
Response to Referee #1 

We would like to thank the referee for reviewing the manuscript and providing the 

valuable comments and suggestions. We are sorry that for some sentences we did not 

make them clear in the manuscript. We will update our manuscript following the 

suggestions. Below we answer the specific comments point by point. For readability 

the comments are shown in bold and italics. 

Review Comments: 

The authors study the optimization of observation locations (targeted observation) 

to achieve an improved forecast for particulate matter. Interestingly they provide an 

example of a severe haze event in the Beijing area where early warnings by the 

authorities failed to be timely issued. This topic has attracted interest since more 

than a decade ago, in recent years also in the realm of atmospheric chemistry. It is 

strongly linked with research on predictability, observability and data assimilation. 

A wealth of methods has been devised, or derived from existing techniques found in 

the aforementioned realms. 

In their study “Toward target observations of the meteorological initial state for 

improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing-

Tianjin-Hebei region” by Yang Lichao, Duan Wansuo, Wang Zifa, and Yang 

Wenyi addressed the optimisation of measurement deployment for full and 

atmospheric chemistry application by devising a meteorological problem of optimal 

measurement dislocation. In my review I question this strategy with some detail, 

encouraging the authors to refute my demurs. 

Methodology: 

The motivation of the work where’s to improved aerosol forecast which failed 

significantly in the case study selected not fault booked. So, there might be different 

reasons for this failure notably a faulty emission inventory or degraded weather 

forecasts. In their approach the authors seeked the reason only in the weather 

forecast. Hence, they tried to improve the prediction by better located 

meteorological observations which they assimilated to obtain better initial values 

for the forecast. The other option let the forecast deficiencies might result from 

faulty emission inventories was not considered is out giving any evidence of reason. 

The authors quite deliberately declared a better forecast resulting from era 5 

reanalysis to be the truth while another one from GSE was declared control which 

verse aspired to be improved by additional and optimally located observations. The 

resulting simulation product provided the improved forecast in relation to the 

control room but not as good as the truth run identity fight before. The statistical 

analyses of the assimilation run were then provided as quantitative proof of 

concept. 



My critique addresses several items. 

1.1 Firstly, how would the method provide reasonable results if not the 

meteorological forecasts are deficient but the emission inventory, which are in 

fact often poorly known. Figure 1 of the manuscript does not give any 

indication that the major discrepancy is only due to meteorological prediction 

flaws.  

Response: We agree that the uncertainties occurring in both emissions and 

meteorological fields cause the forecast uncertainties of PM 2.5. In fact, the errors of 

model itself are also influencing the forecasting uncertainty of PM2.5. Furthermore, the 

forecasting errors caused by these uncertainties are interactive and it is difficult to 

quantify exactly their respective contribution. In Figure 1, it, as the reviewer said, does 

not give any indication that the major discrepancy is only due to meteorological 

prediction flaws. In fact, we did not state that the PM2.5 forecasting uncertainties are 

solely from meteorological forecasting prediction flaws. Especially, when comparing 

the simulations with observations in Figure 1, we have to say that the PM2.5 forecasting 

uncertainties are from the combined effect of meteorological prediction flaw, model 

uncertainties, and emission inventory uncertainties. In the present study, we consulted  

a few previous studies which have demonstrated the important role of meteorology field 

on PM2.5 forecasts in the BTH region (Bei et al., 2017; Gilliam et al., 2015); meanwhile, 

our results also showed that the PM2.5 forecasting uncertainties are sensitive to the 

initial uncertainties of meteorological field (see the two simulations in Figure 1, which 

were obtained by integrating the WRF-NAQPMS with different initial meteorological 

fields but with the same emission inventory and model) despite they are not necessarily 

the most important error source of PM2.6 forecasting uncertainties; and we decided to 

focus on the meteorology uncertainties in the present study, but leaving uncertainties 

of model errors and emission inventory to be explored in the future.  

To identify the initial error effect of meteorology, we adopt the idea of Lorenz 

(1965) on two types of predictability problems. The first focuses on the effect of initial 

error growth with an assumption of perfect model while the second is to assume a 

perfect initial field for exploring the effect of model error growth. The present study 

follows the idea of the first type of predictability problem; and to separate the initial 

meteorological error effect, an assumption of perfect model is done. For the WRF-

NAQPMS model, we also have to additionally assume the emission inventory is perfect 

and keep the emission inventory in all the simulations the same. Similar doings are also 

used in the previous studies for air quality simulations or forecasts, e.g. Gilliam et al. 

(2015) and Bei et al. (2017), etc. However, whichever it is initial field or model, even 

emission inventory, it certainly consists of uncertainties. So, in the present study, we 

have to take the better simulation initialized by the ERA5 (which was obtained by 

assimilating all available observations with more advanced model by ECWMF and can 

therefore be a good approximation to the truth except for observations) as “truth run” 

because we cannot obtain observations from the Monitor center; and the worse 

simulation initialized by GFS forecast data as “control forecast” to separate the initial 

error effect. It is believed that the reduction of the bias between the “truth run” and the 



“assimilation run” due to the assimilation of targeted observations can indicate the 

decrease of the bias between the assimilation run and real observations of PM2.5 

concentration.   

1.2 In addition, if both forecasts, that is the truth and the control run, suffer from 

the same problem, as for example poor boundary layer height simulations, then the 

method proposed incapable to give any evidence of any source of error. 

