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S1. Other ancillary measurements 28 

The mass concentration of ambient particles was measured by particle monitor (TEOM 1405DF, Thermo, 29 

USA). SO2, O3 and NOx concentrations were measured using a SO2 analyzer (Model 43i, Thermo, USA), a O3 30 

analyzer (Model 49i, Thermo, USA) and a NOx analyzer (Model 42i, Thermo, USA) with the detection limits of 31 

0.1 ppbv, 0.5 ppbv and 0.4 ppbv, respectively. The above instruments were pre-calibrated before the campaign. The 32 

solar radiation was measured on the rooftop of the building. Atmospheric N2O5 concentrations were measured by 33 

an iodide CI-API-TOF. The concentrations of NO3 radicals were estimated under the assumption that NO3, NO2 and 34 

N2O5 could reach an equilibrium quickly in tropospheric conditions (Brown and Stutz, 2012). VOC precursors were 35 

measured by an online GC-MS (7890A-5975C, Agilent, USA). 36 

S2. Overview of the campaign 37 

An overview of the measurement data, illustrating the air quality as well as the meteorological 38 

conditions (global radiation, temperature, wind direction, wind speed, and RH), concentrations of trace 39 

gases and pollutants (PM2.5, O3, NOx, N2O5, and TVOCs) during the campaign, is provided in this section 40 

as shown in Figure S1 and Table S1. Firstly, the maximum intensities of global radiation on individual 41 

days were in a range of 637-867 W m-2, indicating strong photochemical activities during the daytime of 42 

the campaign. The relative humidity (RH) exhibited a clear diurnal variation pattern with a range of 21-43 

91% . The wind (0-7 m/s) from the north to northeast prevailed during the campaign and frequently 44 

resulted in increased PM2.5 concentrations due to the transport. The PM2.5 concentration were in a range 45 

of 6-59 μg m-3 (5-95 % percentile). The 5-95 % percentile ranges of [O3], [NOx], and [TVOC] were 4.6-46 

58.6 ppbv, 8.9-69.6 ppbv, and 15.2-77.5 ppbv, respectively. O3 showed an obvious diurnal variation, 47 

peaking at 13:00 – 15:00. Diurnal variations of NOx and TVOC showed high concentrations over the rush 48 

hours. A PM episode with mean PM2.5 concentration of 56.4 μg m-3 occurred from November 6th to 49 

November 8th, accompanied by a high concentration of both TVOC and NOx, indicating the same origins 50 

of air pollutants. While the N2O5 remained in low concentration levels in general, three peak 51 

concentrations up to about 600 pptv appeared at nighttime during November 6th-8th. 52 
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S3. Positive matrix factorization (PMF) 53 

Positive matrix factorization (PMF) allows for time-resolved mass spectra to be expressed as a linear 54 

combination of a finite number of factors, assuming that the factor profiles are constant and unique. Since 55 

this method does not require a priori information about the factors, it is an ideal technique for extracting 56 

information from ambient measurements where the detailed chemistry, sources, and atmospheric 57 

processes are complex. PMF has already been used in source apportionment analysis of OOMs in previous 58 

studies (Yan et al., 2016; Zhang et al., 2019, 2022). In this study, PMF was performed using the Igor-based 59 

interface Source Finder (SoFi, v6.3), run by the multilinear engine (ME-2) (Canonaco et al., 2013). The 60 

data for the PMF model inputs were prepared according to the method described in previous studies 61 

(Zhang et al., 2022). Note that the orbitrap analyzer does not measure signal below a certain threshold 62 

resulting in incomplete time series for species present at low concentration level. Therefore, the species 63 

characterized by incomplete time series with more than 90% missing data and the spectra with more than 64 

80% missing were removed (Zhang et al., 2022). 65 

PMF analysis in this work was performed in 2-10 factors as shown in Figure S3. Five runs for each 66 

solution show good consistencies in both Q/Qexp and explained variation, indicating the small model 67 

uncertainty. The change of Q/Qexp, which decreases stepwise from 2.61 (assuming two factors) to 0.65 68 

(assuming nine factors). Since the absolute value of Q/Qexp might be misleading, the trend of Q/Qexp is 69 

useful to determine the minimum factor number (Ulbrich et al., 2009), a large decrease in Q/Qexp indicates 70 

that the additional factor may explain a large fraction of unaccounted variability in the data. The third 71 

factor significantly decreases the Q/Qexp value from 2.61 to 1.83, suggesting the importance of the third 72 

factor. By adding the third factor, the model can explain 79.4 % of the data variation, in comparison to 73 

75.4 % when only two factors are assumed. This improvement in model performance also implies the 74 

addition of third factor is crucial. The second largest increase in the explained fraction (from 79.4 % to 75 

