and the flux 𝑬, i.e. 𝐱 = [𝑪, 𝑬]T. 

Here, the state variables of mass concentration 𝐂 are the CO2 concentrations. The ensemble forecast 

concentration fields of CO2 are respectively used in calculating ensemble fluxes 𝑬𝑖,𝑡
𝑓

 as described in 

Section 2.2.1. The ensemble members of CO2 concentration fields 𝐂f are forecasted using CMAQ, 

forced by the forecast emissions 𝐄f whose initial conditions are previously analyzed concentration 

fields. Now, the background of the joint vector, 𝐱f = [𝐂f, 𝐄f]
T
, has been produced. Then, the analyzed 

state vector, 𝐱a = [𝐂a, 𝑬a]T, is optimized by applying EnKS. The configurations of the EnKS were as 

follows: 1) ensemble size was set to 50; 2) the horizontal localization radius was 1280 km; 3) the 

covariance inflation factor β was set to 80; 4) the assimilation window in EnKS was set to 24 h (Peng 

et al., 2023). In addition, hour-by-hour assimilation was adopted attribute to the novel flux forecast 

model, fine-scale CMAQ forward hourly simulation output, as well as the available GOSAT 

observations at certain hour of the day. Therefore, in spite of the daily GOSAT observations at the same 

local solar time, the inversion of GOSAT CO2 data can meaningfully resolve hourly data through the 

EnKS configuration. 

 

Furthermore, readers may be interested in quantitative information on to what extent the results are 

affected by prior information and to what extent they are constrained by observations. Usually, it is 

hard to evaluate the optimized flux, because comparison with in situ flux measurements is difficult on 

account of the discrepancy in scales between assimilated fluxes in the model grid and eddy-covariance 

measurements over a very large uniform underlying surface. Nevertheless, the prior information has 

been embodied in a priori flux simulated concentrations, and observation information has been 

embodied in the a posteriori flux simulation, whose fluxes are constrained by observations. By 

evaluating the differences between these two sets of simulation results, the prior information and 

observation information now have access to be accessed quantitatively. Therefore, this traditional 
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approach was adopted as a compromise to assess whether the a posteriori fluxes would enable 

improvements in the fit to the observed CO2 concentrations. The RMSEs of prior and posterior 

simulations (i.e. CTRL and FC) are further presented in Table R1 in the revised manuscript. According 

to the quantitative evaluation on RMSE, the observations have played a positive role in improving 

carbon sink over the model domain. At the site scale, some sites tend to systematically be poorly fitted 

by the inversions, in particular those in the vicinity of large urban areas with large anthropogenic 

emissions, such as Jinsha and Lin’an. Besides these two sites, the difference between CTRL and FC is 

affected by the observation information through assimilation ranges from 0.25% to 12.34% (i.e. RMSE 

decreasing rates), with an average of 2.48% among all surface observation sites. Moreover, smaller 

correlation coefficient improvement in the contrast of CTRL and FC imply that prior flux patterns play 

an important role in the CO2 variation compared with that of posterior flux (Table 1). 

 

In addition, although some GOSAT observations which are not assimilated in the inversion were used 

as independent data to evaluate the posterior flux, they may have error distributions similar to those 

assimilated. Therefore, surface in situ observations from 14 sites are further used as independent 

observations to evaluate the inversion result in the revised manuscript. Comparison between surface 

observations, prior flux simulation, posterior flux simulation and the analysis for hourly CO2 

concentration is added in Table R1. The modeled CO2 concentrations were extracted from the 

simulated hourly CO2 fields according to the locations, elevation, and time of each observation. The 

averages of observation, CTRL, FC, and AN over these 14 stations are 410.97, 413.01, 412.82, and 

412.21 ppm, respectively. According to the statistics listed in Table R1, the statistics of the analytical 

field (AN) are better than FC and CTRL, including RMSE and MAE, which gives a direct indication 

that the assimilation performs well. Taking improvement as example, the RMSE improvement rate 

between the FC and CTRL mostly ranges from –2.13% to 12.34% with an average of 2.48%, and the 

MAE improvement rate ranges from 0.08% to 9.73% with an average of 2.37%. Further, although the 

RMSE and MAE of AN are lower than CTRL, those of FC are higher than CTRL in Lin’an and Jinsha. 

This could be attributed to the influence from human activities to a large extent (Liang et al., 2023), 

because Jinsha and Lin’an are both urban background stations for Central China (i.e. Jinsha locates in 

Wuhan, Hubei) and East China (i.e. Lin’an locates in Yangtze River Delta). Thus, this helps to check 

that the inversions actually improve the model fits to the observations but also to determine whether 
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Lin’an and Jinsha sites are particularly problematic for natural flux inversions. 

 

We have modified the relevant parts in the revised manuscripts (Line 189−270, Line 595−615, and 

Line 500−535), and Table 4 is further added and discussed. 

 

Table R1.  Evaluation results between in situ observations and model, including CTRL (black, a 

priori flux simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields from 

JDAS). 

 
Lat.(°N) 

/Lon.(°E) 

OBS. 

NUM 

OBS. 

Freq. 

