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Response to Reviewer #2 

 

We thank the reviewer#2 for the insightful and detailed comments and suggestions, which helped to 

significantly improve the manuscript. The reviewer’s comments are shown in blue italics with the 

author responses in black. 

 

General comments: 

This study introduces the top down inversion of the natural biosphere carbon fluxes over China with a 

high horizontal resolution of about 64 km by joint optimization of initial CO2 condition and biosphere 

carbon fluxes using GOSAT satellite observations. The magnitude of the estimated annual biosphere 

sink in China was consistent with most previous studies. In addition, the provincial biosphere carbon 

flux over China was also reestimated. Generally speaking, the paper is well written and scientific 

sound. 

 

Main comments: 

 It is unclear how the uncertainties of the background carbon fluxes are used in the data 

assimilation. Since the uncertainties of the background carbon fluxes are critical for the inversion, 

please clarify it more detail. 

Thank the reviewer for the comment. In CMAQ simulation, the prior prescribed CO2 emissions come 

from both anthropogenic sources and natural sources, including fossil-fuel emission, terrestrial 

ecosystem flux, oceanic flux, and biomass burning emissions. In the assimilation, the natural flux (i.e., 

biosphere–atmosphere exchange and ocean–atmosphere exchange) were assimilated, while the 

fossil-fuel and biomass-burning fluxes were fixed based on bottom-up estimates, which follows 

previous inversion work and reflects our faith in inventory-based emissions for fossil fuels (Peters et al., 

2007, 2010; Tian et al., 2014; Wang et al., 2019; Wang et al., 2020). 

 

Considering the high level of uncertainty in simulated bioflux in current terrestrial biosphere models, 

those a priori biospheric fluxes were interpolated from the widely recognized CT2019B products, 

which is a global inverse model of atmospheric CO2 to produce quantitative estimates of atmospheric 

carbon uptake and release. CO2 fluxes 𝐹(𝑥, 𝑦, 𝑡) in CT2019B are parameterized according to  
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𝐹(𝑥, 𝑦, 𝑡) = 𝜆(𝑥, 𝑦, 𝑡)(𝐹𝑏𝑖𝑜(𝑥, 𝑦, 𝑡) + 𝐹𝑜𝑐𝑒𝑎𝑛(𝑥, 𝑦, 𝑡)) + 𝐹𝑓𝑓(𝑥, 𝑦, 𝑡) + 𝐹𝑓𝑖𝑟𝑒(𝑥, 𝑦, 𝑡) 

where 𝐹𝑏𝑖𝑜, 𝐹𝑜𝑐𝑒𝑎𝑛 , 𝐹𝑓𝑓 , and 𝐹𝑓𝑖𝑟𝑒 are prior flux model predictions for land biosphere, ocean, fossil 

fuel and biomass burning emissions respectively, and 𝜆 represents a set of unknown multiplicative 

scaling factors applied to the fluxes, to be estimated in the assimilation. These scaling factors are the 

final product of CT2019B optimized fluxes. 

 

In CarbonTracker, the flux dynamical model is applied to the ensemble-mean parameter values 𝜆 as: 

𝜆( 𝑡) = (𝜆0 + 𝜆(𝑡 − 1) + 𝜆(𝑡 − 2))/3 

where 𝜆( 𝑡) is the prior value of the scaling factors for timestep 𝑡, 𝜆0 is the initial prior vector with 

all elements set to 1.0, and 𝜆(𝑡 − 1) and 𝜆(𝑡 − 2) refers to the posterior scaling factors for the 

timestep 𝑡 − 1 and 𝑡 − 2 repectively. This model describes that parameter values λ for a new time 

step are chosen as a combination of optimized values from the two previous time steps and a fixed 

overall prior value of 1.0. 

 

In this study, the Equation (1) describes the flux forecast model in JDAS by taking the a priori flux, the 

analysis flux from the previous assimilation cycle, and the forecast concentration as independent 

variables. We can see that M is used for linking the assimilated fluxes from the previous assimilating 

cycle, and M was set to 3 in CarbonTracker. In JDAS real practice, M was set to 4 days at the same 

time on each day to represent the average state of the biospheric diurnal variation at a certain 

seasonality level, as a result of several sensitivity tests which are not present here. 

 

Measured CO2 concentrations are the result of upstream surface fluxes and atmospheric transport 

process. Generally speaking, the longer in the past a flux event occurred, the smaller its impact will be 

on a given sample of air. Therefore, we choose an “assimilation window” to represents how far back in 

time we expect to be able to pinpoint a given flux signal from available measurements. CT2019B have 

designed the assimilation window length as 12 weeks. This helps to resolve fluxes in regions of the 

world with less dense observational coverage. 

