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Abstract. An advanced approach of Conditional Nonlinear Optimal Perturbation (CNOP) was adopted 10 

to identify the sensitive area for targeted observations of meteorological fields associated with PM2.5 

concentration forecasts of a heavy haze event that occurred in the Beijing-Tianjin-Hebei (BTH) region, 

China, from 30 November to 4 December 2017. The results show that a few specific regions in the 

southern and northwestern directions close to the BTH region represent the sensitive areas. Numerically, 

when predetermined artificial observing arrays (i.e., possible “targeted observations”) in the sensitive 15 

areas were assimilated, the forecast errors of PM2.5 during the accumulation and dissipation processes 

were aggressively reduced; in particular, these assimilations, compared with those in other areas that 

have been thought of as being important for the PM2.5 forecasts in the BTH region in previous studies, 

exhibited a more obvious decrease in the forecast errors of PM2.5. Physically, the reason why these 

possible “targeted observations” can significantly improve the forecasting skill of PM2.5 was interpreted 20 

by comparing relevant meteorological fields before and after assimilation. Therefore, we conclude that 

preferentially deploying additional observations in the sensitive areas identified by the CNOP approach 

can greatly improve the forecasting skill of PM2.5, which, beyond all doubt, provides theoretical guidance 

for practical field observations of meteorological fields associated with PM2.5 forecasts. 

1 Introduction 25 

Air pollution is one of the most severe environmental problems that China is facing. Among various air 

pollutants, fine particulate matter (PM2.5) has been considered as the most serious pollutant, frequently 

engulfing northern China, such as the Beijing-Tianjin-Hebei (BTH) region. Exposure to heavy PM2.5 

episodes not only increases the risks of various respiratory diseases, but also induces the possibility of 
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diabetes and other metabolic dysfunction-related diseases (Guan et al., 2016; Lim and Thurston, 2019). 30 

Accurate PM2.5 concentration forecasts are essential since they can remind people to reduce exposure 

during haze days and can assist policy-makers in making effective emission reduction measure decisions. 

The atmospheric chemical transport model (CTM) is one of the most widely used and effective ways to 

forecast PM2.5 concentrations. However, relevant chemical and physical processes are complex, and 

associated parameterization schemes of turbulent processes and meteorological and emission conditions 35 

cannot describe exactly the real world, causing model forecasts to have great uncertainty, especially on 

heavy haze days (Hu et al., 2010; Kong et al., 2021). 

The uncertainties of CTM output, as mentioned above, are primarily attributed to the uncertainties 

of meteorological and emission inputs, in addition to those occurring in the chemical model formulation 

(Roman et al., 2004; Gilliam et al., 2015). Meteorological conditions including wind, temperature, and 40 

relative humidity, which are crucial for the transformation, formation, diffusion and removal of pollutants 

in the atmosphere, have a great impact on PM2.5 forecasts of the BTH region in CTMs (Godowitch et al., 

2011; Chen et al., 2020). Using an artificial neural network model combined with wavelet transformation, 

He et al. (2017) demonstrated that meteorological conditions explained more than 70% of the variance 

in daily PM2.5 concentrations over the major cities in China. Therefore, regional PM2.5 concentrations 45 

rely on meteorological variations to a large extent. Thus, to improve the PM2.5 forecasting skill, it is 

necessary to understand the sensitivity of the CTM results to the inputted meteorological fields and to 

reduce meteorological uncertainty. It has been demonstrated that uncertainties in the meteorological 

initial field substantially influence pollution simulations, including their temporal variations and peak 

time concentrations (Zhang et al., 2007; Bei et al., 2017; Liu et al., 2018). Then increasing the accuracy 50 

of the meteorological initial conditions is an effective way to improve the PM2.5 forecasting skill. 

Data assimilation is recognized as a useful technique for improving the accuracy of initial conditions. 

To obtain reliable initial meteorological conditions, sufficient and effective observations are essential. 

However, conventional observations, which are distributed at a low resolution in both oceans and islands, 

have a limitation in improving the accuracy of initial conditions (Li et al., 2015). Assimilating additional 55 

field observations has been proven to be an effective way to obtain a reliable initial field (Sydney, 1996; 

Mu et al., 2015). Since field observations are costly and never sufficiently dense, one can consider placing 

a preferentially limited number of observations in key areas to have the most positive impacts on 
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improving forecast skill. This idea is just one of the new observational strategies of “target observation”, 

also called “adaptive observation”, which has been developed over the past two decades (Snyder, 1996; 60 

Palmer et al., 1998; Majumdar, 2016). The "target observation" mainly serves the demand of forecasts 

on observations. The idea is as follows. To better predict an event at a future time 𝑡2 (i.e., verification 

time) in a focused area (i.e., verification area), additional observations are deployed at a future time 

𝑡1 (i.e., target time; 𝑡1  𝑡2 ) in some key areas (i.e., sensitive areas) where additional observations are 

expected to have a large contribution in reducing the prediction errors in the verification area. These 65 

additional observations are assimilated by a data assimilation system to provide a more reliable initial 

state, which would be supplied to the model to obtain a more accurate prediction. Targeted observations 

have become a hot topic in atmospheric science due to their successful applications in improving the 

prediction skills of extreme weather events, such as typhoons (Wu et al. 2009; Mu et al., 2009), winter 

storms (Kren et al., 2020), and high-impact climatic events, such as the El Niño-Southern Oscillation 70 

(ENSO; Kramer and Dijkstra., 2013; Duan et al., 2018) and Indian Ocean Dipole (IOD; Feng et al., 2017; 

Beal et al., 2020). As we stated above, the meteorological initial fields have great impacts on the PM2.5 

forecasts of the BTH region (Bei et al., 2017; Liu et al., 2018); meanwhile, our results also showed that 

the PM2.5 forecasts are sensitive to the uncertainties of meteorological initial conditions (see Section 3.1). 

Based on these findings, we would propose the following question: can we apply the targeted observation 75 

strategy to improve the meteorological condition forecasts, which then further improve the PM2.5 

forecasts of BTH region? It has also been argued that sufficient satellite observations can be used to yield 

the meteorological initial field by using a data assimilation approach. However, assimilating more 

observations may not lead to higher forecast benefits. Therefore, even if there are sufficient observations, 

one should also consider observations in which area and how many observations should be preferentially 80 

assimilated to improve the PM2.5 forecast skill to a larger degree. When the observations in the area with 

high sensitivity are assimilated to the initial values of the forecast, the forecasting skills will be greatly 

increased; conversely, if the observations in the area where the forecast is not sensitive to the initial values 

are assimilated, the forecasting skills will be improved slightly or even become worse (Yu et al., 2012; 

Janjić et al., 2018; Zhang et al., 2018). Then the present study would explore the relevant sensitive area 85 

and examine the role of possible “targeted observations” on meteorological fields in improving the PM2.5 

forecast skill during a heavy haze event that occurred from 30 November to 4 December 2017 in the 
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BTH region, eventually suggesting the usefulness of implementing targeted observations on 

meteorological fields for improving air quality forecasts. 

The key for the targeted observation is the determination of sensitive areas mentioned above and 90 

the design of the observation network. That is, when implementing the targeted observations, one should 

first make clear where to preferentially implement targeted observations and how to display these 

additional observations. To obtain the sensitive areas of meteorological fields for PM2.5 forecasting, an 

advanced optimization method, Conditional Nonlinear Optimal Perturbation (CNOP), is used (Mu et al., 

2003; Mu and Zhang, 2006), which overcomes the linear limitation of the traditional singular vector 95 

approach (Lorenz, 1965). The CNOP represents the initial perturbation that causes the largest error 

growth at a given future time over the verification area. The CNOP is therefore the most sensitive initial 

perturbation; therefore, it would have potential for providing the sensitive area for targeting observations. 

In fact, the CNOP has been adopted to identify sensitive areas for targeting observations in both 

Observations System Simulation Experiments (OSSEs) and/or practical observation tasks associated 100 

with typhoons, ENSO, Kuroshio, and marine environments over the coast of China (Mu et al., 2015; Da 

et al., 2019) and has gained great success in improving the forecasting skills of the concerned high-impact 

weather or climatic events. 

In the present study, we would consider the importance of the meteorological initial conditions on 

PM2.5 forecasting and apply the targeted observation strategy of meteorological fields with the CNOP 105 

approach to study the PM2.5 forecast of a heavy haze episode. As mentioned above, during the period 

from 30 November to 4 December 2017, a heavy air pollution event occurred in the BTH region, with 

hourly maximum PM2.5 concentrations greater than 250 µg/m3, exceeding the standard of severe pollution 

(Feng et al., 2016). However, the Beijing Municipal Ecological and Environmental Monitoring Center 

did not provide a warning of this event in time (see the link http://www.bjmemc.com.cn/). We utilize this 110 

event as an example to explore the possible “targeted observations” of meteorological fields and to 

investigate whether they can help improve the PM2.5 forecasting skill. Specifically, the following 

questions are addressed. 