RMSE 

(CTRL/FC/AN) 

RMSE Imp. Rate 

FC/AN (%) 

MAE 

(CTRL/FC/AN) 

MAE Imp. Rate 

FC/AN (%) 

General Site 

Description 

Longfengshan 44.73/127.60 840 Hourly 10.94/10.87/10.38 0.63/5.16 7.83/7.81/7.72 0.30/1.40 Forest (Northeast China) 

Shangdianzi 40.65/117.12 1620 Hourly 10.00/9.87/9.74 1.34/2.58 6.87/6.62/6.64 3.53/3.26 Cropland (North China) 

Mt. Waliguan 36.28/100.90 338 Daily 7.05/6.64/6.31 5.78/10.43 4.63/4.38/4.15 5.35/10.35 Tibet Plateau (China) 

Shangri-La 28.00/99.40 1709 Hourly 9.76/9.62/9.44 1.42/3.21 7.21/7.08/7.02 1.72/2.61 Forest (Southeast China) 

Lin’an 30.30/119.72 1410 Hourly 9.42/9.49/8.60 −0.73/8.70 6.63/6.78/6.14 −2.16/7.45 Forest (East China) 

Jinsha 29.63/114.22 30 Weekly 9.21/9.41/8.94 −2.13/2.96 6.96/7.04/6.46 −1.15/7.13 Urban (Central China) 

King’s Park 22.31/114.17 364 Daily 22.12/21.63/21.10 2.22/4.63 17.02/16.68/16.06 1.98/5.06 Urban (Hong Kong, China) 

Ulaan Uul 44.45/111.08 49 Weekly 5.50/5.41/5.22 1.62/5.06 3.70/3.63/3.52 2.02/5.09 Grassland (Mongolia) 

Ryori 39.03/141.82 8553 Hourly 6.85/6.77/6.06 1.08/11.51 4.59/4.48/3.91 2.21/14.68 Mountain (Japan) 

Mt. Dodaira 36.00/139.20 7928 Hourly 7.62/7.51/7.12 1.45/6.50 5.37/5.31/5.00 1.22/6.95 Mountain (Japan) 

Kisai 36.08/139.55 8686 Hourly 17.09/15.90/15.80 6.99/7.56 13.00/12.22/12.24 5.99/5.83 Urban (Japan) 

Anmyeon-do 36.53/126.32 3228 Hourly 16.00/14.03/13.81 12.34/13.70 10.42/9.41/8.85 9.73/15.06 Coastal (Korea) 

Jeju Gosan 33.30/126.21 4373 Hourly 10.10/9.85/8.79 2.42/12.97 7.29/7.12/6.34 2.39/13.10 Ocean (Korea) 

Yonagunijima 24.47/123.02 8085 Hourly 9.24/9.21/8.60 0.25/6.86 7.39/7.38/6.91 0.08/6.41 Ocean (Japan) 

AVE    10.78/10.44/9.99 2.48/7.27 7.78/7.57/7.21 2.37/7.49  

Note. ‘Lat./Lon.’ refers to the latitude and longitude of site; ‘OBS. NUM’ refers to the observation amount; ‘OBS. Freq.’ refers to 

the observation time frequency; ‘RMSE Imp. Rate’ refers to the improvement rate of RMSE, i.e., (RMSECTRL–

RMSEFC)/RMSECTRL×100% and (RMSECTRL–RMSEAN)/RMSECTRL×100%; ‘MAE Imp. Rate’ refers to the improvement rate of 

MAE, i.e., (MAECTRL–MAEFC)/MAECTRL×100% and (MAECTRL–MAEAN)/MAECTRL×100%, respectively. The annual averages 

were calculated from the hourly output. 

 

Here are the above-mentioned references. 

Liang, M., Zhang, Y., Ma, Q., L., Yu, D. J., Chen, X. J., & Cohen, J. B. (2023). Dramatic decline of 

observed atmospheric CO2 and CH4 during the COVID-19 lockdown over the Yangtze River Delta 

of China. Journal of Environmental Sciences, 124, 712–722, 

https://doi.org/10.1016/j.jes.2021.09.034 
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Peng, Z., Kou, X. X., Zhang, M. G., Lei, L. L., Miao, S. G., Wang, H. M., Jiang, F., Han, X., and Fang, 

S. X. (2023). CO2 flux inversion with a regional joint data assimilation system based on CMAQ, 

EnKS, and surface observations. Journal of Geophysical Research-Atmosphere, 128, 

e2022JD037154. https://doi. org/10.1029/2022JD037154 

 

(2) The writing needs to be improved. For example, Section 2.2 (a key section describing the inversion 

algorithm) is difficult to follow. The logic flow is not clear. Important information such as how the error 

covariance matrices are specified and updated in the ESRFs is missing. Results in Section 3.3-3.4 are 

not presented in a concise and well-structured way. The discussion is not focused on new findings and 

insight, but in many cases, reporting numbers without proper interpretation. There are several 

occurrences where some discussion points and even exact same sentences are repeated. For example, 

"(the system) is sufficient to robustly constrain the control vector" appears in line 26, 416, and 624. 

Notation and terminologies are used inconsistently and loosely, for instance, control vectors, state 

vector, and state variables are all used to represent a similar concept without explicit definitions. 

Overall, I'd suggest to substantially shorten the paper to focus on the contribution of this study to the 

field. Attention needs to be paid to logic flows and consistent terminology. 

Thank the reviewer for the comment. First of all, Section 2.2 has been revised to describe the inversion 

algorithm. In the joint assimilation framework, besides the application of CMAQ to generate ensemble 

CO2 concentrations, a flux forecast model was also designed to represents flux variations on account of 

fluxes acting as model forcing. The EnKS was further designed to joint assimilate CO2 concentrations 

and fluxes. A brief description of the flux forecast model as well as the ensemble assimilation scheme 

is presented in Section 2.2. Consequently, after completing the “forecast step”, Kalman gain matrix 

K is obtained by minimizing the analysis error covariance with evolved forecast error covariance over 

time. Then, the associated analyzed state variables, ,
T

a a a   x C E , can be updated by applying the 

EnKS constrained by GOSAT retrievals in the “analysis step”. In addition, the distribution of ensemble 

spread of CO2 flux in January 2016 is provided in Figure R1. It shows that the values of the ensemble 

spread ranges from 0.2 to 0.8 in most areas, which are consistent with our previous studies (Peng et al., 

2015 in Figure 11c and Peng et al., 2023).  
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Furthermore, detailed modifications have been made in Section 3.3–3.4 as well as the full text to 

present in a concise and well-structured way. And we have separated the results and discussion in the 

revised manuscript. Repeated points and sentences have been carefully considered and revised. 