Response: We thank the valuable comments. When both forecasts, that is the 

truth and the control run, suffer from the same problem, as for example poor boundary 

layer height simulations, then associated forecast uncertainties are included in the 

difference between simulations and observations. The differences of the two 

simulations in Figure 1 can only indicate the sensitivity of PM2.5 forecast to the 

accuracy of initial meteorological field. If one will identify the role of boundary layer 

uncertainties in yielding PM2.5 forecasting uncertainties along similar thought 

presented in this study, the PM2.5 simulations should be made with the same initial 

meteorological field and the same emission inventory but different boundary layer 

schemes to reveal the role of boundary layer uncertainties. Based on these 

simulations, an extension to the CNOP method, CNOP-parametric perturbation 

(CNOP-P; Mu et al, 2010) or nonlinear forcing singular vector (Duan and Zhou, 

2013), can be used to identify the sensitivity of boundary layer. And we thank the 

referee for providing us a great research idea for our future studies. 

2.1 Secondly, I put the assimilation procedure in question. So let us assume the 

authors are right in their suspicion, that the meteorological forecast is the source of 

misprediction of the aerosol concentrations. A sound synoptic description of the 

weather situation and its evolution is lacking as are appropriate surface weather 

charts.  

Response: As argued above, we did not emphasize that the metrological forecast 

uncertainties is the unique source of the misprediction of the PM2.5 event. In the 

present study, we find that the PM2.5 forecasting is sensitive to the initial uncertainties 

of meteorological field (see the two simulations in Figure 1) and investigate the role 

of the targeted observation for meteorological field in improving PM2.5 forecasting 

skill, but leaving the uncertainties of model itself and emission inventory to be 

explored in the future. In addition, it is very difficult for us to obtain the 

meteorological observations from the Monitoring centers; then we adopt the more 

efficient ERA5 data that one often uses as initial value for the model to study 

meteorological predictability. Therefore, it is hard to plot the weather charts 

corresponding to the difference between simulation and observation. Nevertheless, 

when we evaluated the role of targeted observations of meteorological field in the 

manuscript, we plotted the weather charts before and after assimilating targeted 

observations and showed the weather conditions for improving PM2.5 forecasting skill 

(see Figures 10-11). 



2.2 In addition, a discussion on the boundary heights and stability would be in 

place, as these are a critical parameters, controlling the capture of emissions.  

Response: We thank your valuable suggestions. We will add more discussions on the 

boundary heights and stability in the revised manuscript. Specifically, during the 

accumulation process, both the truth run and the control run are able to simulate the 

temperature inversion layer, which prevents vertical dispersion of pollutants and 

promotes the accumulation of surface PM2.5. For the forecasts at the AT, the truth run 

has forecasted 0.11K/100m vertical temperature inversion layers at Dongsi station in 

Beijing City (the temperature arises 0.11K every 100m), whist the control run has 

forecasted 0.05K/100m. The mean lapse rate simulated by the truth run over the BTH 

region is 0.03K/100m and the control run has forecasted a 0.002K/100m. So the truth 

run has a more stable thermodynamic condition. After the assimilating the targeted 

meteorological variables to the control run, the assimilation run has forecasted 

0.06K/100m temperature inversion layers at Dongsi station and the mean lapse rate 

over the BTH region has reached to 0.004K/100m. The slightly improved 

thermodynamic conditions further result in the modifications of the boundary layer 

structure featuring a decreased PBL height. The mean boundary layer height over the 

BTH region has decreased from 261m in the control run to 256m in the assimilation 

run, which also contributed to the increased ground level PM2.5 pollution and 

improved the PM2.5 forecast skill in the assimilation run. 

2.3 What happens, if both truths run and control run err with the stability in the 

same way, but differ in , say, as in this paper, in the horizontal wind direction? In 

this case, the CNOP type error is critically incomplete.  

Response: We think the comment may consist of two questions. The first is “What 

happens if both the truth run and control run suffer from error with stability in the same 

way?”. When both the truth run and control run suffer from the same problem, then 

associated forecast uncertainties are included in the difference between simulations and 

observations. As we explained in Comment 1.1, the differences between the simulations 

and observations may be attributed to the uncertainties of meteorology, emission 

inventory and model itself. In the present study we only focus on the effect of 

meteorological initial errors on the PM2.5 forecasts. To separate the initial effect, we 

adopt the same model and same emission inventory but different meteorological initial 

fields to verify the sensitivity of meteorological initial conditions on PM2.5 forecasts. 

And the CNOP, which can represent the most sensitive initial errors, is calculated based 

on the better simulation, as we explained in Comment 3. As for the error related to the 

stability in the truth, it may be attributed to the initial errors existing in the reanalysis 

(ERA5) or the model itself. In that case, we admit that the CNOP-type error based on 

the “truth run” may be incomplete, since the reanalysis is not the real truth and the 

model is not a perfect model. However, as we explained in Comment 3, since we are 

not able to obtain the meteorological observations from the Monitoring centers, we have 

to adopt the more efficient ERA5 data as initial values and more advanced WRF model 

to study the meteorological predictability. 



The second question is “the components of CNOP type error may be incomplete 

if only the horizonal wind is included but excluding the stability”. Actually, the stability 

is not a direct meteorological variable, but a variable related to temperature. 