(a) Which area represents the sensitive area of initial meteorological fields for targeted observations 

associated with the PM2.5 forecast of the concerned event? 115 

(b) What is the optimal observation array for targeted observations in meteorological fields (in terms 
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of locations and coverage density)? 

(c) Why can the “targeted observations” in the sensitive areas lead to a larger improvement of the 

PM2.5 forecasting skill of the event? 

The paper is organized as follows. The model, methodology and data used in the study are 120 

introduced in the next section. Then, the CNOP-type errors of the meteorological field forecasting of the 

haze event are calculated in Sect. 3. In Sect. 4, the sensitive areas of the meteorological field for the PM2.5 

forecasts are identified, and relevant OSSEs are designed to verify the validity of the targeted observation 

in improving the forecasting skill of PM2.5 in the haze event. In Sect. 5, the reasons why the “targeted 

observations” can result in a larger improvement of PM2.5 forecasts are interpreted. Finally, a summary 125 

and discussion are presented in Sect. 6. 

2 Model, Methodology and Data 

In this study, we adopt the Nested Air Quality Prediction Modeling System (NAQPMS) and Weather 

Research and Forecasting (WRF) model to explore the role of targeted observations on meteorological 

fields in improving the surface air concentrations of PM2.5 forecasts by building an optimization problem 130 

associated with the CNOP approach. 

2.1 Models 

The NAQPMS is a three-dimensional regional Eulerian chemical transport model developed by the 

Institute of Atmospheric Physics, Chinese Academy of Sciences (Wang et al., 1997; 2006). It includes 

modules that address horizontal and vertical advection and diffusion, dry-wet deposition, gaseous phases, 135 

aqueous phases, aerosols and heterogeneous chemical reactions. The NAQMPS has been widely applied 

to forecast air pollutants and to study the source apportionment of pollutants (Yang et al., 2020). The 

anthropogenic emissions of PM2.5 and other pollutants are from Multi-resolution Emission Inventory for 

China in 2017 (MEIC 2017) (Li et al., 2014) (http://meicmodel.org/). The model integration is conducted 

in a single model domain of 95×95 grids at a resolution of 30 km with 20 vertical levels. The components 140 

of PM2.5 simulation include black carbon (BC), organic carbon (OC), secondary inorganic aerosol (sulfate, 

nitrate, ammonium) and primary PM2.5 emitted directly from various sources. The mass of aerosol liquid 

water is not included in the simulated PM2.5 mass concentrations so that the PM2.5 simulations are dry 

http://meicmodel.org/
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mass concentrations.  

The NAQPMS is driven by the meteorological field generated through WRFV3.6.1 145 

(http://www.wrf-model.org/). The WRF model used in the present study adopts the Lin microphysics 

scheme (Lin et al. 1983), RRTMG longwave radiation (Iacono et al. 2008), Dudhia shortwave radiation 

schemes (Dudhia, 1989) and Yonsei University planetary boundary layer parameterization scheme (Hong 

et al. 2006). These parameterization schemes are also adopted in the adjoint model of the WRF, which is 

used to calculate the CNOP (see Sect. 2.2). To enhance the computing efficiency of the CNOP, a horizonal 150 

resolution of 30 km is used in the present study for an initial attempt. The model domain of the WRF and 

its adjoint model are the same as that in the NAQPMS. The assimilation system we used is a 3-D 

variational data assimilation system of the WRF, which has been proven to be an efficient assimilation 

tool for PM2.5 simulations (Kumar et al., 2019; Zhang et al., 2021). 

2.2 Conditional Nonlinear Optimal Perturbation (CNOP) 155 

The CNOP represents the initial perturbation (or error) that can lead to the largest forecast error in the 

focused area (verification area) at verification time. Suppose a nonlinear model is expressed as Eq. (1), 

{
𝜕𝒙

𝜕𝑡
+ 𝐹(𝒙) = 0

𝒙|𝑡=0 = 𝒙0

,             (1) 

where 𝒙 is the state vector with an initial value 𝒙0 and 𝐹 is a nonlinear partial differential operator. 

The solution of Eq. (1) can be described as 𝒙(𝑡) = 𝑀(𝒙𝟎), in which 𝑀 is the nonlinear propagator. If 160 

𝒙(𝑡) is a reference state and an initial perturbation 𝛿𝒙0 is added to its initial state 𝒙0, a forecast will 

be made with x(𝑡)  𝛿𝒙(𝑡)   𝑀(𝒙0 + 𝛿𝒙0) , where 𝛿𝒙(𝑡) = 𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0)  represents the 

evolution of the initial perturbation 𝛿𝒙0. Then, an initial perturbation is CNOP (𝛿𝒙0
∗ ) if and only if 

𝐽(𝛿𝒙0
∗ ) = max

𝛿𝒙𝟎
𝑇𝐶1𝛿𝒙𝟎≤𝛽

[𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0)]𝑇𝐶2[𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0)], (2) 

where 𝛿𝒙0
𝑻𝐶1𝛿𝒙0 ≤ 𝛽 is the constraint condition that the initial perturbation should satisfy and 𝛽 is a 165 

positive value that is comparable to the initial analysis error variance of the considered variables. 𝐶1 and 

𝐶2 are coefficient matrices, which define the amplitudes of initial perturbations 𝛿𝒙𝟎 and its evolution 

𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0) , with x consisting of zonal and meridional wind (𝑈  and 𝑉 , respectively), 

temperature (𝑇), water vapor mixing ratio (𝑄) and pressure (𝑃) components in the present study, and they 

play their role by calculating the total perturbation energy from surface to top (i.e., 100 hPa), as in Eq. 170 

(3) (Ehrendorfer et al., 1999; Chen et al., 2020), 

http://www.wrf-model.org/
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Total energy =
1

𝐷
∫ ∫ [𝑈′2 + 𝑉′2 +

𝐶𝑝

𝑇𝑟
𝑇′2 +

𝐿2

𝐶𝑝𝑇𝑟
𝑄′2

𝐷
+ 𝑅𝑎𝑇𝑟(

𝑃′

𝑃𝑟
)2]

1

0
𝑑𝜂𝑑𝐷,  (3) 

where 𝐶𝑝 (11005.7 Jkg
-1 K-1), 𝑅𝑎 (1287.04 Jkg

-1 K-1), 𝑇𝑟 (1270 K), 𝐿(= 2.5105× 106 Jkg-1) and 

𝑃𝑟  (11000 hPa) are constant values; and  𝑈′ , 𝑉′,  𝑇′ , 𝑄′  and 𝑃′  denote the perturbations 

superimposed on meteorological fields of zonal and meridional wind, temperature, water vapor mixing 175 

ratio and pressure, respectively. D denotes the verification area, which is the BJH region in this study and 

𝜂 signifies the vertical coordinate. 

The optimization problem in Eq. (2) is solved by using the spectral projected gradient 2 (SPG2) 

method (Birgin et al., 2001) in the present study. A first guess is assigned to the initial perturbation 𝛿𝒙𝟎. 

The WRF model is integrated forward with the initial state 𝒙0 + 𝛿𝒙0  to obtain the forecast 180 

𝑀(𝒙0 + 𝛿𝒙0). The cost function J is calculated by using 𝑀(𝒙0 + 𝛿𝒙0) and 𝑀(𝒙0). The adjoint model 

of the WRF is integrated backward to calculate the gradient of the cost function with respect to the initial 

perturbation 𝛿𝒙0. The gradient represents the fastest descending direction of the cost function J in Eq. 

(2). Based on the iteratively forward and backward integration governed by the SPG2 algorithm, the 

initial perturbation 𝛿𝒙0 is optimized and updated until the convergence condition of the algorithm is 185 

satisfied. Here, the convergence condition is ‖𝑃(𝛿𝒙0 − 𝑔(𝛿𝒙0)) − 𝛿𝒙0‖2 ≤ 𝜀1  , where 𝜀1  is an 

extremely small positive number, 𝑃(𝛿𝒙0) projects the 𝛿𝒙0 outside the constraint to the boundary of the 

constraint condition and 𝑔(𝛿𝒙0) represents the gradient of the cost function J with respect to 𝛿𝒙0. Then, 

the resultant initial perturbation 𝛿𝒙𝟎
∗  is the CNOP. The details for the SPG2 algorithm can be seen in 

Birgin et al. (2001). 190 

2.3 Data 

Surface PM2.5 observation datasets for verification are obtained from national environmental monitoring 

stations. There are 1287 national stations across China, 80 of which are located in the BTH region. The 

distribution of the 80 observation sites within the BTH region is shown in Figure 1. We retrieved the 

hourly measurements of PM2.5 from 80 air quality monitoring stations from 30 November to 4 December 195 

2017, where the PM2.5 observations are for dry mass concentrations and there are no missing values 

during the time period we considered. 