 

Similar to CarbonTracker which uses transport model as a forward operator in an ensemble fixed-lag 

Kalman smoother, JDAS is also extended to incorporate the ensemble Kalman smoother (EnKS) 
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feature along with EnSRF. The EnKS allows for a sequential processing of the measurements in time 

and is used to assimilate the concentrations and update the fluxes. Thus, EnKS that can take into future 

observations into account is used to assimilate the concentrations and update the fluxes. The smoothing 

window of EnKS (i.e. denoted as assimilation window hereafter) was set to 24 h in this study. In an 

assimilation cycle, the fluxes for the 24-h smoothing window have been designed to be optimized hour 

by hour successively.  

 

The distribution of ensemble spread of CO2 flux in January 2016 is provided in Figure R1. It shows 

that the values of the ensemble spread ranges from 0.2 to 0.8 in most areas, which are consistent with 

our previous studies (Peng et al., 2015 in Figure 11c and Peng et al., 2023). 

 

We are sorry there is some confusion about the smoothing window in flux forecast model and EnKS in 

this manuscript. To avoid the confusion, we have modified the relevant parts in Section 2.1.2 (forecast 

model of ensemble fluxes) and Section 2.2.2 (EnKS assimilation scheme) in the revised manuscript. 

 

Figure R1. The ensemble spread of 𝝀𝑖,𝑡
𝑎  at model level 1 in January 2016, when β=80. 

 

 How the uncertainties of the boundary concentrations are considered in the study? How often the 

boundary and initial concentrations are imported from the CT2019B, and are the boundary 

concentrations are also optimized? 

Thank the reviewer for the comment. As the initial and lateral boundary atmospheric CO2 

concentrations, the global 4D CO2 data were created using the optimized surface fluxes and simulated 

atmospheric transport of CarbonTracker, version CT2019B, from the National Oceanic and 
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Atmospheric Administration (NOAA), with a spatial resolution of 3° × 2°, 25 vertical levels, and a 

temporal resolution of 3 h, which represent the optimum estimate of the distribution of atmospheric 

CO2 (Jacobson et al., 2020). 

 

In each EnKS analysis step, CMAQ integrated and generated a 3D CO2 concentration ensemble 

derived by the N ensemble fluxes with perturbed CO2 initial and boundary conditions. The ensemble 

assimilation was performed for the period 0000 UTC 25 December 2015 to 2300 UTC 31 December 

2016 using the perturbed initial conditions and boundary conditions by adding Gaussian random noise 

with a standard deviation of 5%. In an assimilation cycle, the fluxes for the 24-h assimilation window 

have been designed to be optimized hour by hour successively. Accordingly, the fluxes have been 

adjusted 24 times before generating posterior fluxes. In this way, both the initial and boundary 

concentrations are optimized every hour. 

 

We have modified the relevant parts in the revised manuscripts (Line 298−329). The detailed 

description of EnKS-based assimilation system configuration can be referred to Section 2.2 (JDAS CO2 

assimilation framework) and Section 2.4 (Experimental design and evaluation method) in the 

manuscript. 

 

 The a priori fluxes from CT2019B are at a 3-h intervals, how was the hour-by-hour assimilation 

conducted? Are the initial conditions are also optimized every hour?  

In an assimilation cycle, the fluxes for the 24-h assimilation window have been designed to be 

optimized hour by hour successively. Accordingly, the fluxes have been adjusted 24 times before 

generating posterior fluxes. Actually, the NOAA operational EnKF system, which is an EnSRF and 

modified with the EnKS feature, is further extended to jointly assimilate the CO2 initial conditions and 

fluxes to update the flux and concentration fields, respectively. The EnKS allows for a sequential 

processing of the measurements in time, which updates the ensemble at prior times every time new 

observations are available. Thus, EnKS that can take into future observations into account is used to 

assimilate the concentrations and update the fluxes.  