Meteorological conditions, such as the wind, temperature, relative humidity, stability, 

boundary layer height, precipitation all have significant impacts on the regional PM2.5 

forecasts in CTMs (Godowitch et al., 2011). Chen et al., (2020) reviewed hundreds of 

papers on the meteorological factors on PM2.5 concentrations for the BTH region, and 

they concluded that the wind and humidity are the dominant meteorological factors 

(Table 1 in Chen et al., (2020)). In our study, to include as many meteorological 

variables as possible as the components of CNOP type error, we use the total energy 

norm, which includes the wind, temperature, water vapor mixing ratio and pressure 

perturbations, to constrain the CNOP. According to the results obtained by Chen et al., 

(2020), we think the variables considered in the CNOP are adequate.  

2.4 The method proposed by the authors is designed to deploy 15 different 

observation locations which might be the key to the sufficiently well performing 

forecast. So, all in all they select 15 times four height levels times 4 meteorological 

parameters that means individual 240 observations and tested the performance of 

these idealized network with respect to varied distances. In fact this is a variable the 

radiosonde network or air borne drop sonde area placed windward of the area of 

interest to be predicted. Leaving aside the practicability, I put into question the 

benefit for improved forecast with 3D-var by localized observations, given the 

synoptic balance conditions to be fulfilled. The authors result indicates this: 

Looking at Fig. 9, panels a) and b), it appears to be likely that the eastern side of a 

high pressure system (northerly winds) at the eastern side of the panels is shifted 

further eastbound in the truth run (a), than in the control run. It is not possible to 

correct this error by assimilation of data from a localized observation network 

alone. 

Response: Yes, the reviewer got a right conclusion. It is not possible to correct this 

error by assimilation of data from a localized observation network alone. In fact, the 

“target observation” is to deploy few additional observations in some localized areas 

(sensitive areas) where the additional observations are expected to just have a large 

contribution to reducing the prediction error in the given verification area (Snyder., 

1996), rather than other areas. In Figure 9, we agree that the eastern side of a high 

pressure system at the eastern side is shifted further eastbound in the truth run than in 

the control run; and assimilating the targeted observation does not correct the error. 

Actually, the sensitive area for targeted observation in the present study is determined 

on the verification area, i.e. the BTH region (i.e. the black rectangle in the figure 9). 

That is to say, assimilating the targeted observation is to preferentially improve the 

meteorological field in the verification area- BTH region, rather than other regions. 

Therefore, it is reasonable, as the reviewer pointed, the forecast errors in the high 

pressure system cannot be corrected by targeted observation. This may also indicate 

that the high pressure system at the eastern side does not play the dominant role in 

influencing the PM 2.5 in BTH in this event.   



    

3. How should the set-up with two model runs operate practically? How do we find 

the “real truth”? In fact, the only thing what can be done is to achieve an 

optimal meteorological forecast in general, with all available observations. After 

this, optimal sensitivity areas can then be identified for chemical concentration 

measurements, not for meteorological observations, because the truth is not 

known. Recommendation:  To account for these problems, the authors are 

encouraged to change their validation strategy and conduct numerical 

experiments, where the emission inventory is taken as true and a nature run 

produces artificial (“synthetic”) aerosol concentration observations, which then 

are to be reproduced by the proposed targeted observation procedure, analog to 

Observation System Simulation Experiments (OSSE) made in data assimilation 

developments. 

Response: We thank your valuable comments. Yes, to apply the targeted observation 

procedure on the emission inventory is a good idea. As we discussed in Lines 704-

710, “targeted observation may be a better strategy to improve the quality of 

emissions, and the determination of sensitive areas of emissions is certainly 

important. Implementing additional and/or optimizing environmental monitoring 

stations according to the sensitivity of targeted observations and obtaining more 

useful observations will lead to significant improvement of air quality forecasting 

skills”. That is to say, we have realized that this is also an important work. Actually, 

both the emission and meteorology may substantially influence the PM2.5 forecast. 

The study of targeted observations on both meteorology and emission is meaningful, 

but that would be accomplished step by step. In the current study, we focus on the 

targeted observations on meteorology forecasts first. Our current study represents a 

first step that the CNOP algorithm of targeted observations is applied to the studies of 

air quality forecasts. Then, target observations of emissions identified by CNOP are 

expected to be studied for air quality forecasts in the near future. 

To investigate targeted observations, the Observing System Experiments (OSE) 

and Observing System Simulation Experiments (OSSEs) are typically designed to use 

the data assimilation ideas to investigate the potential impact of prospective observing 

systems (observation types and deployments) (Lahoz et al., 2010). The OSE consist of 

a control run in which all the observational data are assimilated; and an assimilation run 

from which the observation type under evaluation is excluded while all the other 

observations are kept as the same as in the control. A comparison of forecast skill 

between the control run and the assimilation run against the observations will be 

evaluated (Lahoz et al., 2010) and the role of observation under evaluation is revealed. 

However, under many circumstances, we are not able to obtain the observations due to 

varying reasons. Then the OSSE is developed. The structure of an OSSE is formally 

similar to that of an OSE with one important difference: OSSEs are assessment tools 

for new data, i.e., the data obtained by hypothetical observing systems that do not yet 

exist. Then an OSSE consists of a reference atmospheric state, which is usually done 



with a good quality model with a good initial value. It is often called the “truth run”, 

from which artificial “observations” are constructed and against which subsequent 

OSSE experiments are verified. Related to the targeted observation here, the OSSE can 

include a control run that is obtained by assimilating artificial observations constructed 

based on the “truth run” and an assimilation run that is generated by assimilating 

additional artificial observations. A comparison of forecast skill between the control 

and assimilation runs against the truth run will be evaluated to reveal the role of targeted 

observations (Lahoz et al., 2010). In the present study, we are not able to obtain the 

observation data from the Monitor Center to evaluate the simulation by OSE. So we 

use the OSSE instead, in which, although the “truth run” is not yielded by assimilating 

the observations but by directly assigning more efficient reanalysis data ERA5 to 

generate the initial field (which was obtained by assimilating all available observations 

with most advanced model by the ECMWF and can therefore be a good approximation 

to the truth). Particularly, we take the better simulation initialized by ERA5 as the “truth 

run” and the worse simulation initialized by GFS forecast data as the control run; while 

the run after assimilating the targeted observations is taken as the assimilation run. 