The fifth generation ECMWF reanalysis for the global climate and weather (ERA5) 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) and National Centers for 
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Environmental Prediction (NCEP) GFS historical archive forecast data (GFS, https://rda.ucar.edu/ 200 

datasets/ds084.1/) are both used to produce the initial and boundary meteorological conditions for the 

WRF simulations. Both the ERA5 and GFS data have a 0.25° spatial resolution (approximately 25 km) 

and 6-hour temporal resolution. 

 

Figure 1 The map of current environmental monitoring stations (hollow circles) within the BTH domain. 205 

The black line presents the boundary of province in China, and the thick black line presents the coastline. 

The boundaries of the Beijing City, Tianjin City and Hebei province are marked in red. 

3 The CNOP of the PM2.5 forecasting 

In this section, we use the CNOP approach to identify the sensitive areas for targeted observations 

associated with the PM2.5 forecast in the heavy haze event in BTH occurred from 30 November to 4 210 

December 2017. Figures 2(a) and 2(b) plot the time series of the PM2.5 concentration observed at Baoding 

(in Hebei) and Dongsi (in Beijing) environmental monitoring stations. The haze started to develop at 

approximately 02:00 BJT (Beijing Time, UTC + 8 hours) on 1 December and dispersed at 14:00 BJT on 

3 December. Specifically, the PM2.5 concentrations of most cities in the BTH region exceeded 250 ug/m3 

at 12:00 on 2 December; then, starting from 01:00 on 3 December, the PM2.5 dissipated rapidly within 215 

several hours. In Beijing, from 00:00 on 1 December, it took almost one day to accumulate PM2.5 from 

77 ug/m3 to 160 ug/m3 according to the Dongsi station; then, from 01:00 on 3 December, the PM2.5 

concentration decreased from 256 ug/m3 to 19 ug/m3 in 7 hours. 

3.1 Simulations of the PM2.5 variability in the heavy haze event 

https://rda.ucar.edu/%20datasets/ds084.1/
https://rda.ucar.edu/%20datasets/ds084.1/
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After a 10-day spin-up of the WRF-NAQPMS, the ERA5 and GFS meteorological data are separately 220 

adopted to initialize the WRF at 00:00 BJT on 30 November 2017, and the simulations of PM2.5 

concentrations at the Baoding and Dongsi stations are plotted in Fig. 2. Since the two simulations are 

generated by the same model using the same emission inventory, the PM2.5 forecast uncertainties are only 

attributed to the uncertainties of meteorological initial fields. The simulation initialized by ERA5 can 

better reproduce the pollution event. During the period between 00:00 BJT on 30 November and 23:00 225 

BJT on 1 December, the simulations initialized by ERA5 almost overlap with the observations. In the 

remaining time period, although the highest PM2.5 concentration simulated by ERA5 occurs 

approximately 12 hours earlier and more than 50 ug/m3 lower than those in the observations, the 

simulation can represent well the accumulation and dissipation processes of PM2.5. 

 230 

Figure 2. Time series of the dry PM2.5 concentrations at (a) Baoding station (Hebei Province) and (b) Dongsi 

station (Beijing city) of observations and simulations initialized by ERA5 and GFS meteorological data during 

the period between 30 November and 4 December 2017. The Accumulation Time (AT) and Dissipation Time 

(DT) are marked by dashed lines. 

The simulations initialized by the GFS do not perform well in representing the episode of PM2.5. 235 

They underestimate the PM2.5 concentrations during the accumulation process, and the simulated highest 

PM2.5 concentration (176 µg/m3) occurs at approximately 21:00 on 3 December in Baoding, which is 

exactly in the dissipation process of the observed event. The simulation of Beijing PM2.5 also shows a 

large deviation from the observational PM2.5 concentration, especially during the dissipation process. 

To quantify the differences between simulations and observations, mean RMSEs and correlations 240 

of the 80 grids during the whole event (from 00:00 BJT on 30 November to 00:00 BJT on 4 December 

2017) are calculated against the observations. As shown in Table 1, the mean RMSE of the simulations 

initialized by ERA5 is 60.09 ug/m3 for the PM2.5 concentration, which is 19.87% lower than that of the 
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GFS simulations (i.e., 74.99 ug/m3). The correlation between the ERA5 simulation and the observation 

is 0.47 and 20.51% higher than that of GFS simulations (i.e., 0.39). More specifically, we select two time 245 

points to show the PM2.5 differences between simulations and observations, which are at 2:00 BJT on 2 

December (hereafter defined as Accumulation Time; AT) and 14:00 BJT on 3 December (hereafter 

defined as Dissipation Time; DT). Almost all GFS simulations show an underestimation of the PM2.5 at 

the AT and an overestimation at the DT. The mean deviations are -47.88 ug/m3 at the AT and 55.02 ug/m3 

at the DT. The ERA5 simulation performs much better at the two time points, with mean deviations of -250 

30.57 ug/m3 and 41.58 ug/m3, although it also shows an underestimation at the AT and an overestimation 

at the DT. 

 

Table 1 The Root Mean Square Error (RMSE) (ug/m3) and correlation coefficient (CC) of PM2.5 

concentrations between simulations initialized by ERA5 and GFS and observations averaged over 80 stations. 255 

Measurements ERA5 GFS 

RMSE 60.09 74.99 

CC 0.47 0.39 

 

It is known that a bad forecast made by a numerical model is attributed to errors in both models and 

initial conditions. The study of targeted observations aims to improve the forecast by reducing the errors 

in the initial conditions, which is usually implemented with perfect model assumptions (Mu et al., 2015). 

A perfect model is assumed to limit forecast errors that result only from errors in the initial conditions, 260 

thus simplifying the complexity of problems. However, there are no perfect models in reality. Thus, when 

implementing the targeted observation tasks, we choose the model that exhibits relatively small model 

errors and is able to present good simulations to determine where (i.e., the sensitive area) to deploy the 

targeted observations by calculating the CNOP. The WRF is one of the most advanced weather-

forecasting models currently and exhibits small model errors (Liu et al., 2012). Therefore, we apply the 265 

WRF, together with the NAQPMS model, to explore the role of targeted observations in PM2.5 forecasts. 

When we use different initial conditions to simulate PM2.5, a better simulation is taken as the “truth run”, 

and the CNOP is calculated based on that. As shown above, the simulations initialized by ERA5 have 

better performances in presenting the PM2.5 variability; particularly, they show the best simulation at the 
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AT for the accumulation process of PM2.5 and at the DT for the dissipation process. Thus, the simulations 270 

initialized by ERA5, especially at AT and DT, are taken as the “truth run” to determine the sensitive area 

for targeted observations by calculating the CNOP. Even though, the calculated sensitive area is actually 

an approximation of the real sensitive area. If such approximation is valid, then for any forecast, 

preferentially assimilating additional observations in the sensitive area will help improve the PM2.5 

forecasting skill greatly. The validity of the above approximate sensitive area is often tested by 275 

prescribing a good simulation to observation (for example, the simulation initialized by ERA5) and then 

assimilating the simulated observations located in the sensitive area to a bad forecast (for example, the 

control forecast) to examine whether the assimilation forecast will be much closer to the good simulation, 

which, actually, is a kind of OSSEs (see Masutani et al., 2010; Qin et al., 2013). In our study, to verify 

the validity of the sensitive area, the simulated targeted observations are assimilated to the GFS forecasts 280 

to improve their PM2.5 forecasts, where the GFS forecasts are taken as the “control run” and those after 

assimilating targeted observations are regarded as the “assimilation run”. If the sensitive area is valid, 

the PM2.5 forecasts in the assimilation run will be much closer to the truth run. It can also be inferred that 

if the real observations are available, assimilating the real targeted observations to the initial field of the 

meteorology of the control forecast would improve the PM2.5 forecast skill greatly against the 285 

observations. In the present study, we will adopt assimilating simulated observations to verify the validity 

of the sensitive area due to the lack of available observations. 

3.2 CNOP-type errors of meteorological field forecasting 

We select the AT and DT as verification times separately to determine the sensitive areas by calculating 

the CNOP-type errors. When the AT is taken as the verification time, we explore the forecast starting 290 

from 2:00 on 1 December, with a lead time of 24 hours, and the forecast starting from 14:00 on 1 

December, with a lead time of 12 hours. When the DT is taken as the verification time, the forecasts 

starting from 14:00 on 2 December and 02:00 on 3 December, with lead times of 24 hours and 12 hours, 

respectively, are investigated. Then, there are a total of 4 PM2.5 forecasts concerned here for the heavy 

haze event that occurred in the BTH region from 30 November to 4 December 2017, which are all 295 

initialized by ERA5. 

As we described in Section 2.2, the CNOP-type initial errors which include the variables of wind, 

temperature, pressure and water vapor mixing ratio cause the largest forecast error of concerned 
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meteorological fields measured by the total energy at the verification time in the verification area, which 

may perturb the PM2.5 forecast to the greatest extent when considering the combined effect of different 300 

meteorological components and thus represent the most disturbing initial error of the meteorological field. 