Moreover, the notation and terminologies are redefined clearly and revised to keep consistency. For 

instance, control vectors, state vectors, joint vectors and state variables are modified as state variables, 

which refers to the variables used to assimilation (i.e.,  ,
T

x C E ). 

 

We have modified the relevant parts in the revised manuscripts (Section 2, Section 3 and Section 4). 

 

Figure R1. The ensemble spread of 𝝀𝑖,𝑡
𝑎  at model level 1 in January 2016, when β=80. 

 

Here are the above-mentioned references. 

Peng, Z., Zhang, M. G., Kou, X. X., Tian, X. J., & Ma, X. G. (2015). A regional carbon flux data 

assimilation system and its preliminary evaluation in East Asia. Atmospheric Chemistry and 

Physics, 15, 1087–1104. https://doi.org/10.5194/acp-15-1087-2015. 

Peng, Z., Kou, X. X., Zhang, M. G., Lei, L. L., Miao, S. G., Wang, H. M., Jiang, F., Han, X., and Fang, 

S. X. (2023). CO2 flux inversion with a regional joint data assimilation system based on CMAQ, 

EnKS, and surface observations. Journal of Geophysical Research-Atmosphere, 128, 

e2022JD037154. https://doi. org/10.1029/2022JD037154 

Minor comments: 

Line 23, 228: What is an observational operator? It is never clearly defined. 

Observation operator converts the background forecast to observation space. To obtain the simulated 
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observations ( )fH C , observation operator performs the necessary interpolation and transformation 

from model 3D CO2 concentrations forecast to observation space XCO2. The simulated CO2 

concentration profiles were mapped into the satellite retrieval levels and then vertically integrated 

based on the satellite averaging kernel according to the Equation 2. In addition, for the ( )fH E , it 

should be noted that observation operator includes not only interpolation (i.e. Equation 2) but also 

CMAQ simulation to convert from flux to simulated XCO2. 

 

We have modified the description of observation operator in the revised manuscripts (Line 235−250), 

and we hope we can make the meaning clear now. 

 

Line 111-112. The author first claimed that "regional CTMs are rarely used in satellite carbon data 

assimilation" but then cite a few studies that performed regional carbon data assimilation, which 

appears to be inconsistent. Moreover, the authors need to clarify what are innovations in this study 

relative to these cited studies. 

At present, almost all China’s carbon sink inversions use global atmospheric transport models with a 

relatively coarse spatial resolution and long timescale from a weekly or monthly perspective. For 

instance, Huang and Zhang assimilated CO2 observations with regional CTM to optimize the CO2 

concentration fields (Huang et al., 2014; Zhang et al., 2021). In recent years, several studies have used 

regional CTMs in CO2 flux inversions inferred from surface stations, towers, and aircraft flights. The 

potential use of regional CTM in CO2 inversions with satellite has been explored with artificial 

retrievals by observing system simulation experiments. Thus, regional CTMs has been rarely used in 

real satellite carbon data inversion of China’s terrestrial carbon sink, even though multi-model 

comparisons have reported large uncertainties introduced by global CTMs in estimating the carbon sink. 

Because of this, taking advantage of regional chemistry transport models for mesoscale simulation and 

spaceborne sensors for spatial coverage, the GOSAT XCO2 retrievals were introduced in CMAQ and 

EnKS-based regional inversion system to constrain China’s biosphere sink. 

 

We are sorry about the confusion in the introduction. We have modified the abstract in the revised 

manuscript (Line 110−130), and the motivation and innovation has been rewritten in the introduction. 



8 
 

 

Line 140: The study uses historical GOSAT observations not "real-time" GOSAT observations. 

Yes, this study uses historical GOSAT observations. The “real-time” statement has been modified in the 

revised text and we have checked the full text with the incorrect expression. 

 

Line 150-154: Two science questions are raised by the end of the Introduction, but it is not apparent 

that the discussion is focused on these questions nor these questions are adequately addressed. 

Yes, the reviewer makes a good point. Actually, this paper focuses on the following two questions:  

1. On what scales can regional CTMs and GOSAT observations facilitate the inversion of China’s 

carbon sink? 

2. What is the difference between posterior flux inferred from spaceborne retrievals and prior flux? 

 

For Question 1, we try to discussion the posterior flux from country, regional to provincial scales, as 

well as daily, monthly, and annual variation. First of all, we found that the size of the assimilated 

biosphere sink in China was −0.47 PgC yr
−1

, which was comparable with previous results (i.e., −0.27 to 

−0.68 PgC yr
−1

). Furthermore, the seasonal patterns were recalibrated well, with a growing season that 

shifted earlier in the year over central and south China. We further investigated the condition of the 

biosphere carbon sink in several of China’s key ecological areas. Using Xishuangbanna (XS) as an 

example, the large transport model errors that were included in the model–data mismatch error 

involved in previous global inversion studies were effectively reduced by JDAS, and XS was reported 

to be a relatively stronger sink in contrast to prior estimates (−10.79/−10.12 TgC yr
−1

). Moreover, the 

provincial-scale biosphere flux was re-estimated, and the difference between the a posteriori and a 

priori flux ranged from −7.03 TgC yr
−1

 in Heilongjiang to 2.95 TgC yr
−1

 in Shandong. 