When we use the ERA5 reanalysis data, we are able to simulate the heavy hazy event 

much better, but it is failed in Monitor center. So it is acceptable to take the ERA5 

simulation as an approximation to the real state of atmosphere and it will also be helpful 

for separating the initial effects. Then the comparison of forecast skills between the 

control and assimilation runs against the truth run will judge the usefulness of targeted 

observations associated with initial meteorological fields. It is inferred that if the 

forecast bias between the “truth run” and the “assimilation run” due to the assimilation 

of targeted observations are largely reduced, the bias between the assimilation run and 

real observations of PM2.5 concentration will also decrease.  

The CNOP method, similar to the approach of data assimilation, is generally 

operated with an assumption of perfect model. So the sensitive area for targeted 

observation should be identified based on a scenario of perfect model and the CNOP 

should be calculated by a perfect model, then such a sensitive area is the true sensitive 

area. However, whether it is model or initial field, there are uncertainties. Therefore, 

in the studies of targeted observations, one has to adopt the model of good quality and 

obtain a good simulation and then compute the CNOP superimposed on the 

simulation. In the present study, we, to achieve a good simulation, adopted the ERA5 

reanalysis as initial field and integrated the advanced WRF model because we cannot 

obtain real observations from the Monitor Center. However, in field campaigns, one 

even cannot obtain reanalysis in time. In this situation, one can choose the forecast 

data from ECMWF, which are widely regarded as the best and most reliable forecast 

data currently, as initial field to yield a better forecast. Based on this forecast, one can 

compute the CNOP-type error to identify the sensitive area. Such idea has been 

applied on typhoon forecasting by the authors’ group and when the useful real-time 

typhoon observations are obtained, it has been verified to be able to improve greatly 

the typhoon forecasting skill (Duan and Qin., 2022; Qin et al., 2022). In the present 

study, we adopt the ERA5 reanalysis, which is of less uncertainty than the forecast 



data from ECMWF and is helpful for achieving a much reliable sensitive area for 

meteorology associated with PM2.5 forecast.  

As for the studies of targeted observations on aerosol concentrations, the strategy 

suggested by the reviewer is much realistic, because the emission inventories can be 

taken as real observations, rather than the simulated observations generated from the 

model like what we did in the present study due to the unavailable observations. We 

thank the referee’s suggestion and will adopt the great research idea in the study of 

emission uncertainties. 

 

Literature: 

4. The authors claim that they are the first to transfer the method of targeted 

observation to atmospheric chemistry, which does not at all apply! Regrettably, 

it appears that the authors are not aware of the number of meanwhile growing 

set of papers on this very matter. Some relevant papers are given here for 

convenience. Studies focusing on atmospheric chemistry observation targeting, 

explicitly or implicitly, are indicated by boldface letters, and merit special 

attention. As the authors focus on meteorological targeted observations I 

include several other studies on that issue, which might also be considered. 

Recommendadtion: We strongly recommend who review this literature given below. 

Bellsky T, Kostelich EJ, Mahalov A (2014) Kalman filter data assimilation: targeting observations 

and parameter estimation. Chaos 24(2):024406. https://doi.org/10.1063/1.4871916 

Berliner, L. M., Lu, Z., and Snyder, C.: Statistical design for Adaptive Weather Observations, J. 

Atmos. Sci., 56, 2536–2552, 1998. 

Bishop, C. H. and Toth, Z.: Ensemble Transformation and Adaptive Observations, J. Atmos. Sci., 

56, 1748–1765, 1998. 

Buizza, R., Cardinali, C., Kelly, G., and Thepaut, J. N.: The value of targeted observations, ECMWF 

Newsletter, 111, 11–20, 2007. 

Daescu, D. N. and Carmichael, G. R.: An Adjoint Sensitivity Method for the Adaptive Location of 

the Observations in Air Quality Modeling, J. Atmos. Sci., 60, 434–450, 2003. 

Goris N, Elbern H (2013) Singular vector decomposition for sensitivity analyses of tropospheric 

chemical scenarios. Atmos Chem Phys 13:5063–5087. https://doi.org/10.5194/acp-13-5063-2013 

Goris N, Elbern H (2015) Singular vector based targeted observations of chemical constituents: 
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104, 18715–18738, 1999. 
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Chemical Transport Models, Mon. Weather Rev., 134, 2443–2465, 2006. 
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https://doi.org/10.1063/1.4871916


Ensemble based targeting experiments during FASTEX: the impact of dropsonde data from the Lear 

jet. Q J R Meteorol Soc 125:3189–3218. https://doi.org/10. 1002/qj.49712556105 

Wu X, Jacob B, Elbern H (2016) Optimal control and observation locations for time-varying 

systems on a finite-time horizon. SIAM J Control Optim 54(1):291–316. https://doi.org/10.1137/ 

15M1014759. 