The CNOP-type errors are calculated separately for these 4 forecasts. Figures 3-6 plot the horizontal 

structures of the CNOP-type errors (including wind, temperature and water vapor perturbations) at 

ground level (approximately 1000 hPa), low level (approximately 850 hPa and 750 hPa), middle level 

(approximately 500 hPa) and upper level (approximately 200 hPa) for the 4 forecasts. All wind, 305 

temperature and water vapor components of the CNOP-type errors, either for the AT or DT, are mainly 

concentrated at ground and low levels, with large errors lying at the low level for a lead time of 24 hours 

and ground level for a lead time of 12 hours. 

When it is the CNOP-type errors for the AT, their dominant anomalies, as mentioned above, occur 

at the low level (i.e., 850 hPa) for the forecast with a lead time of 24 hours; furthermore, the horizontal 310 

pattern mainly presents two areas that cover the large CNOP-type errors despite small position 

differences among the respective large-error areas of wind, temperature and water vapor components at 

the 850 hPa level (see Fig. 3). One area is near the southern part of the BTH region, with southerly wind, 

positive temperature and water vapor biases, while the other area is in central Mongolia, with southerly 

wind, positive temperature and negative water vapor biases. However, at ground level, the horizontal 315 

patterns present different areas with large errors for the three meteorological components: the wind 

presents large errors in the southern and western parts of the BTH region, while the temperature and 

water vapor present large errors in the western part of the BTH region. For the forecast with a lead time 

of 12 hours, the CNOP-type errors are dominant at ground level but mainly confined in Beijing city, with 

large northerly wind and positive temperature and water vapor biases (see Fig. 4). In addition, the wind 320 

and water vapor also present large errors in Shandong Province; at the low level (i.e., 850 hPa), the 

maximum errors of wind and temperature are located in the northwestern part of the BTH region, near 

the region of Nart, but the maximum error of water vapor is found in Shandong Province in the 

southeastern part of the BTH region. 

When the DT is the verification time, it can be seen that the CNOP-type errors mainly occur at the 325 

low level (i.e., 850 hPa and 750 hPa) for a lead time of 24 hours and large northerly wind, negative 

temperature and water vapor biases occur in southern Mongolia despite their specific positions having 
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small differences, with the location of large water vapor errors further west to that of the large errors of 

wind and temperature (see Fig. 5). For a lead time of 12 hours, the large northwesterly wind errors are 

concentrated at the ground level, while the large positive temperature and water vapor errors occur at the 330 

low level; furthermore, there are also large temperature and water vapor errors occurring at the low and 

middle levels (see Fig. 6). 

It is clear that the CNOP-type errors peak at different vertical levels for the 4 forecasts. Even for the 

meteorological fields of wind, temperature, and water vapor, even at the same vertical level, the areas 

with large errors of different variables are somewhat different. The errors in the areas where the CNOP-335 

type errors are concentrated could make the largest contribution to the forecast errors of the verification 

area at the verification time and therefore can be regarded as a sensitive area for targeted observations 

associated with PM2.5 forecasts. However, from the above CNOP-type errors, it is known that such areas 

are dependent on different meteorological variables and are located at different vertical levels and regions, 

which therefore confuses us which meteorological variables, levels and areas should be identified to be 340 

preferentially observed and provides challenges to real field campaigns. Then, in this situation, how do 

we address the problems related to targeted observations for the meteorological fields associated with 

PM2.5 forecasting? We will address this question in the next section. 
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Figure 3. The horizontal distribution of the CNOP-type errors including wind component (vector, left column, 345 

unit: m/s), temperature component (shaded, middle column, unit: ℃ ) and water vapor miiing ratio 

component (shaded, right column, unit: kg/kg) at an upper pressure level (approiimately 200 hPa), middle 
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pressure level (approiimately 500 hPa), low pressure level (approiimately 850 hPa) and ground level 

(approiimately 1000 hPa) for the forecast starting from 2:00 on 1st December, with a lead time of 24 hours. 

 350 

Figure 4. The same as in Figure 3, but for the forecast starting from 14:00 on 1st December, with a lead time 

of 12 hours. 
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Figure 5. The same as in Figure 3, but for the forecast starting from 14:00 on 2nd December, with a lead time 

of 24 hours. 355 
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Figure 6. The same as in Figure 3, but for the forecast starting from 2:00 on 3rd December, with a lead time of 

12 hours. 
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4. The sensitive area for targeted observations and associated validity verification on improving 

the PM2.5 forecasts 360 

In this section, we propose an approach to measure the comprehensive sensitivity of initial errors 

occurring in different vertical levels and horizontal areas for different meteorological variables. Then, 

the sensitive areas for targeted observations can be identified by this comprehensive sensitivity that 

considers the information of all meteorological variables at all pressure levels. 

4.1 The sensitive areas for targeted observations associated with PM2.5 forecasts 365 

To evaluate the comprehensive sensitivity of the CNOP-type initial errors occurring at different vertical 

levels and areas for different meteorological fields, a vertical integral (VI) of the CNOP-type errors, as 

in Eq. (4), is calculated. 

         VI = ∫
1

2

1

0
(𝑈′2 + 𝑉 ′′2 +

𝐶𝑝

𝑇𝑟
𝑇 ′′2 +

𝐿2

𝐶𝑝𝑇𝑟
𝑄′2+𝑅𝑎𝑇𝑟(

𝑃′

𝑃𝑟
)2) 𝑑𝜂.     (4) 

The VI consists of all concerned meteorological variables and their vertical distributions and measures 370 

the comprehensive sensitivity of forecasting uncertainties on initial errors of different meteorological 

variables. In this situation, the PM2.5 forecast could be very sensitive to the combined effect of initial 

errors of the meteorological fields in the area of a larger VI, and preferentially reducing the 

meteorological initial errors in these sensitive areas will lead to much larger improvements of the 

meteorological forecasts over the BTH region, which then significantly improves the regional PM2.5 375 

forecasts. 

Figure 7 shows the horizontal distribution of the VI for the 4 forecasts. When the AT is the 

verification time, two areas are identified to have large VIs for the forecast starting from 2:00 on 1 

December, with a lead time of 24 hours. One area is near Dezhou city, which lies to the southeast of 

Hebei Province; the other area is located in central Inner Mongolia, extended to Mongolia. Then, we 380 

regard these two areas as the sensitive areas for meteorological field forecasting and then we regard the 

PM2.5 forecast of the BTH region at the AT with a lead time of 24 hours. Similarly, we identify the 

sensitive area for the forecast with a lead time of 12 hours in Beijing and Tianjin cities. For the 

verification time DT, the sensitive areas are determined as the region from Huhhot in Inner Mongolia to 

the Altai Mountains in Mongolia for a lead time of 24 hours. For a lead time of 12 hours, the sensitive 385 

areas are mainly located in Zhangjiakou and Chengde cities, which lie in the northern part of the BTH 
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region. 

  
Figure 7. The horizontal distribution of the VI (unit: J kg-1) for the forecasts at the AT with lead times of (a) 

24 hours and (c) 12 hours and for the forecasts at the DT with lead times of (b) 24 hours and (d) 12 hours. The 390 

black rectangle is the verification area. 

4.2 Validity of “targeted observations” in improving PM2.5- forecasting skill 

According to the definition of targeted observations, deploying additional observations in the 

sensitive areas and assimilating them to the initial field will improve the forecasting skill of the 

meteorological field and then the PM2.5. If such improvement is significantly larger than those of 395 

assimilating the additional observations in other areas, the sensitivity of the targeted observations in the 

sensitive area determined by the CNOP is confirmed numerically. With the above argument, the better 

simulation of PM2.5 with the meteorological field forecast by ERA5 is assumed to be the “truth run”, and 

the worse simulation initialized by the GFS is the “control run” (see Sect. 3.1); thus, the differences 

between the PM2.5 concentrations in the control and truth runs can be regarded as forecast errors of the 400 

control run with respect to the truth run. Figure 8 shows the spatial distributions of forecast errors of 

PM2.5 at the AT and DT. This shows that the control run has an obvious underestimation of the PM2.5 

concentrations over the whole BTH region at the AT and an overestimation at the DT. If taking the 

absolute value of the biases, then the mean biases of the whole BTH region are 34.22 and 64.13 ug/m3 at 

the AT and DT, respectively. To verify the validity of the targeted observations in the sensitive areas, we 405 
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take relevant meteorological fields in the truth run but confine them to the above identified sensitive 

areas as “additional observations” (i.e., artificial “targeted observations”) and assimilate them to the 

initial fields of the control run by the 3D-Var assimilation system of the WRF (see Sect. 2.1), finally 

obtaining an updated forecast of the PM2.5 concentration, which, as defined in Sect. 3.1, is called the 