 

For Question 2, considering our prior estimates from CT2019B, the discrepancy between posterior and 

prior flux could be because our study (a) relied on a fine-scale regional transport model; (b) was 

constrained by GOSAT XCO2 retrievals with better spatial coverage rather than sparse and 

inhomogeneous in situ observations; (c) performed a joint assimilation of CO2 flux and concentration, 

which helped reduce the uncertainty in both the initial CO2 fields and the fluxes; and (d) carried out 

hourly assimilation based on hourly simulation and observation, which was more realistic. In addition, 
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we further assess the performance of the a posteriori CO2 fluxes by comparing the CTRL, FC and AN 

concentration against independent observations. In addition, we further assess the performance of the a 

posteriori CO2 fluxes by comparing the CTRL, FC and AN results again 14 surface in-situ observations 

sites. The averages of observation, CTRL, FC, and AN over these 14 stations are 410.97, 413.01, 

412.82, and 412.21 ppm, respectively. According to the statistics listed in Table 4, the statistics of the 

analytical field (AN) are better than FC and CTRL, including RMSE and MAE, which gives a direct 

indication that the assimilation performs well. Taking improvement as example, the RMSE 

improvement rate between the FC and CTRL mostly ranges from 0.25% to 12.34% (besides two sites 

in the vicinity of large urban areas) with an average of 2.48%, and the MAE improvement rate ranges 

from 0.08% to 9.73% with an average of 2.37%.  

 

We have rephrased the questions, address the questions, and modified the relevant parts in the revised 

manuscript. 

 

Line 171: Why does not CMAQ need initial and lateral boundary meteorological fields. Is CMAQ 

coupled with a meteorology model (e.g., WRF)? A typical regional chemical transport model like 

CMAQ is driven by archived met fields and does not need initial and lateral boundary meteorological 

fields.  

Thank the reviewer for the comment. The CO2 concentration was forecast with the regional 

atmospheric chemistry transport model, CMAQ, coupled with the RAMS for providing the 

meteorological fields. On one hand, CMAQ, a regional CTM, needs initial and boundary CO2 

concentrations fields, which is extracted from CT2019B concentration products (3° × 2°, 3h, globally). 

One the other hand, CMAQ is coupled with a regional meteorology model (i. e., RAMS), and CMAQ 

is driven by archived meteorological fields from RAMS. RAMS provides the three-dimensional 

meteorological fields in same horizontal resolution with CMAQ, with the lowest seven layers being the 

same as those in CMAQ. Consequently, RAMS need initial and boundary meteorological fields. In this 

study, the initial and lateral boundary meteorological fields, sea surface temperatures, and initial soil 

conditions were prescribed by European Centre for Medium-Range Weather Forecasts reanalysis data 

with a spatial resolution of 1° × 1° and 6-hourly temporal intervals. 
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We have modified the relevant parts of the revised manuscript (Line 165−190); please check if it is 

clear now. 

 

Line 174: What is "'real' initial and lateral boundary atmospheric CO2 concentrations"? 

Considering the unique characteristics (e.g., long atmospheric lifetime, large background concentration, 

and strong biosphere–atmosphere exchanges) of atmospheric CO2 that are distinctly different from 

other traditionally modeled chemical pollutants, some key requirements for regional CO2 modeling 

have been noted, such as using realistic initial and lateral boundary conditions (Kou et al., 2015). In 

this study, the initial fields and boundary conditions of atmospheric CO2 volume fraction were obtained 

by interpolation of NOAA’s CT2019B (3° × 2°, 3h, globally). CT2019B is a widely recognized product, 

whose global CO2 concentrations were created using the optimized surface fluxes and simulated 

atmospheric transport of CarbonTracker. CT2019B could represent the optimum estimate of the global 

distribution of atmospheric CO2 (Jacobson et al., 2020). 

 

We have modified the relevant parts of the revised manuscript (Line 167−171).  

 

Line 232: If yf and yp are "wet" CO2 concentration, you should apply (1-w)^-1 to convert "wet" 

concentration to "dry" concentration, instead of multiplying (1-w)  

Thank the reviewer for the comment. We’re sorry about the mistake in typing the formula. Actually, we 

applied 
1(1 )w  to convert “wet” concentrations to “dry” concentration, as suggested by Feng et al. 

(2009). We have modified the formula in the revised manuscript (Line 241).  

 

Line 245: What is BG here? 

BG denotes the model’s first guess background fields 
fx in the assimilation scheme. The background 

of the state variables,
 

,
T

f f f   x C E , can be prepared by CMAQ and flux forecast model, where 

C  represents CO2 concentration from CMAQ simulation and E  represents the CO2 flux from the 

CO2 flux forecast model. We have modified the relevant parts of the revised manuscript (Line 

257−261).  
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Line 265: model grid -> model grid point 

Yes, we have modified “model grid” as “model grid point”, and we have checked the full text with the 

incorrect expression. 

 

Line 271-274: It is not well justified that data with |o-b|>5 ppm should be removed. How the choice of 

the threshold affects the inversion results? 