Wu, Xueran; Elbern, Hendrik, Jacob, Birgit; The assessment of potential observability for joint 

chemical states and emissions in atmospheric modelings, Stochastic Environmental Research and 

Risk Assessment https://doi.org/10.1007/s00477-021-02113-, 2022. 

Response: We are sorry that we did not conduct a fully literature review. We thank 

the referee for listing the related papers, especially the publications of targeted 

observation in atmospheric chemistry. We have read all the recommended literature 

carefully and will cite them in the revised manuscript. The sentences such as “the first 

application on the atmospheric chemistry” will be modified in the revised manuscript. 

5. The paper is in fact about an algorithm for targeted observations. As such no 

results for atmospheric chemistry per se are offered and can be expected. So it is 

suggested to submit the manuscript to GMDD rather than ACPD. 

 Response: We thank the referee’s comment. However, we do not think our paper is 

just an algorithm or a technical paper. In fact, it is a study on the application of the 

CNOP algorithm to identify the sensitive area for targeted observations of 

meteorological initial fields associated with the PM2.5 forecasts. The relevant physical 

process and explanations on how the targeted observations of meteorological initial 

conditions in the sensitive area leads to the improvement of the PM2.5 forecasts is also 

investigated in the paper. According to the scope of ACP, our study contributes to 

understand how the meteorological initial states influence the transportation and 

accumulation of PM2.5 concentrations by atmospheric dynamic and/or heating, etc., 

which belongs to the study of atmospheric physics processes related to the PM2.5 

variations.  

Our study also provided a potential application prospect in identifying the 

sensitive area for emission inventories. Although other methods such as singular 

vector, adjoint sensitivity, and ETKF provided by literatures listed by the referee can 

also be used, they are approaches of linear approximation. The CNOP considers fully 

effect of nonlinearity and overcomes the linear limitation of the traditional approaches 

and presents the most sensitive initial perturbation (Mu et al., 2003), then being able 

to effectively identify the sensitive area for targeted observations. This argument has 

been verified by a lot of studies (Mu et al., 2009; Chen et al., 2013). Therefore, if this 

article is published in ACP, it can be expected that CNOP algorithm and its potential 

applications on emission inventories will be known by more researchers in the field of 

atmospheric chemistry. It is also expected that the CNOP can be a useful approach to 

addressing problems of air quality forecasts. So it is very anticipated that this article 

can be published in ACP after addressing all concerns of reviewers. 



Specific remarks: 

1. The authors should use the term targeted observations throughout, as in the 

paper by Majumdar. (Not target observations. Majundar made only deviations 

by grammatical reasons.) 

Response: We will modify “target observations” to “targeted observations” 

throughout the paper. 

2. Discussion of emission inventory uncertainty and other uncertainty sources. 

There is a well-established corpus of literature addressing uncertainty sources 

of chemistry transport model, where meteorological uncertainties are only one 

among others. The authors’ decision to solely focus on meteorology needs a 

sound quantification.  

Response: As we explained in Comment 1.1, we agree that the uncertainties 

occurring in emissions, meteorological fields, model itself and other sources cause the 

forecast uncertainties of PM 2.5. We noticed that a lot of papers emphasized the 

important role of meteorological field in transporting PM2.5 and yielding PM2.5 

forecasting uncertainties in the BTH region (Bei et al., 2017; Gilliam et al., 2015; 

Chen et al., 2020). Furthermore, we also find that the PM2.5 forecasting in this heavy 

pollution event concerned in the present study are also sensitive to the initial 

uncertainties of meteorological field (see the two simulations in Figure 1), despite 

meteorological uncertainties could not be the most important contributor to the PM2.5 

forecasting uncertainties. Therefore, we first focus on the meteorological uncertainties 

in the present study. This does not mean that the uncertainties of model itself and 

emission inventory are not important, but we think that we should address these 

uncertainties step by step. In the present study, we first pay attention to 

meteorological uncertainties and leave uncertainties of model and emission inventory 

to be explored in the future. It is expected that the combined effect of uncertainties of 

model, meteorological, and emission inventory can be finally addressed.  

3. What is the assumed dominant composition of PM 2.5 matter (mineral dust, 

secondary anthropogenic, …) , and is the emission inventory sufficiently 

resolved by 30 km grid size? 

Response: The components of PM2.5 simulation here include black carbon (BC), 

organic carbon (OC), secondary inorganic aerosol (sulfate, nitrate, ammonium) and 

primary PM2.5 emitted directly from various sources. The dominant composition of 

PM2.5 varies with regions and periods. During this event, the dominant compositions 

are nitrate and organic carbon.  

As we discussed in Line 695-696, we have realized that the resolution 30km is 

relatively low for PM2.5 forecasts. Nevertheless, even thus, the simulation initialized 

by ERA5 can well represent variability of the accumulation and dissipation processes 



of PM2.5 despite the uncertainties against the observations (Figure 1). It indicates that 

the emission inventory adopted here can be resolved. Here we also present the spatial 

distribution of daily average PM2.5 concentrations of observation and ERA5 

simulation on Dec, 1st (Figure R1). It shows that the ERA5 simulation is able to 

produce the spatial distribution of the observed PM2.5. This also indicates the emission 

inventory at 30km is acceptable for this heavy pollution event.  

We agree that the emission inventory will be better resolved in a higher 

resolution. So we have the related discussion in the manuscript. As seen on Line 695-

696, “a WRF-NAQPMS model with much higher resolution will be used in next study 

on PM2.5 forecasting.” 