“assimilation run”. The validity of targeted observations in improving PM2.5 forecasts of the control run 410 

is quantified by two indices defined by Eqs. (5) and (6), 

AEV = (
|𝑃𝐶−𝑃𝑇|−|𝑃𝐴−𝑃𝑇|

|𝑃𝐶−𝑃𝑇|
)𝑡=𝑇 × 100%,  (5) 

AEM =
1

𝑇
∑ (

|𝑃𝐶−𝑃𝑇|−|𝑃𝐴−𝑃𝑇|

|𝑃𝐶−𝑃𝑇|
)𝑡=𝑖

𝑖=𝑇
𝑖=𝑡0

× 100%,  (6) 

where AEV and AEM are the percent change of the forecast errors at verification times [see Eq. (5)] 

and that during the whole forecast period [see Eq. (6)] after assimilating the control forecast, respectively; 415 

and 𝑃𝐶 , 𝑃𝑇 ,  and 𝑃𝐴   denote the PM2.5 concentration in the control run, truth run and assimilation run, 

respectively. The sign |∙| measures the amplitude of forecast errors averaged over the BTH region, T 

represents the verification time and t0 is the initial time of the forecast. A positive value of AEV and AEM 

indicates an improvement in forecast skills, and the larger the positive values are, the more significant 

the improvements. A negative value of AEV and AEM indicates a decline in forecast skills. 420 

 

Figure 8. The spatial distributions of PM2.5 forecast errors (unit: 𝛍𝐠/𝐦𝟑) in the control run at the (a) AT and 

(b) DT. The black rectangle is the verification area. 

We take the artificial “additional observations” of meteorological fields located at a fixed number 

of 15 horizonal observation positions, which are located through the vertical 950, 850, 750 and 500 hPa 425 

levels (60 observations at the four pressure levels in total) and include horizontal wind, temperature, and 
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relative humidity; in particular, these observation positions are considered to be covered by the sensitive 

areas identified by the VI of the CNOP-type errors. To determine the optimal observation array in the 

sensitive areas, “additional observations” are experimentally distributed every 30, 60, 90, 120 and 150 

km. Specifically, we take the observation distance of 150 km as an example. The grid point with the 430 

largest VI is taken as the first observation position. Then, we exclude the grids that are no further than 

150 km away from the first observation position and determine one of the largest VIs among the 

remaining grids as the second observation position. After the second observation position is fixed, we 

exclude the grids that are no further than 150 km away from the second observation position, and the 

grid of the largest VI among the remaining grids is determined as the third observation position. The 435 

other 12 observation positions can be similarly determined. Note that the fixed number 15 of the 

observation positions is experimentally selected, and one can choose other numbers to conduct 

experiments. In accordance with the above approach, we can obtain five observation arrays with 15 

predetermined observation positions. 

By assimilating the five observation arrays to the initial fields of control runs, new forecasts (i.e., 440 

the assimilation runs) of PM2.5 are obtained. The improvements of the forecasting skills against the truth 

runs are shown in Tables 2 and 3. For a 24-hour lead time of the forecast at the AT, assimilating the five 

observation arrays can improve the PM2.5 forecast skill by reducing the forecast errors ranging from 4.29 

ug/m3 to 6.91 ug/m3, accounting for 12.54% to 20.20% of the forecast errors in control runs measured by 

AEV at the AT; the mean forecast errors during the whole forecast period can decrease from 19.79% to 445 

29.20% measured by AEM (exactly from 3.58 ug/m3 to 5.28 ug/m3) (Table 2). Of the five observation 

arrays, the array with observation positions every 90 km shows the largest improvement measured by 

AEV and AEM. When the 15 observation positions are deployed every 90 km, approximately 68% of the 

grids over the BJH region show positive AEV values, and the largest improvement in PM2.5 forecasts 

reaches 73.80 ug/m3, located in Cangzhou city, southeastern Hebei Province (Fig. 9a). When the 450 

observation arrays are deployed 12 hours before the AT, a larger improvement in forecasting skills can 

be found (Table 2). Of the five observation arrays, the improvements in forecasting skills at the AT 

measured by AEV range from 24.53% to 43.26%, and the mean improvement during the whole forecast 

period measured by the AEM ranges from 32.84% to 50.81%, where the observation array deployed at a 

distance of 150 km shows the largest improvements in terms of both AEV and AEM despite the 455 
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observations being relatively sparse in this array. Overall, the observations deployed 12 hours before the 

AT in the sensitive areas identified by the CNOP-type errors measured by the VI show better 

performances than those deployed 24 hours before the AT. Thus, if we care about improving the PM2.5 

forecast at the AT and the number of observation positions is fixed at 15 (only accounting for 0.17% of 

the grids over the domain), the observation array with an observation position distance of 150 km 460 

deployed in the sensitive areas (i.e., locations in Beijing and Tianjin cities) at 12 hours before the AT 

might be the optimal choice for targeted observations; in this case, the forecast error of PM2.5 could 

decrease by as much as 43.26% at the AT in terms of the AEV and 50.81% during the whole forecast 

period in terms of the AEM (see also Table 2). 

Table 2 The AEV/AEM of the forecasts at the AT with lead times of 24 and 12 hours, when the additional 465 

observations in the sensitive region (CNOP), Region-W and Region-N are assimilated (unit: %). The 

respective optimal observation array is marked in bold. 

Lead times Region 30 km 60 km 90 km 120 km 150 km 

 

24 hour 

CNOP 12.54/19.79 17.52/24.83 20.20/29.20 17.12/26.60 15.02/25.44 

Region-W 3.16/5.12 6.51/8.61 7.60/11.30 5.46/9.42 5.13/8.22 

Region-N -2.03/0.78 -0.76/2.45 -0.79/2.34 -1.73/1.09 -5.70/-3.83 

 

12 hour 

CNOP 24.53/32.84 32.48/37.43 38.79/46.31 42.66/50.73 43.26/50.81 

Region-W 15.14/18.39 11.52/13.11 11.18/13.42 14.95/16.13 17.61/18.71 

Region-N 3.67/7.32 -2.88/-0.30 0.37/2.82 -0.95/1.73 -1.84/0.46 

 

 

Figure 9. The spatial distributions of the improvement in PM2.5 forecasts (unit: 𝛍𝐠/𝐦𝟑) at the (a) AT and (b) 470 
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DT with a lead time of 24 hours. The black rectangle is the verification area. 

To improve the PM2.5 forecast at the DT, five observation arrays in the corresponding sensitive areas 

can be similarly obtained, and of these arrays, their assimilation runs improve the PM2.5 forecast skills 

with the AEV varying from 20.87% to 44.72% (exactly from 13.39 to 28.77 ug/m3) and the AEM varying 

from 27.31% to 40.83% (exactly from 8.27 to 11.90 ug/m3; Table 3) for a lead time of 24 hours. The 475 

assimilation run with the observation array of the observation positions every 150 km shows the largest 

improvement in both AEV and AEM. Specifically, when the observation arrays are deployed every 150 

km, an area of approximately 81% of the grids over the BJH region shows positive AEV values, and the 

largest improvement in the PM2.5 forecast, reaching 202.64 ug/m3, occurs in Tianjin city (Fig. 9b). 

However, when the lead time is reduced to 12 hours, the mean improvements are less than the forecast 480 

with a lead time of 24 hours, with the AEV varying from 20.92% to 31.01% (exactly from 11.24 to 16.66 

ug/m3) and AEM varying from 27.81% to 40.00% (exactly from 6.95 to 10.00 ug/m3, Table 3). Among 

the 5 observation arrays, the observations with an observation position distance of 90 km show the largest 

improvement in both AEV and AEM, which is different from the optimal observation array of observation 

positions every 150 km deployed 24 hours before the DT. In contrast, the last array has the worst 485 

performance. Overall, if we care about improving the PM2.5 forecast skills at the DT, the optimal 

observation arrays should be deployed over the sensitive areas (i.e., locations in Mongolia) with an 

observation position distance of 150 km 24 hours before the DT, and assimilating the observations could 

reduce the forecast errors by as much as 44.72% at the DT measured by AEV and 40.83% during the 

forecast period measured by the AEM. All these results are also summarized in Table 3. 490 

Table 3 The same as in Table 2, but for the forecast at the DT. 