81.3 %) happens when adding the fourth factor and the Q/Qexp value decreases from 1.83 to 1.51. When 76 

model contains 5, 6, 7, 8, 9 and 10 factors, the Q/Qexp values are about 1.27, 1.07, 0.94 and 0.83, 0.73 77 

and 0.66 respectively while the explained fraction by mode are in a range of 82.9-87.5 %. 78 
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Since the PMF analysis is a pure mathematical method without any prior physical or chemical 79 

assumptions, choosing the best factor number is critical before describing the PMF results. In terms of 80 

trends, more factors would get more freedom to follow subtle variations of the matrix, however, artificially 81 

choosing too many factors will over analyze the matrix, resulting in the split of physically meaningful 82 

source apportionment into meaningless ones. The timeseries and diurnal variations of factors are shown 83 

in Figure S4 and Figure S5. The two-factor solution leads to a distinct daytime factor and a night factor. 84 

In the three-factor solution, the timeseries of first two factors are more or less the same as those in the 85 

two-factor case, but the variation pattern of second factor has changed in the daytime, the new factor tracks 86 

the PM2.5 concentration well in two PM episodes, and exhibits a ush-hour peak in the morning. The four-87 

factor solution results in two daytime factors originated from the old daytime factor. When five factors are 88 

assumed, an additional nighttime factor appears. When six factors are assumed, an afternoon rush-hour 89 

factor appears. For seven factors, the derived new factor has no strong correlation with any independent 90 

tracer. Herein, we concluded that the PMF solution with six factors is the optimal solutions and chose 91 

to limit our further analysis to the six-factor solution because it is not possible to distinguish the 92 

identification of “real” factors without significant correlations. The factor profiles in the six-factor solution 93 

could be seen in Figure S6. 94 

In the aspect of variation patterns, we classify the six factors into three types. The first two factors 95 

are related to the daytime photochemical activities and defined as daytime factor-1 and daytime factor-2. 96 

The third factor and fourth factor show clear nocturnal patterns and defined as nighttime factor-1 and 97 

nighttime factor-2. The fifth factor and the sixth factor are more related to the emission episode and thus 98 

defined as episode factor-1 and episode factor-2. Table S1 shows the peak times and fingerprint molecules 99 

of the factors.  100 

 101 

 102 
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 103 
Figure S1. Timeseries of key measurements during the field campaign. 104 

 105 

 106 
Figure S2. The relative contributions of OOMs with different carbons to the extremely low-volatility organic compounds (ELVOC, C* < 3 107 
× 10-5 μg m-3) and low-volatility organic compounds (LVOC, 3 × 10-5 ≤ C* < 3 × 10-1 μg m-3). 108 

 109 
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 110 
Figure S3. Mathematical diagnostics of PMF solutions, including the overall changes of Q/Qexp and the explained variation from two-factor 111 
to nine-factor solutions. For each number of factors, five seed runs were performed to test the consistency of the solution.  112 

 113 

 114 

 115 
Figure S4. Timeseries of factors in 2-6 factor solutions of PMF. The panels from top to bottom are 2-factor solution, 3-factor solution, 4-116 
factor solution, 5-factor solution and 6-factor solution, respectively. 117 
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 118 
Figure S5. Diel variation patterns of factors in 2-6 factor solutions of PMF. The panels from top to bottom are 2-factor solution, 3-factor 119 
solution, 4-factor solution, 5-factor solution and 6-factor solution, respectively.  120 

 121 
Figure S6. The factor profiles in the six-factor solution, the black ones represent fingerprint molecules. 122 

 123 
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 124 

Figure S7. Timeseries of PM2.5 concentration (top panel), and the episode factor-1 (bottom panel). 125 

 126 

 127 

Figure S8. Timeseries of N2O5 concentration (top panel), estimated NO3 concentration (middle panel), and the nighttime factor-1 (bottom 128 
panel). 129 



 9 

Table S1 Summary of the Factors in six-factor solution 

Factor Factor Peak time Fingerprint molecules 

Daytime 
Daytime factor-1 12:00-14:00 CnH2n-4O10N2 (n=8-10) 

Daytime factor-2 12:00-14:00 CnH2nO8N2 (n=4-5), CnH2n-2O8N2 (n=5-6) 

Nighttime 
Nighttime factor-1 19:00-23:00 C10H16O9N2, C10H16O8N2, C8H14O8N2 

Nighttime factor-2 20:00-06:00 C5H8O9N2, CnH2nO7N2 (n=5-8) 

Episode 
Episode factor-1 PM episode CnH2n-2O8N2 (n=5-11) 

Episode factor-2 Afternoon rush-hour (16:00) CnH2n-2O8N2 (n=5-9) 

 

Table S2 Averaged nOeff of 2N-OOMs in the four cases 

Case [2𝑁 − 𝑂𝑂𝑀!"#]((((((((((((((((((((  [2𝑁 − 𝑂𝑂𝑀!$%]((((((((((((((((((( [2𝑁 − 𝑂𝑂𝑀&'](((((((((((((((((((( [2𝑁 − 𝑂𝑂𝑀'#()$](((((((((((((((((((((( 

CLday 5.6  4.0  4.8  4.6  

CLnight 4.8  3.9  4.6  4.2  

PLday 5.3  4.0  4.9  4.3  

PLnight 4.8  3.9  4.5  4.1  
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