 

Figure R1 The spatial distribution of the daily average PM2.5 concentrations of 

observation (circle) and ERA5 simulation (shaded) on Dec 1st. (unit: μg/m3) 

4. Why is the targeted observation approach not applied to emission sources? It is 

well understood that emissions are rarely measurable (eddy covariance towers 

are a practically unavailable exemption). Yet concentration observations in the 

vicinity of sources could be exploited instead with some benefit. 

Response: We thank your valuable suggestions. Yes, it is important to apply the 

targeted observation approach to emission sources, as we discussed in Lines 701-710 

in the manuscript. Actually, both the emission and meteorology may substantially 

influence the PM2.5 forecast. The study of targeted observations on both meteorology 

and emission is meaningful and would be accomplished step by step. As we explained 

in Comment 1.1, a lot of previous studies have emphasized the important role of 

meteorological field on PM2.5 forecasts in the BTH region (Liu et al., 2017; Zhang et 

al., 2018). Also we find that the PM2.5 forecasts concerned in the present study are 

sensitive to the meteorological initial conditions (see the two simulations in Figure 1), 

which indicates the important role of meteorology forecast accuracy in improving 



PM2.5 forecast. Even though the meteorology may not be the first factor that 

influences the PM2.5 forecasts, the large differences between the two simulations also 

motive us to apply the target observation strategy to improve the accuracy of the 

meteorological forecasts, then the PM2.5 forecasts. So in the current study, due to 

important role of meteorology, and also as the first attempt to apply CNOP sensitivity 

to PM2.5 forecasts, we investigate the targeted observations on meteorology forecasts 

associated with PM2.5 forecasts. Then, as the referee suggested, to apply the targeted 

observation on emission sources, such as locating the eddy covariance tower to get the 

concentration observations, is a great research idea and motivate us to carry on our 

studies on the emission uncertainties in the near future.  

 

Minor issues 

1. Title: The typical term is. Targeted observations. It is recommended, to adapt 

accordingly. 

Response: Thank you very much for your suggestion. As expected, we will modify 

the “target observation” to “targeted observation” in the revised manuscript. 

2. Feedback emissions-meteo around L 545 mentioned, but emission inventory 

uncertainties poorly addressed. 

Response: We thank the referee’s comments. In the present paper, as we argued 

above, we only focus on the sensitivity of meteorological initial conditions on PM2.5 

forecasts, leaving the studies of emission uncertainties to be explored in the future. In 

the OSSEs we assume that the emission inventory is accurate and keep the emission 

inventory in all the simulations the same [as did in Gilliam et al. (2015), Bei et al. 

(2017), etc.]. So the uncertainties among the PM2.5 simulations in the present study 

are only from the differences of meteorology forecasting, and in the Interpretation 

section, we only focus on explaining how improving the meteorological initial 

condition influence the PM2.5 simulations. We will follow the referee’s suggestions 

and add more discussions on the emission uncertainties in the “Summary and 

Discussion” section of the revised manuscript.  

3. Fig. 9 Substantial differences between truth and ctrl run. How is this possible? 

Could be phase error. This renders the assimilation of artificial data critical as 

this local information is inconsistent with the synoptic situation (imbalance). 

Response: The differences in Figure 9 are dependent on the meteorological initial 

conditions, since both the truth run and control run use the same model and emission 

inventories. The initial meteorological condition for the truth run is generated by the 

ERA5 reanalysis data, which is the newest generation ECMWF reanalysis data which 

combines vast amounts of historical observations into global estimates using 



advanced modelling and data assimilation systems. The initial meteorological 

condition for the control run is generated by the NCEP GFS, which is the forecast 

data generated by a global forecast system in NECP. The forecast data consist of 

larger uncertainties and very different from those of ERA5. Figure R2 shows the 

initial condition of WRF simulations generated by the ERA5 and NCEP GFS at the 

AT and DT with lead times of 24 hours. A substantial difference between the two 

initial conditions exists, so it is reasonable that difference of meteorological forecasts 

at the AT and DT between the control and truth run is large. 

As for the imbalance the referee has pointed, in our opinions, does not exist in 

our study. Though only the observations in the sensitive area are assimilated, the 

initial condition outside of the sensitive area will be coordinated through the data 

assimilation technique. Both the initial states before and after the assimilation are the 

solutions to the model, they are definitely be balanced. So the assimilation of artificial 

data will not be imbalanced with the synoptic situation. 

            a)                               b) 

 

           c)                                 d) 

 

Figure R2 The initial condition of wind (vector, unit: m/s) and temperature field (shaded, unit ) for 

the forecast at the AT of the (a) truth run (b) control run. (c-d) are the same as (a-b) but for the 



forecasts at the DT. As we can see, a substantial difference between the two initial conditions 

exists, so it is reasonable that difference of meteorological forecasts at the AT and DT between the 

control and truth run is large. 

4. As meteo forecast deficits are assumed for PM prediction flaws: Validation 

against meteo data lacking. Why? 

Response: As we explained in Comment 3 (critical comments), it is difficult for us to 

obtain the meteorological observation from the Monitoring center. Those inspire us to 

design the OSSEs to study the meteorological targeted observations associated with 

PM 2.5 forecasts. In the structure of OSSE, the “truth run” is a reference atmospheric 

state that is generated by a model of good quality and a comparison of forecast skill 

between the control and assimilation runs against the truth run will be evaluated 

(Lahoz et al., 2010). In our study, the ERA5 simulation is taken as the truth run, and 

the subsequent experiments should be evaluated against the ERA5 simulation 

according to the OSSE.  