Lead times Region 30 km 60 km 90 km 120 km 150 km 

 

24 hour 

CNOP 20.87/27.31 30.69/34.28 34.90/35.79 36.89/37.20 44.72/40.83 

Region-W 20.49/14.75 22.01/16.93 18.18/11.23 17.00/10.94 15.74/9.54 

Region-N -0.60/-0.49 -0.92/-0.80 -0.25/-0.91 -0.50/-3.43 -0.15/-2.48 

 

12 hour 

CNOP 26.78/35.44 23.62/31.72 31.01/40.00 23.49/32.60 20.92/27.81 

Region-W -0.45/-1.16 -1.49/-2.86 4.83/2.62 1.09/-0.71 1.81/0.73 

Region-N 15.07/16.64 13.77/15.00 14.11/15.74 14.68/16.39 12.52/15.51 

Through a series of OSSEs, the effectiveness of targeted observation is conducted by deploying a 
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fixed number of observations (15 horizonal grids through 4 pressure levels) and observations deployed 

at different distances are evaluated to determine the optimal observation array. The results shows that 

when the observation number is fixed, an appropriate observing distance, not necessarily a large 495 

observing distance, is essential to obtain the largest improvement of PM2.5 forecast skills. To further 

examine the role of appropriate observing distance, we also conducted the following experiments that 

observations are deployed within a limited area with different observing distances (which corresponds to 

different observation numbers in the limited area). Specifically, we first select a number of 120 most 

sensitive grids as the sensitive area in each of the four forecasts according to the VI value. Within the 500 

given size of the sensitive area, the observing arrays with the distance of 30, 60, 90, 120 and 150km are 

determined, with the same method as the experiments described above. The additional observations are 

assimilated to the control run and the improvements of PM2.5 forecast skills are shown in Figure 10. For 

the two forecasts at the AT and the forecast at the DT with the lead time of 24 hours, the observation 

arrays with a distance of 30km shows the largest improvement in both AEV/AEM. It implies that in the 505 

given size of sensitive area, denser observation sites can better resolve the synoptic initial conditions 

within the sensitive area, which in turn enhance the forecasting skills more effectively. However, for the 

forecast at the DT with lead time of 12 hour, the observations with the distance of 90km show the largest 

improvement. It implies that in this forecast, it is not necessarily much denser observation locations but 

an appropriate one that is much important for improving the PM2.5 forecasts. Thus, it emphasized that the 510 

observations deployed at a large distance or a high density, will not necessarily result in the largest 

improvement of PM2.5 forecast skills. It is suggested that, when we implement the field campaigns, the 

observations should be deployed carefully with an appropriate distance to get the largest benefits. 
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Figure 10 The bar plots of (a)AEV and (b)AEM values of the four forecasts, when the additional 515 

observations are deployed within a limited size of area with different observing distances 
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4.3 A comparison between targeted observations and other additional observations in improving 

PM2.5 forecasts 

The results in Sect. 3.2 show that assimilating targeted observations in the sensitive areas determined 

by the CNOP-type errors can largely improve the PM2.5 forecasting skills (hereafter CNOP-EXPs). To 520 

further illustrate the usefulness of CNOP in identifying the sensitive area for targeted observations, in 

this section, we compare the sensitive areas and other areas surrounding the BTH region. 

Apart from the sensitive areas identified by CNOP-type errors, other areas surrounding the BTH 

region are mainly located in the southwestern, southeastern, eastern and northern parts of the BTH region. 

Previous studies demonstrated that the PM2.5 concentrations in the BTH region are continuously 525 

influenced by weather conditions (especially wind anomalies) in the southwestern and northern parts of 

the BTH region (Sun et al., 2019; Zhang et al., 2018). Specifically, they showed that southwesterly wind 

anomalies tend to transport the polluted air from the southwestern part to the BTH region and that 

northerly wind anomalies blow away BTH pollution. It therefore seems that the PM2.5 forecasts are more 

sensitive to the meteorological conditions along the southwestern (i.e., Shanxi province) and northern 530 

(i.e., Inner Mongolia province) directions of the BTH region. To examine this sensitivity, we select two 

areas in these two directions, which are similar to the sensitive areas identified by the CNOP-type errors 

and surround the BTH region. Specifically, we refer to these two areas as Region-W (100.5-113.5oE, 

29.5-36.0oN) and Region-N (115.5-126.0oE, 42.5-51.0oN), whose area sizes are approximately the same 

as those of the sensitive areas identified by the CNOP-type errors. In each region, we calculate the initial 535 

errors of meteorological conditions that lead to the largest forecast error at the verification time in the 

BTH region, which represents the most sensitive initial errors in this area to PM2.5 forecasts. The 

algorithms are the same as in calculating the CNOP-type errors, but the initial perturbations are restricted 

to only Region-W and Region-N. We also use the vertical integral of the errors (VI) to determine the 

observation arrays and evaluate the sensitivity of PM2.5 forecasting uncertainties to the meteorological 540 

initial errors over these two regions. Specifically, the observation arrays in these two areas are constructed 

with the same configuration as in the area identified by CNOP-type errors. Then, five observation arrays 

are similarly obtained for Region-W and Region-N. Two groups of experiments are implemented 

separately for the abovementioned 4 forecasts, i.e., the forecasts aimed at the AT with lead times of 12 

and 24 hours and those aimed at DT with lead times of 12 and 24 hours. 545 
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The results are shown in Tables 2 and 3. For the 24-hour lead time forecast at the AT, the five 

observation arrays in Region-W are assimilated, and they can improve the PM2.5 forecast skill of the BTH 

region with an improved AEV ranging from 3.16% to 7.60% and AEM ranging from 5.12% to 11.30% 

(see Table 2). These improvements measured by AEV and AEM are approximately one-third of those in 

CNOP-EXPs on average for the five observation array assimilations, with the former being 5.57% and 550 

16.48% and the latter being 8.53% and 25.17% for AEV and AEM, respectively. In particular, although the 

observation array with a distance of 90 km has the best performance for the improvements in the PM2.5 

forecasts in Region-W, this improvement is still lower than that of the worst one among the forecasts 

with the five observation arrays in CNOP-EXPs. When the five observation arrays are deployed over 

Region-N and assimilated to forecast the PM2.5 in the control run, the AEV values at the AT are all negative 555 

for a lead time of 24 hours, which indicates a decline in the forecasting skills for the PM2.5 at the AT 

compared with the control run, whichever observation array is assimilated. For the mean of the forecast 

skill during the whole forecast period (as measured by AEM), the observation array with an adjacent 

distance of 150 km presents a negative value of AEM when it is assimilated to forecast PM2.5, while the 

other four observation arrays present a positive value of AEM, but with the mean improvement being only 560 

1.67%, far less than 25.17% in CNOP-EXPs. It is reasonable that assimilating observations in the Region-

N may result in a worse forecast. Theoretically, if the observations in the area where the forecast is not 

sensitive to the initial values are assimilated, the forecasting skills will be improved slightly or neutral. 

However, when implementing the realistic prediction, the imperfect procedure of data assimilation, the 

observation errors, model errors, the unresolved scales and processes in the model and other combined 565 

effects may induce additional errors (Janjić et al., 2018), which may cause the fact that assimilating 

observations in the unsensitive area results in a worse forecast. That also indicates that the Region-N is 

not the sensitive area for the forecast at the AT. For the 12-hour lead time PM2.5 forecast at the AT, we 

also show that the five observation arrays in Region-W and Region-N present far fewer improvements 

in PM2.5 forecast skills than those in CNOP-EXPs when they are assimilated to forecast PM2.5 (see Table 570 

2). Specifically, the improvements measured by the AEV averaged for the five observation arrays in 

Region-W and Region-N (i.e., 14.08% and -0.33%, respectively) are approximately one-third and one 

hundredth of that (i.e., 36.34%) in CNOP-EXPs, and the improvements measured by AEM (i.e., 15.92% 

and 2.41%, respectively) are approximately one-third and one-twentieth of that (i.e., 43.62%) in CNOP-
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EXPs, respectively. From the above experiments, it is obvious that, for the 24- and 12-hour lead time 575 

forecasts at the AT, the five observation arrays deployed in Region-W (Region–N), although they often 

enhance the forecast skill of PM2.5 against the control run, present amplitudes of improvement in the 

PM2.5 forecast skill significantly smaller than those in the CNOP-EXPs. This shows that the sensitive 

areas for targeted observations of meteorological fields associated with the PM2.5 forecast at the AT are 

most likely to be the ones identified by the CNOP-type errors, rather than Region-W and Region-N. 580 

For the PM2.5 forecasts at the DT, the results also illustrate the strong sensitivity of the targeted 

observations in the sensitive area identified by the CNOP-type errors. Specifically, for the 24-hour lead 

time forecast, the observation arrays in Region-W tend to benefit the PM2.5 forecast, and the improvement 

averaged for five observation arrays is 18.68% for the AEV and 12.68% for the AEM, which are both 

nearly half of those in the CNOP-EXPs; when the five observation arrays are deployed in Region-N, they 585 

all lead to worse forecasts at the DT than the control run, with the AEV varying from -0.92% to -0.15% 

and the AEM from -3.43% to -0.49% (Table 3). For the 12-hour lead time forecasts, the five observation 

arrays deployed in Region-W do not significantly improve the PM2.5 forecast, with AEV values ranging 

from -0.45% to 4.83% and AEM values ranging from -2.86% to 2.62%; in contrast, the five observation 

arrays deployed in Region-N considerably improve the PM2.5 forecasts, with AEV ranging from 12.52% 590 

to 15.07% and AEM ranging from 15.00% to 16.64%, where the observation array with an adjacent 

distance of 30 km shows the best performance of the 5 observation arrays for improving the PM2.5 

forecast skill. Despite this, the improvement is still less than that of the worst forecast in CNOP-EXPs 

with the observation array with an adjacent distance of 150 km. Specifically, the improvements in AEV 

and AEM are 14.03% and 15.85%, respectively, which are both averaged for 5 observation arrays and 595 

approximately 50% lower than those in CNOP-EXPs. Therefore, the sensitive areas for targeted 

observation of meteorological fields associated with the PM2.5 forecast at the DT are the ones identified 

by the CNOP-type errors, i.e., the areas from Huhhot in Inner Mongolia to the Altai Mountains in 