OMB (i.e., o-b, observation-minus-background) quality control method is based on the observation 

increments, which is used to check the background fields and adopted by many assimilation systems. In 

the EnKS assimilation scheme, the analysis a
x  is obtained by adding the innovations to the model 

forecast with weights K (i.e. Kalman gain matrix), that are determined based on the estimated 

statistical error covariance of the forecast and the observations. Particularly, K is obtained by 

minimizing the analysis error covariance with evolved forecast error covariance over time. In this study, 

the records with absolute biases (i.e., |o − b|) between the observation and background simulations 

greater than 5 ppm were removed, which are considered to have a lack of regional representativeness 

(Peng et al., 2023). Due to the spatial resolution (64×64km) of our model, we cannot reproduce such 

observations. Moreover, the scenario of |o − b| > 5.00 was mostly found near the boundary of the model 

domain. 

 

We have modified the relevant parts of the revised manuscript (Line 289−294).  

 

Line 281: Non-assimilated observations cannot be regarded as independent verification data. The 

filtering criteria (1) and (3) are the same as that for assimilated observations, and I don't quite get 

what the criteria (2) is about. 

Thank the reviewer for the comment. The assimilated and non-assimilated GOSAT XCO2 observations 

are selected by different process of sifting (Table R2). These two sets of observations both used XCO2 

with “outcome_flag = 1” and precluded absolute biases between the observation and simulations 

greater than 5 ppm. Nevertheless, the main difference lies in step 2. The XCO2 with the minimum 

“xco2_uncert” in the same model grid point at the same hour were used to assimilate, and other XCO2 

were used to validate.  
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Although some GOSAT observations which are not assimilated in the inversion were used to evaluate 

the posterior flux, they may have error distributions similar to those assimilated. Therefore, surface in 

situ observations from 14 sites are further used as independent observations to evaluate the inversion 

result in the revised manuscript. Comparison between surface observations, prior flux simulation, 

posterior flux simulation and the analysis for hourly CO2 concentration is added in Table R1. 

According to the statistics listed in Table R1, the statistics of the analytical field (AN) are better than 

FC and CTRL, including RMSE and MAE, which gives a direct indication that the assimilation 

performs well. Taking improvement as example, the RMSE improvement rate between the FC and 

CTRL mostly ranges from –2.13% to 12.34% with an average of 2.48%, and the MAE improvement 

rate ranges from 0.08% to 9.73% with an average of 2.37%.  

 

We have modified the relevant parts (Line 282−300), and Table 4 is further added and discussed in the 

revised manuscripts. 

 

Table R2  GOSAT XCO2 for assimilation and validation 

 XCO2 for assimilation XCO2 for validation 

Step 1 Select XCO2 with “outcome_flag = 1”, Select XCO2 with “outcome_flag = 1”, 

Step 2 
Select XCO2 with the minimum “xco2_uncert” in the same 

model grid point at the same hour 

Select XCO2 except for values minimum 

“xco2_uncert”, in order to filter out all of the 

assimilated XCO2 

Step 3 
Preclude record with absolute biases between the 

observation and simulations greater than 5 ppm 

Preclude record with absolute biases between the 

observation and simulations greater than 5 ppm 

 

Line 293: Natural fluxes are optimized/updated, not "assimilated" 

Yes, we have modified “assimilated” as “optimized”, and we have checked the full text with the 

incorrect expression. 

 

Line 302-304: It is unclear whether boundary conditions are perturbed by 5% or 10%. More 

importantly, it is not justified whether 10% perturbation to natural fluxes is proper. 
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The initial and boundary conditions are perturbed by adding Gaussian random noise with a standard 

deviation of 5%. 

 

After completing the “forecast step” with the flux forecast model and CMAQ, Kalman gain matrix K

is obtained by minimizing the analysis error covariance with evolved forecast error covariance over 

time. Then, the associated analyzed state variables, ,
T

a a a   x C E , can be updated by applying the 

EnKS constrained by GOSAT retrievals in the “analysis step”. In addition, the distribution of ensemble 

spread of CO2 flux in January 2016 is provided in Figure R1. It shows that the values of the ensemble 

spread ranges from 0.2 to 0.8 in most areas, which are consistent with our previous studies (Peng et al., 

2015 in Figure 11c and Peng et al., 2023).  

 

We have modified the description of the inversion algorithm in Section 2.2 (Line 310−315). 

 

Line 312: The word "high-risk" may not be suitable here. 

Yes, we have modified the expression. This traditional approach was adopted as a compromise to 

assess whether the a posteriori fluxes would enable improvements in the fit to the observed CO2 

concentrations. Fit to the observed CO2 concentrations was analyzed with posterior and prior flux 

simulation, respectively. The aims are to check that inversions actually improve the model fits to the 

observations, which is a basic diagnostic of atmospheric inversions. 

 

We have modified the expressions in the revised manuscript (Line 323−327). 

 

Line 325-334. Discussion on data coverage here is not related to either what is before or after. I do not 

see the flow of logic here. 

Thank the reviewer for the comment. We have substantially revised the paper to focus on the 

contribution of this study to the field. Attentions have also been paid to logic flows. 

 

Line 351: It is stated that the detector on GOSAT is "more sensitive to near-surface CO2 changes", but 

I don't know what this is compared to. And I do not see how this statement add to the discussion above.  
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The shortwave near-infrared detectors mounted on GOSAT have been testified as being more sensitive 

to near-surface CO2 changes, which is compared to the thermal infrared detectors such as AIRS, the 

Atmospheric Infrared Sounder on NASA's Aqua satellite. Because this statement was not closely 

related to the contribution of this study, we have deleted this statement from the text, and we have 

checked the full text with the logic flows. 

 

Line 373: I do not find any solid analysis showing that the calculation is reasonable or effective, except 

for some vague descriptions and comparisons.  