5. L 39-50: Do the authors claim that this is valid for their study region, or 

globally? Most studies point at emission strengths uncertainties. More precisely, 

the uncertainties of predictions must be pondered with forecast time. On short 

range forecasts today's meteo forecast uncertainties are small, if not 

extraneous, when compared with both anthropogenic and biogenic emissions. 

Please discuss this with more scrutiny. 

Response: We thank the referee’s comment. The meteorological conditions have a 

great impact on PM2.5 forecasts for our study region. We will emphasize it is valid for 

our study region in this revised manuscript.  

We did not deny the importance of emission uncertainties on PM2.5 forecasts. As 

we argued above, we agree that the meteorology, emission inventories and the model 

itself all contribute to the PM2.5 forecast uncertainties. Due to the former studies (Bei 

et al., 2017; Gilliam et al., 2015) and our results (see the two simulations in Figure 1), 

we first investigate the role of the meteorological targeted observation in improving 

PM2.5 forecasts in the present paper although the meteorology may not be the most 

important for the PM2.5 forecasts, and leave the studies on the emission uncertainties 

in the near future. In any case, the effect of meteorological, model itself, and emission 

inventories uncertainties will be studies step by step. As the first attempt to apply the 

CNOP sensitivity on PM2.5 forecasts, the successful application of CNOP in 

meteorological targeted observations will also inspire us to apply the CNOP method 

in the study of emission uncertainties in the future. 

We agree that the uncertainties of predictions are pondered with forecast time. 

For the event we studied, we showed the spatial distributions of the PM2.5 forecast 

errors in the control run at the AT and the DT with the lead times of 24 hours in 

Figure 7. If taking the absolute value of the biases, then the mean biases of the whole 



BTH region are 34.22 and 64.13 ug/m3 at the AT and DT, respectively. In some areas 

of BTH, the errors are more than 70 μg/m3. For the lead time of 12 hours, the mean 

biases of the whole BTH region are 31.55 μg/m3 and 54.47 μg/m3 at the AT and DT, 

respectively. Though the meteorology may not the first important, the large difference 

of PM2.5 forecasts caused by the meteorological initial conditions deserve studies as 

well. 

6. L 71: This is not applicable. See e.g. Goris and Elbern, GMD, 2015. 

 Response: We thank the referee’s suggestions. We will rephrase the sentence in the 

revised manuscript. 

7. L 80:  “or even become worse”. Theoretical justification needed. 

Response: We have added references here (Yu et al., 2012; Janjic et al., 2017; Zhang 

et al., 2018). Theoretically, if the observations in the area where the forecast is not 

sensitive to the initial values are assimilated, the forecasting skills might be improved 

slightly or neutral. However, in realistic prediction, the imperfect procedure of data 

assimilation, the observation errors, the unresolved scales and processes in the model 

and other combination effects may induce more additional errors (Janjic et al., 2017), 

which may cause the fact that assimilating observations in the area where the forecast 

is not sensitive to the initial values results in a worse forecast. Anyway, we will 

present a more accurate description in the revised manuscript. 

8. L 150: Should be mentioned here that M is WRF and not the CTM, not only at 

line 172. 

Response: We thank your suggestions. However, on L146-157, we would like to 

introduce the general definition of the CNOP and Eq (2) is the general mathematical 

expression of the CNOP. In Eq(2), M presents the nonlinear propagator and can be 

taken as any numerical model. When the CNOP is applied on our study specifically, 

M means the WRF model, as we stated on Line 172. So on L150, when we present the 

general definition of CNOP, we think it is more appropriate to define M as nonlinear 

propagator. 

9. L 160: Readers might appreciate a literature reference for the energy norm eq. 

(3) .o 

Response: We thank your suggestions and will add the reference (Ehrendorfer et al., 

1999) for the energy norm eq. (3) in the revised manuscript. 

10. L 177: Readers could be hinted that this is a realisation of the maximisation of 

an Oseledec operator, to familiarize with operator P. In fact, it is nevertheless a 

linear optimisation, linearized around the "nonlinear trajectory" of the model 

run, as the adjoint is used. 



Response: To compute the CNOP, we use the WRF nonlinear model to estimate the 

cost function and the adjoint model to produce the gradient of the cost function with 

respect to the perturbation. Yes, a linear assumption within the neighborhood of each 

point along the nonlinear trajectory is used when calculating the gradient of the cost 

function with initial perturbation at this point by adjoint model. However, such a 

linear assumption will not represent a linear optimization of the CNOP. In fact, the 

traditional singular vector approach commonly adopted in the previous studies is a 

linear optimization, which is obtained by a linearized model around the "nonlinear 

trajectory". The CNOP used here is obtained by running a nonlinear model, where the 

adjoint is used to calculate the gradient of the cost function with respect to initial 

perturbations. The CNOP is a nonlinear optimal perturbation, rather than a linear 

optimal perturbation (see the comparison of CNOP and singular vector in Mu et al., 

2003).   

11. L 183: It is pertinent to provide a map of BTH model domain with observation 

sites here at latest. 

Response: We thank your suggestions and will add the map of BTH model domain 

with observation sites at latest in the revised manuscript (also see Figure R3). 

 

Figure R3 The map of current environmental monitoring stations in the BTH domain. 

12. Fig, 1 caption : Add time instances AT and DT for discussion below by some 

tags for convenience. 

Response: We thank your suggestions and will add AT and DT by the tags for 

convenience (also see Figure R4).  