Mongolia for a lead time of 24 hours, and Zhangjiakou and Chengde cities, which lie in the northern part 

of the BTH region for a lead time of 12 hours. 600 

5 Interpretation 

In this section, we further interpret why the sensitive area identified by CNOP-type errors can result in a 
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larger improvement of PM2.5 forecast skill. It is known that dynamic and thermodynamic conditions are 

two key factors that determine the transport and deposition of pollution. With a relatively strong wind, 

pollution could be transported to the downwind region in a short time, while a relatively clam wind could 605 

favor ground pollution accumulation. For the BTH region, northerly winds blow away PM2.5, while 

southerly winds lead to the accumulation of PM2.5 through the blocking effect of the surrounding 

mountains (Zhao et al., 2009). Thermodynamic conditions such as the strong temperature inversions in 

the atmospheric boundary layer are also favorable for the accumulation of air pollutants to form air 

pollution events (Miao et al., 2015). Moreover, an increased temperature may accelerate the production 610 

rate of precursors and secondary pollutants, which contribute to variations in ground-level PM2.5.  

In this paper, we showed that the “control run” either with a lead time of 12 hours or 24 hours 

presents a severe underestimation of PM2.5 at the AT, and a large overestimation of PM2.5 at the DT for 

the heavy air pollution event that occurred from 30 November to 4 December 2017 (see Sect. 3.1). The 

assimilation runs greatly promote the skill of these PM2.5 forecasts by assimilating the targeted 615 

observations in the sensitive areas of the meteorological fields. Now, we interpret why the assimilation 

runs increase the PM2.5 forecast skill for dynamic and thermodynamic reasons. After we compare the 

forecast biases of the control run with lead times of 12 and 24 hours, we find that the forecast biases of 

the control run under the two leading times are almost the same. For simplicity, we present the forecast 

with a lead time of 24 hours. Figure 11 shows the differences in the wind and temperature fields between 620 

the truth run and control run at ground level at the AT and DT with a lead time of 24 hours. The truth run 

presents significant southerly winds with a mean speed of 2.32 m/s over the BTH region (see Fig. 11 (a)), 

while the control run forecasts a southerly wind with a mean speed of 0.74 m/s (see Fig. 11 (b)) and 

exhibits northerly wind biases, as shown in Fig. 11 (c). The weak southerly wind in the control run 

reduces the pollution transported from the south to the BTH region in the truth run, which results in a 625 

significant underestimation of the PM2.5 concentration of the control run at the AT. In addition to this 

dynamic reason, the thermodynamical conditions are also key factors influencing the PM2.5 forecasts. 

Both the truth run and the control run are able to simulate the temperature inversion layer, which prevents 

vertical dispersion of pollutants and promotes the accumulation of surface PM2.5. For the forecasts at 

the AT, the truth run has forecasted 0.11K/100m vertical temperature inversion layers at Dongsi station 630 

in Beijing City (the temperature arises 0.11K every 100m), whist the control run has forecasted 
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0.05K/100m. The mean lapse rate simulated by the truth run over the BTH region is 0.03K/100m and the 

control run has forecasted a 0.002K/100m. So the truth run simulated a more stable thermodynamic 

condition, which is favorable for the accumulation of surface air pollutants. Meanwhile, the negative 

temperature bias in the near surface of the control run decreases the production rate of precursors of 635 

PM2.5 and the negative bias of relative humidity reduces the useful carrier of PM2.5, causing a decrease 

in PM2.5, finally favoring the underestimation of PM2.5 at the AT in the control run. 

 

Figure 11. The wind (vector, unit: m/s) and temperature field (shaded, unit: ℃) forecasts at the ground level 

at the AT with a lead time of 24 hours of the (a) truth run and (b) control run. The differences in wind and 640 

temperature fields between the truth run and control run (control run minus truth run) at the AT are shown 

in (c). (d-e) are the same as (a-c) but for the forests at the DT. 

From the above, it is clear that the control run exhibits northerly wind, a less table boundary layer, 

low temperature and relative humidity biases at the AT relative to the truth run. However, after 

assimilating the artificial meteorological variables over the sensitive areas determined by the CNOP-type 645 

errors to the initial analysis field of the control run, the PM2.5 forecasts are promoted in forecasting skill. 

For the forecasts with lead times of 12 and 24 hours, the interpretations of why the assimilation runs 

increase the PM2.5 forecast skill and its related mechanisms are similar. For simplicity, we present the 

interpretations in detail for the forecast with a lead time of 24 hours. In Fig. 12, we plot the spatial 

evolution of the 24-hour forecast differences of wind and PM2.5 concentrations between the CNOP-EXP 650 

and control run. From Fig. 12 , we can see that the sensitive areas for the PM2.5 forecast at the AT are 
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mainly located in the southern and northwestern parts of the BTH region (also see Fig. 7), and 

assimilating meteorological observations over the sensitive areas increases the southerly wind in the 

southern part of the BTH region at the initial field and finally enhances the southerly wind by 0.18 m/s 

over the BTH region at the verification time, which is helpful for transporting southern pollution to the 655 

BTH region. Between the two areas, the sensitive area near the Inner Mongolia plays a more dominant 

role on the PM2.5 forecast of BTH region, by inducing a larger southerly wind component. In addition, 

the assimilation run has forecasted 0.06K/100m temperature inversion layers at Dongsi station and the 

mean lapse rate over the BTH region has reached to 0.004K/100m. The slightly improved thermodynamic 

conditions further result in the modifications of the boundary layer structure featuring a decreased PBL 660 

height. The mean boundary layer height over the BTH region has decreased from 261m in the control 

run to 256m in the assimilation run, which also contributed to the increased ground level PM2.5 pollution 

and improved the PM2.5 forecast skill in the assimilation run. Moreover, assimilating the targeted 

observations increases the initial temperature and relative humidity in the western parts of the BTH 

region and decreases them in the northwestern parts of the BTH region. Then, the western warm air 665 

moves easterly, and the northwestern cool air moves southeasterly, which finally decreases the 

temperature by 0.05 °C and the relative humidity by 0.6% at the AT over the BTH region. Decreased 

temperature and relative humidity are not beneficial for the formation of PM2.5. From the above analysis, 

it can be found that the improvements in the PM2.5 forecast skill in assimilation runs result from the 

increased south wind and more stable boundary layer during the accumulation process. 670 
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Figure 12: The spatial evolution of the forecast differences of ground wind (vector, unit: m/s) and PM2.5 

concentrations (shaded, unit: 𝛍𝐠/𝐦𝟑) between the assimilation run (CNOP-EXP with the observing distance 

of 90km) and control run starting from 02:00 1 December with lead times of (a) 1-hour, (b) 6-hour, (c) 11-

hour, (d)16-hour, (e) 21-hour, and (f) 24-hour. 675 

For the forecast at the DT, the truth run presents a large northerly wind with a mean speed of 5.24 

m/s, as shown in Fig. 11(d), which blows the pollution from the BTH region to the south. However, the 

control run forecasts a southerly wind with a mean speed of 1.82 m/s (Fig. 11 (e)), which is the reverse 

of the truth run and might transport more pollution from the southwestern part to the BTH region than 

from the BTH region to the south in the truth run, finally contributing to the overestimation of the PM2.5 680 

concentration in the control run. Meanwhile, the control run also presents a warm temperature and much 

higher relative humidity biases, which prevent the dissipation of PM2.5 over the BTH region and favors 

the overestimation of PM2.5 at the DT (see Fig. 11(f)). When the targeted observations are assimilated to 

the control run at 24 hours before the DT and then the assimilation run is formulated, it increases the 
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northerly wind and decreases the temperature and relative humidity in the sensitive areas at the initial 685 

time, which subsequently drives much cool and dry air in the sensitive area (i.e., the northwestern part 

of the BTH region; also shown in Fig. 7) to the south and accumulates over the BTH region (see Fig. 13), 

finally decreasing the temperature and relative humidity over the BTH region at the verification time, 

improving the forecasts of the PM2.5 concentrations in the assimilation run at the DT. It is obvious that 

the improvement of both the dynamic and thermodynamic conditions is responsible for the increase in 690 

the PM2.5 forecast skill at the DT in the assimilation run. 