We are sorry about the overstatement "the flux analysis increments are reasonably and effectively 

calculated". At present, Section 3.1 focused on describing the pattern of observation and analysis 

increments. In Section 3.5, fit to the observed CO2 concentrations was analyzed with posterior and 

prior flux simulation, respectively. The aims are to check that inversions actually improve the model 

fits to the observations, which is a basic diagnostic of atmospheric inversions. This statement has been 

deleted from the text and we have checked the full text with the overstatements and logic flows. 

 

Line 413-414: Logically, agreement with previous estimates does not provide a strong indication that 

your model transport is reliable. 

Thank the reviewer for the comment. Logically, agreement with previous estimates does not provide a 

strong indication that our model transport is reliable. However, the comparison aims at producing a 

collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in 

China. It aims in particular at investigating the capacity of the inversions to deliver consistent flux 

estimates at the country scale. The inversion systems differ by the transport model, the inversion 

approach, the choice of observation and prior constraints, enabling us to facilitate the international 

comparison and mutual recognition. 

 

We have modified the relevant parts in the revised manuscript (Line 360−390). 

 

Line 471-472: I do not find results to support this claim. 

We are sorry about the overstatement “This indicates that the regional carbon assimilation system is 

calibrated well and performs reliably”. This statement has been deleted from the text and we have 
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checked the full text with the overstatements. 

 

Line 489: Any evidence shows that a smaller daily variation is "more realistic"? I doubt whether the 

GOSAT data are sufficient to constrain the day-to-day variation given missing data and sparse 

sampling?  

We are sorry about the overstatement "which appears more realistic than that of the a priori estimates". 

First of all, the smoothing window of the flux forecast model was set as 4 days (Equation 1). This 

implies that not only useful observational information from the previous assimilation cycle has been 

made beneficial to the next assimilation cycle, but also the background error covariance matrix of our 

inversion system is flow dependent. Furthermore, observation at the current time has been designed to 

update fluxes from the previous 24 hours through EnKS assimilation scheme. Therefore, the 

assimilation system can fully absorb the existing observational information and optimize the prior flux 

to some extent. 

 

At present, Section 3.3 focused on describing the regional characteristics of posterior fluxes. In Section 

3.5, fit to the observed CO2 concentrations was analyzed with posterior and prior flux simulation, 

which is a basic diagnostic of atmospheric inversions. Inversions actually improve the model fits to the 

hourly and daily observations (except for two sites with weekly observation). 

 

This statement has been deleted from the text and we have checked the full text with the overstatements 

and logic flows. 

 

Line 391: Where does the number -0.47 come from? 

The size of the biosphere carbon sink in China amounted to −0.47 PgC yr
−1

 from JDAS with GOSAT 

constraints in this study. We have modified the relevant parts in the revised manuscript (Line 370−375). 

 

Section 3.3. The author found downward correction over forest and grassland and upward correction 

for cropland areas. This is an interesting finding, but no further information is presented. 

Thank the reviewer for the comment. Generally, the a priori biosphere fluxes are overestimated (~0.1–

0.3 μmole m
−2

 s
−1

) in the north (dominated by forest, grassland and cropland) and south (dominated by 
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forest and grassland) of China, while they are underestimated (~0.1–0.5 μmole m
−2

 s
−1

) primarily in 

central China where there is a large area of cropland (He et al., 2022). Fit to the observed CO2 

concentrations was analyzed with posterior and prior flux simulation, which is a basic diagnostic of 

atmospheric inversions. Inversions actually improve the model fits to the surface observations in forest 

areas (in Northeast, East and Southeast China), cropland areas (in North China), grassland areas (in 

Mongolia), Ocean (in Korea and Japan) and coastal areas (in Korea). Thus, downward correction over 

forest and grassland and upward correction for cropland areas has been evaluated against independent 

data. 

 

We have modified the relevant parts in the revised manuscript with further information presented (Line 

550−615). 
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Response to Reviewer #2 

 

We thank the reviewer#2 for the insightful and detailed comments and suggestions, which helped to 

significantly improve the manuscript. The reviewer’s comments are shown in blue italics with the 

author responses in black. 

 

General comments: 

This study introduces the top down inversion of the natural biosphere carbon fluxes over China with a 

high horizontal resolution of about 64 km by joint optimization of initial CO2 condition and biosphere 

carbon fluxes using GOSAT satellite observations. The magnitude of the estimated annual biosphere 

sink in China was consistent with most previous studies. In addition, the provincial biosphere carbon 

flux over China was also reestimated. Generally speaking, the paper is well written and scientific 

sound. 

 

Main comments: 

 It is unclear how the uncertainties of the background carbon fluxes are used in the data 

assimilation. Since the uncertainties of the background carbon fluxes are critical for the inversion, 

please clarify it more detail. 

Thank the reviewer for the comment. In CMAQ simulation, the prior prescribed CO2 emissions come 

from both anthropogenic sources and natural sources, including fossil-fuel emission, terrestrial 

ecosystem flux, oceanic flux, and biomass burning emissions. In the assimilation, the natural flux (i.e., 

biosphere–atmosphere exchange and ocean–atmosphere exchange) were assimilated, while the 

fossil-fuel and biomass-burning fluxes were fixed based on bottom-up estimates, which follows 

previous inversion work and reflects our faith in inventory-based emissions for fossil fuels (Peters et al., 

2007, 2010; Tian et al., 2014; Wang et al., 2019; Wang et al., 2020). 