 

In this study, the state vector 𝐱  includes the mass concentration 𝐂  and the emission 𝑬 , i.e. 
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𝐱 = [𝑪, 𝑬]T . Here, the state variables of mass concentration 𝐂 are the CO2 concentrations. The 

ensemble forecast concentration fields of CO2 are respectively used in calculating ensemble fluxes 𝑬𝑖,𝑡
𝑓

 

as described in Section 2.2.1. The ensemble members of chemical fields 𝐂f are forecasted using 

CMAQ, forced by the forecast emissions 𝐄f  whose initial conditions are previously analyzed 

concentration fields. Now, the background of the joint vector, 𝐱f = [𝐂f, 𝐄f]
T
, has been produced. Then, 

the analyzed state vector, 𝐱a = [𝐂a, 𝑬a]T, is optimized by applying the EnKS, respectively. The 

configurations of the EnKS were as follows: 1) ensemble size was set to 50; 2) the horizontal 

localization radius was 1280 km; 3) the covariance inflation factor β was set to 80; 4) the smoothing 

window (i.e. denoted as assimilation window hereafter) was set to 24 h, as sensitivity experiments 

about smoothing windows has been tested to find the optimum length in our previous study (Peng, et 

al., 2023). In addition, hour-by-hour assimilation was adopted attribute to the novel flux forecast model, 

fine-scale CMAQ forward hourly simulation output, as well as the hourly observations. Thus, the initial 

condition, boundary concentrations and flux are optimized every hour. 

 

We have modified the relevant parts (Section 2.2) in the revised manuscripts, and we hope we can 

make the meaning clear now. 

 

 It is better to separate the results and discussion. 

Thank the review for the comment. And we have separated the results and discussion in the revised 

manuscript (Section 3 and Section 4). 

 

Specific comments: 

 P9 How do you determine the values of the horizontal covariance localization radius and the 

inflation factor? 

The localization radius 1280 km follows our previous research including Peng et al., 2015, Peng et al., 

2018, Peng et al., 2023, which localize the impact of observation and ameliorate spurious error 

correlations between observations and state variables. Thus, covariance localization (Houtekamer & 

Mitchell, 2001) with the Gaspari and Cohn (Gaspari & Cohn, 1999) function of 1280 km length scale, 

are utilized.  
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Moreover, the covariance inflation factor β was set to 80 to preserve the ensemble spread ranging to 

some extent. The distribution of ensemble spread of CO2 flux in January 2016 is provided in Figure R1. 

It shows that the values of the ensemble spread ranges from 0.2 to 0.8 in most areas, which are 

consistent with our previous studies (Peng et al., 2015 in Figure 11c and Peng et al. 2023). 

 

We have modified the relevant parts in the revised manuscript (Line 265–270). 

 

Here are the above-mentioned references. 

Peng, Z., Zhang, M. G., Kou, X. X., Tian, X. J., & Ma, X. G. (2015). A regional carbon flux data 

assimilation system and its preliminary evaluation in East Asia. Atmospheric Chemistry and 

Physics, 15, 1087–1104. https://doi.org/10.5194/acp-15-1087-2015. 

Peng, Z., Lei, L. L., Liu, Z. Q., Sun, J. N., Ding, A, J., Ban, J. M., et al. (2018). The impact of 

multi-species surface chemical observation assimilation on air quality forecasts in China. 

Atmospheric Chemistry and Physics, 18, 17387–17404. 

https://doi.org/10.5194/acp-18-17387-2018 

Peng, Z., Kou, X. X., Zhang, M. G., Lei, L. L., Miao, S. G., Wang, H. M., Jiang, F., Han, X., and Fang, 

S. X. (2023). CO2 flux inversion with a regional joint data assimilation system based on CMAQ, 

EnKS, and surface observations. Journal of Geophysical Research-Atmosphere, 128, 

e2022JD037154. https://doi. org/10.1029/2022JD037154 

Houtekamer, P. L., & Mitchell, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data 

assimilation. Monthly Weather Review, 129, 123–137. 

https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 

Gaspari, G., & Cohn S. E. (1999). Construction of correlation functions in two and three dimensions. 

Quarterly Journal of the Royal Meteorological Society, 125, 723–757. 

https://doi.org/10.1002/qj.49712555417 

 

 Why the Table 2 is firstly appeared in the main text? 

Thank the review for the comment. And we have adjusted the order of the tables. 
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Line 526 The horizontal resolution of the CMAQ model in the study is about 64 km, why the results 

cannot resolve the Shanghai? 

The total area of Shanghai is 6340.5 km
2
. The CMAQ configuration used here was 64 × 64 km

2
 (i.e. 

4096 km
2
 each grid) fixed grid cells centered at 35°N and 116°E in a rotated polar stereographic map 

projection. This domain, having 105 (west–east) × 86 (south–north) grid points, covered the whole of 

mainland China and its surrounding regions (Fig. 1). Thus, owing to the insufficient grid resolution, 

Shang has been mixed with the neighbouring areas, especially Jiangsu and Zhejiang provinces. In 

addition, Hong Kong and Macao are not discussed, because the results cannot resolve these areas too. 

 