 

 

Figure 13: The same as in Figure 12, but for the forecast starting from 14:00 on 2 December. 
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6 Summary and discussion 695 

Motivated by the important role of the meteorological initial field in air quality forecasts, we make the 

first attempt in applying the targeted observation strategy of the meteorological fields with the CNOP 

approach to the improvement of PM2.5 forecasts using the WRF-NAQPMS model. By considering a 

heavy haze episode that occurred from 30 November to 4 December 2017 in the Beijing-Tianjin-Hebei 

region, we explore the effect of possible “targeted observations” on PM2.5 forecasts during both the 700 

accumulation and dissipation periods of the haze event, where the targeted observations are represented 

by observation arrays consisting of 15 evenly and horizontally distributed grids through 4 pressure levels 

(i.e., 950, 850, 750, 500 hPa) in the sensitive areas identified by the CNOP-type errors and that include 

horizontal wind, temperature, and relative humidity components. 

To improve the PM2.5 forecast during the accumulation and dissipation periods of the haze event, 705 

forecasts with lead times of both 12 and 24 hours are investigated, where the AT (i.e., accumulation time, 

02:00 BJT on 2 December) and DT (i.e., dissipation time, 14:00 BJT on 3 December) are selected as the 

verification times (i.e., the forecast times), respectively. We first calculate the CNOP-type errors for these 

4 forecasts separately. Then, since the CNOP-type errors concentrate on different vertical levels and in 

different horizontal areas for different meteorological variables, including wind, temperature and 710 

moisture components, we propose using the vertical integral of CNOP-type errors to measure the 

comprehensive sensitivity of initial errors and to determine the sensitive areas for targeted observations 

of meteorological fields associated with the PM2.5 forecasts. The results show that for the verification 

time AT, the sensitive areas identified by CNOP-type errors mainly concentrate in Dezhou city and central 

Inner Mongolia for a lead time of 24 hours and in Beijing and Tianjin cities for a lead time of 12 hours; 715 

for the verification time DT, the sensitive areas are determined as the region from Huhhot in Inner 

Mongolia to the Altai Mountains in Mongolia for a lead time of 24 hours and the region around 

Zhangjiakou and Chengde cities for a lead time of 12 hours. 

Numerically, we conducted a series of OSSEs to explore whether the possible “targeted observations” 

in the above sensitive areas can improve the PM2.5 forecasts of the BTH region and then to infer the 720 

usefulness of these sensitive areas in implementing practical field observations. For each of the 4 

forecasts, we tried different observation arrays of 15 evenly and horizontally distributed grids through 4 

pressure levels in the sensitive areas and assimilated them to the initial fields for evaluating the 
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improvement of PM2.5 forecasting skill, finally suggesting a more useful observation array for improving 

the forecasts at the AT and DT. Specifically, for the forecast at the AT, the observation array with a grid 725 

space of 90 km in the sensitive area is more effective for a 24 hour lead time and a grid space of 150 km 

performs the best for a 12 hour lead time; however, for the forecast at the DT, the observation array of a 

grid space of 150 km leads to a better forecasting skill at a 24 hour lead time while that with a grid space 

of 90 km results in a higher forecasting skill at a 12 hour lead time. To further confirm the usefulness of 

CNOP in identifying the sensitive area for targeted observations, we compare the improvements of PM2.5 730 

forecasts after assimilating “targeted observations” in the sensitive areas and the additional observations 

in the areas along the southwestern (Region-W) and northern (Region-N) directions of the BTH region 

suggested by previous studies. The results show that the improvements of the PM2.5 forecasting skills 

with the additional observations deployed in Region-W and Region-N are significantly smaller than those 

in the sensitive areas determined by the CNOP approach; in particular, assimilating the additional 735 

observations over Region-W and Region-N cannot ensure a positive forecast benefit. All these results 

indicate that preferentially implementing additional observations in the sensitive area determined by the 

CNOP approach is more likely to significantly improve the PM2.5 forecasts. 

Physically, we interpret the reason why the possible targeted observations can significantly improve 

the PM2.5 forecasting skill by comparing the relevant meteorological fields before and after assimilation. 740 

Since the interpretation and its related mechanisms are similar for the forecasts with lead times of 12 and 

24 hours, we present only the interpretations in detail for the forecast with a lead time of 24 hours. During 

the accumulation process, the control run forecasts a weaker southerly wind and a less stable boundary 

layer at the AT, which is unfavorable for the accumulation of PM2.5 and finally leads to a severe 

underestimation of PM2.5 at the AT. When the targeted observations are assimilated to the control run, the 745 

southerly wind increases in the southern part of the BTH region at the initial state and finally enhances 

the southerly wind over the BTH region at the verification time. The increased southerly wind transports 

more PM2.5 from the south to the BTH region and improves the PM2.5 forecasting skills of the control 

run at the AT. The assimilation also induces a more stable boundary layer in the assimilation run, which 

contributed to the increased ground level PM2.5 pollution and improved the PM2.5 forecast skill. For the 750 

forecast at the DT, the control run exhibits large southerly wind and positive temperature and relative 

humidity biases, which prevents the dissipation of PM2.5 and results in an overestimation of PM2.5 at the 
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DT. When the targeted observations are assimilated to the control run, it increases the northerly wind and 

decreases the temperature and relative humidity in the sensitive areas at the initial state. The increased 

northerly wind drives the cool air in the sensitive area southward and finally blows more PM2.5 from the 755 

BTH region to the south, which improves the PM2.5 forecasting skills of the control run at the DT. 

The present study provides numerical and physical evidence that the sensitive areas of 

meteorological initial fields associated with the PM2.5 forecasts indeed exists and deploying “targeted 

observations” of meteorological fields in the sensitive areas determined by the CNOP approach can 

significantly improve PM2.5 forecasts. Such results formulate a theoretical basis to implement practical 760 

field campaigns associated with air quality forecasts. In the practical field campaigns, though the 

reanalysis data cannot be obtained in time, one can choose the forecast data from ECMWF, which are 

widely regarded as the best and most reliable forecast data currently, as initial field to yield a better 

forecast. Based on this forecast, one can compute the CNOP-type error to identify the sensitive area and 

design the relevant field observation networks. Such ideas have been applied on real-time typhoon 765 

forecasting and it has been verified to be able to improve greatly the typhoon forecasting skills (Duan 

and Qin., 2022; Qin et al., 2022). It is also noted that even if sufficient observations exist, the results in 

the present study can tell us which area of the observations should be preferentially assimilated to 

improve air quality forecasts. 

As the first attempt to study the effect of targeted meteorological observations on improving air 770 

quality forecasts, we only utilized one event and, in the future, more events should be investigated to 

obtain a systematic and comprehensive conclusion about how to deploy targeted observations to improve 

PM2.5 forecasts. Meanwhile, in the present studies, finite meteorological variables (wind, temperature, 

pressure, and water vapor) are selected to represent the sensitivity of meteorological initial fields on 

PM2.5 forecasts. Though they are recognized as important meteorological variables on PM2.5 forecasts 775 

over the BTH region (Chen et al., 2020), to get a comprehensive conclusion, the sensitivities of more 

meteorological parameters such as boundary layer height and atmospheric stability, which may not 

belong to an initial value problem but can be explored by the extension of CNOP method, such as CNOP-

parametric perturbation (CNOP-P; Mu et al, 2010) or nonlinear forcing singular vector method (Duan 

and Zhou, 2013). Also, a WRF with the horizontal resolution of 30 km was preliminarily tried in the 780 

present study. Beyond doubt, this resolution is relatively low for the PM2.5 forecasts. Nevertheless, the 



36 

 

sensitive areas revealed in the present study are still instructive for practical field observations of PM2.5 

forecasts because of the verifications through a series of OSSEs and reasonable physical interpretation 

shown in the context. In any case, a WRF with much higher resolution should be used in the future. In 

addition, only two verification times were adopted for determining sensitive areas and dependence of 785 

sensitive areas on forecasting times was not explored, which will be addressed in next paper.     

In addition to meteorological inputs, emissions are also a key input for air quality forecasts. Accurate 

emission inputs are difficult enough in terms of their high uncertainties in time and 3-D space, and it is 

also challenging to satisfy the need for highly confident simulations of a specific event (Peng et al., 2017). 

Targeted observation may be a better strategy to improve the quality of emissions, and the determination 790 

of sensitive areas of emissions is certainly important. Previous studies have adopted the singular vector 

decomposition and adjoint sensitivity methods to identify the sensitive area for the emissions (Daescu et 

al., 2003; Goris and Elbern, 2013). However, it should be noted that the above two strategies are based 

on linear approximation of initial error evolutions and deploying the observations over the sensitive areas 

identified by these two strategies may not result in the largest improvement over the verification area, 795 

especially for the medium- and longer-range forecasts (Wang et al., 2011). Our current study represents 

the first step in studies of targeted observation strategies of meteorological variables associated with air 

quality forecasts with the application of CNOP, and only observations of meteorological fields are 

explored. Then, targeted observations of emissions based on the CNOP approach are expected to be 

studied for air quality forecasts in the future. 800 
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