 

Considering the high level of uncertainty in simulated bioflux in current terrestrial biosphere models, 

those a priori biospheric fluxes were interpolated from the widely recognized CT2019B products, 

which is a global inverse model of atmospheric CO2 to produce quantitative estimates of atmospheric 

carbon uptake and release. CO2 fluxes          in CT2019B are parameterized according to  
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         𝜆       ( 𝑏𝑖𝑜       +  𝑜𝑐𝑒𝑎𝑛       ) +  𝑓𝑓       +  𝑓𝑖𝑟𝑒        

where  𝑏𝑖𝑜  𝑜𝑐𝑒𝑎𝑛   𝑓𝑓   and  𝑓𝑖𝑟𝑒 are prior flux model predictions for land biosphere, ocean, fossil 

fuel and biomass burning emissions respectively, and 𝜆 represents a set of unknown multiplicative 

scaling factors applied to the fluxes, to be estimated in the assimilation. These scaling factors are the 

final product of CT2019B optimized fluxes. 

 

In CarbonTracker, the flux dynamical model is applied to the ensemble-mean parameter values 𝜆 as: 

𝜆      𝜆0 + 𝜆  − 1 + 𝜆  − 2  /3 

where 𝜆     is the prior value of the scaling factors for timestep  , 𝜆0 is the initial prior vector with 

all elements set to 1.0, and 𝜆  − 1  and 𝜆  − 2  refers to the posterior scaling factors for the 

timestep  − 1 and  − 2 repectively. This model describes that parameter values λ for a new time 

step are chosen as a combination of optimized values from the two previous time steps and a fixed 

overall prior value of 1.0. 

 

In this study, the Equation (1) describes the flux forecast model in JDAS by taking the a priori flux, the 

analysis flux from the previous assimilation cycle, and the forecast concentration as independent 

variables. We can see that M is used for linking the assimilated fluxes from the previous assimilating 

cycle, and M was set to 3 in CarbonTracker. In JDAS real practice, M was set to 4 days at the same 

time on each day to represent the average state of the biospheric diurnal variation at a certain 

seasonality level, as a result of several sensitivity tests which are not present here. 

 

Measured CO2 concentrations are the result of upstream surface fluxes and atmospheric transport 

process. Generally speaking, the longer in the past a flux event occurred, the smaller its impact will be 

on a given sample of air. Therefore, we choose an “assimilation window” to represents how far back in 

time we expect to be able to pinpoint a given flux signal from available measurements. CT2019B have 

designed the assimilation window length as 12 weeks. This helps to resolve fluxes in regions of the 

world with less dense observational coverage. 

 

Similar to CarbonTracker which uses transport model as a forward operator in an ensemble fixed-lag 

Kalman smoother, JDAS is also extended to incorporate the ensemble Kalman smoother (EnKS) 
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feature along with EnSRF. The EnKS allows for a sequential processing of the measurements in time 

and is used to assimilate the concentrations and update the fluxes. Thus, EnKS that can take into future 

observations into account is used to assimilate the concentrations and update the fluxes. The smoothing 

window of EnKS (i.e. denoted as assimilation window hereafter) was set to 24 h in this study. In an 

assimilation cycle, the fluxes for the 24-h smoothing window have been designed to be optimized hour 

by hour successively.  

 

The distribution of ensemble spread of CO2 flux in January 2016 is provided in Figure R1. It shows 

that the values of the ensemble spread ranges from 0.2 to 0.8 in most areas, which are consistent with 

our previous studies (Peng et al., 2015 in Figure 11c and Peng et al., 2023). 

 

We are sorry there is some confusion about the smoothing window in flux forecast model and EnKS in 

this manuscript. To avoid the confusion, we have modified the relevant parts in Section 2.1.2 (forecast 

model of ensemble fluxes) and Section 2.2.2 (EnKS assimilation scheme) in the revised manuscript. 

 

Figure R1. The ensemble spread of 𝝀𝑖 𝑡
𝑎  at model level 1 in January 2016, when β=80. 

 

 How the uncertainties of the boundary concentrations are considered in the study? How often the 

boundary and initial concentrations are imported from the CT2019B, and are the boundary 

concentrations are also optimized? 

Thank the reviewer for the comment. As the initial and lateral boundary atmospheric CO2 

concentrations, the global 4D CO2 data were created using the optimized surface fluxes and simulated 

atmospheric transport of CarbonTracker, version CT2019B, from the National Oceanic and 
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Atmospheric Administration (NOAA), with a spatial resolution of 3° × 2°, 25 vertical levels, and a 

temporal resolution of 3 h, which represent the optimum estimate of the distribution of atmospheric 

CO2 (Jacobson et al., 2020). 

 

In each EnKS analysis step, CMAQ integrated and generated a 3D CO2 concentration ensemble 

derived by the N ensemble fluxes with perturbed CO2 initial and boundary conditions. The ensemble 

assimilation was performed for the period 0000 UTC 25 December 2015 to 2300 UTC 31 December 

2016 using the perturbed initial conditions and boundary conditions by adding Gaussian random noise 

with a standard deviation of 5%. In an assimilation cycle, the fluxes for the 24-h assimilation window 

have been designed to be optimized hour by hour successively. Accordingly, the fluxes have been 

adjusted 24 times before generating posterior fluxes. In this way, both the initial and boundary 

concentrations are optimized every hour. 

 

We have modified the relevant parts in the revised manuscripts (Line 298−329). The detailed 

description of EnKS-based assimilation system configuration can be referred to Section 2.2 (JDAS CO2 

assimilation framework) and Section 2.4 (Experimental design and evaluation method) in the 

manuscript. 

 

 The a priori fluxes from CT2019B are at a 3-h intervals, how was the hour-by-hour assimilation 

conducted? Are the initial conditions are also optimized every hour?  

In an assimilation cycle, the fluxes for the 24-h assimilation window have been designed to be 

optimized hour by hour successively. Accordingly, the fluxes have been adjusted 24 times before 

generating posterior fluxes. Actually, the NOAA operational EnKF system, which is an EnSRF and 

modified with the EnKS feature, is further extended to jointly assimilate the CO2 initial conditions and 

fluxes to update the flux and concentration fields, respectively. The EnKS allows for a sequential 

processing of the measurements in time, which updates the ensemble at prior times every time new 

observations are available. Thus, EnKS that can take into future observations into account is used to 

assimilate the concentrations and update the fluxes.  

 

In this study, the state vector 𝐱  includes the mass concentration 𝐂  and the emission 𝑬 , i.e. 
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𝐱  [𝑪 𝑬]T . Here, the state variables of mass concentration 𝐂 are the CO2 concentrations. The 

ensemble forecast concentration fields of CO2 are respectively used in calculating ensemble fluxes 𝑬𝑖 𝑡
𝑓

 

as described in Section 2.2.1. The ensemble members of chemical fields 𝐂f are forecasted using 

CMAQ, forced by the forecast emissions 𝐄f  whose initial conditions are previously analyzed 

concentration fields. Now, the background of the joint vector, 𝐱f  [𝐂f 𝐄f]
T
, has been produced. Then, 

the analyzed state vector, 𝐱a  [𝐂a 𝑬a]T, is optimized by applying the EnKS, respectively. The 

configurations of the EnKS were as follows: 1) ensemble size was set to 50; 2) the horizontal 

localization radius was 1280 km; 3) the covariance inflation factor β was set to 80; 4) the smoothing 

window (i.e. denoted as assimilation window hereafter) was set to 24 h, as sensitivity experiments 

about smoothing windows has been tested to find the optimum length in our previous study (Peng, et 

al., 2023). In addition, hour-by-hour assimilation was adopted attribute to the novel flux forecast model, 

fine-scale CMAQ forward hourly simulation output, as well as the hourly observations. Thus, the initial 

condition, boundary concentrations and flux are optimized every hour. 

 

We have modified the relevant parts (Section 2.2) in the revised manuscripts, and we hope we can 

make the meaning clear now. 

 

 It is better to separate the results and discussion. 

Thank the review for the comment. And we have separated the results and discussion in the revised 

manuscript (Section 3 and Section 4). 

 

Specific comments: 

 P9 How do you determine the values of the horizontal covariance localization radius and the 

inflation factor? 

The localization radius 1280 km follows our previous research including Peng et al., 2015, Peng et al., 

2018, Peng et al., 2023, which localize the impact of observation and ameliorate spurious error 

correlations between observations and state variables. Thus, covariance localization (Houtekamer & 

Mitchell, 2001) with the Gaspari and Cohn (Gaspari & Cohn, 1999) function of 1280 km length scale, 

are utilized.  
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Moreover, the covariance inflation factor β was set to 80 to preserve the ensemble spread ranging to 

some extent. The distribution of ensemble spread of CO2 flux in January 2016 is provided in Figure R1. 

It shows that the values of the ensemble spread ranges from 0.2 to 0.8 in most areas, which are 

consistent with our previous studies (Peng et al., 2015 in Figure 11c and Peng et al. 2023). 

 

We have modified the relevant parts in the revised manuscript (Line 265–270). 

 

Here are the above-mentioned references. 

Peng, Z., Zhang, M. G., Kou, X. X., Tian, X. J., & Ma, X. G. (2015). A regional carbon flux data 

assimilation system and its preliminary evaluation in East Asia. Atmospheric Chemistry and 

Physics, 15, 1087–1104. https://doi.org/10.5194/acp-15-1087-2015. 

Peng, Z., Lei, L. L., Liu, Z. Q., Sun, J. N., Ding, A, J., Ban, J. M., et al. (2018). The impact of 

multi-species surface chemical observation assimilation on air quality forecasts in China. 

Atmospheric Chemistry and Physics, 18, 17387–17404. 

https://doi.org/10.5194/acp-18-17387-2018 

Peng, Z., Kou, X. X., Zhang, M. G., Lei, L. L., Miao, S. G., Wang, H. M., Jiang, F., Han, X., and Fang, 

S. X. (2023). CO2 flux inversion with a regional joint data assimilation system based on CMAQ, 

EnKS, and surface observations. Journal of Geophysical Research-Atmosphere, 128, 

e2022JD037154. https://doi. org/10.1029/2022JD037154 

Houtekamer, P. L., & Mitchell, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data 

assimilation. Monthly Weather Review, 129, 123–137. 

https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 

Gaspari, G., & Cohn S. E. (1999). Construction of correlation functions in two and three dimensions. 

Quarterly Journal of the Royal Meteorological Society, 125, 723–757. 

https://doi.org/10.1002/qj.49712555417 

 

 Why the Table 2 is firstly appeared in the main text? 

Thank the review for the comment. And we have adjusted the order of the tables. 
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Line 526 The horizontal resolution of the CMAQ model in the study is about 64 km, why the results 

cannot resolve the Shanghai? 

The total area of Shanghai is 6340.5 km
2
. The CMAQ configuration used here was 64 × 64 km

2
 (i.e. 

4096 km
2
 each grid) fixed grid cells centered at 35°N and 116°E in a rotated polar stereographic map 

projection. This domain, having 105 (west–east) × 86 (south–north) grid points, covered the whole of 

mainland China and its surrounding regions (Fig. 1). Thus, owing to the insufficient grid resolution, 

Shang has been mixed with the neighbouring areas, especially Jiangsu and Zhejiang provinces. In 

addition, Hong Kong and Macao are not discussed, because the results cannot resolve these areas too. 
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