 

Figure R4. Time series of the PM2.5 concentrations at (a) Baoding station (Hebei Province) and (b) Dongsi  
station (Beijing city) of observations and simulations initialized by ERA5 and GFS meteorological reanalysis data 

during the period between 30 November and 4 December 2017. 

13. L 265: Please give a rigorous definition of "CNOP-type error" here, where it is 

mentioned first! Is it that what has been described in L 297 f? 

Response: We thank your suggestions. Yes, it is what described in Line 297. We will 

add the rigorous definition of “CNOP-type error” on L 265 in the revised manuscript. 

14. L368: Do you mean "differences" instead of “bias”? 

Response: Yes. Thanks for your suggestions. We will revise it to “differences” in the 

revised manuscript. 

15. L 393: On each level (located through the vertical 950, 850, 750 and 500 hPa 

levels), or only on the most sensitive level? So, are there 15 or 60 observations? 

Response: The observations are located at 4 levels, which are 950, 850, 750 and 

500hPa. So there are totally 60 observations. We will clarify them in the revised 

manuscript. 

16. L461 ff: Why is this subsection reasonable, if the algorithm applied is correct, in 

that it infers optimal conditions? The value of the method is tested against an 

improvement of an control run, not against climatologically (?) selected other 

areas. I suggest subsection 4.3 can be omitted. 

Response: We think that an approach proposed based on a theory should also be 

verified numerically, especially by a complex model. In fact, a lot of advanced 

methods on predictions follow this way to show their usefulness (Zhang et al., 2019). 

The Region-W and Region-N here were considered being important regions for PM2.5 

forecasts of BTH region in previous studies. To emphasize the sensitivity identified 

by CNOP-type errors, we compared the PM2.5 forecast skills with observations 

deployed over the sensitive area and Region-W and Region-N. The comparison will 



further illustrate the usefulness of CNOP in identifying the sensitive area for targeted 

observation and make readers believe that the CNOP is indeed useful in identifying 

the sensitivity numerically, rather than only in theoretical consideration. So we would 

like to keep this section. 

17. L 500: How is a decline possible, as the sensitivity is low? It should at least be 

neutral. 

Response: Theoretically, if the observations in the area where the forecast is not 

sensitive to the initial values are assimilated, the forecasting skills will be improved 

slightly or neutral. However, in realistic prediction, the imperfect procedure of data 

assimilation, the observation errors, model errors, the unresolved scales and processes 

in the model and other combined effects may induce additional errors (Janjic et al., 

2017), which may cause the fact that assimilating observations in the area where the 

forecast is not sensitive to the initial values results in a worse forecast. 

18. L 543: More precisely, it should be especially assigned to stagnant conditions, 

where a stable layer caps the boundary layer. 

Response: We thank your suggestions. We will add more discussions on the stability 

in the revised manuscript (please see the Comment 2.2). This sentence will be 

rephrased as well in the revised manuscript. 

19. L 560: What is the sign: truth minus control? 

Response: Actually, Figure 9 has 6 subfigures. Figure 9(a, d) present the 

meteorological condition (including wind and temperature) in the truth run at the AT 

(a) and DT (d). Figure (b, e) show the meteorological conditions in the control run at 

the AT (b) and DT(e). Figure (c) and (f) are the forecast differences (control tun 

minus truth run). We will clarify them in the revised manuscript.  

20. L571: But may increase stability. Further, the interpretation of observed PM 

values must be supported by information of being dry aerosols or with water 

component included. The discussion presented should be attentive to that. 

Otherwise the conclusions may be false. 

Response: We thank your valuable suggestions. We will add more discussions on the 

stability in the revised manuscript (see Comment 2.2). In addition, on Line 571, the 

interpretation is related to the PM2.5 concentration in the two simulations. The PM2.5 

in the two simulations initialized by ERA5 and GFS is with water component 

included, so their comparisons are both based on aerosols with water component. We 

will clarify it in the revised manuscript. 

21. 2L640: What is the “vertical integer of CNOP-type errors”? 



Response: We are sorry for the typo. We mean the “vertical integral”. We will revise 

it. The vertical integral of the CNOP-type errors is explained on Line 333-339 in 

detail.  

22. L662-667: What is the novel message of this passage there than the trivially 

expected? 

Response: The CNOP method is proposed based on an abstract concept model (Line 

145-155). Whether it can be applied to identify the sensitive areas in a much realistic 

model, especially in a complex realistic model, should be verified numerically, 

despite it is reasonable in theory. Especially, the results obtained by a new method 

should be compared with the old perspectives to show its superiority. Therefore, the 

comparisons between the sensitive area identified by the CNOP and the Region-W 

(Region-N), which of the latter are considered being important regions in the previous 

studies, will further show the superiority of CNOP-type errors in identifying the 

sensitive area of meteorological initial fields on PM2.5 forecasts. In fact, a lot of 

advanced methods on predictions follow this way to show their superiority. This is 

why we made this kind of comparison in the present study. 

23. L 673: “formation of PM2.5”: Strictly speaking, a different local temperature 

and humidity dependent secondary formation of PM2.5 must be understood, with 

equal gaseous precursor emissions. It appears unlikely to me, that this can 

substantially explain the differences given in Fig. 1. Please clarify. 

Response: We agree with the referee that a different local temperature and humidity 

has a little impact on the secondary formation of PM2.5. And our results have also 

shown that the improvements in the PM2.5 forecast skill in assimilation run are mostly 

attributed to dynamic and thermodynamical reasons (Line 585-602). As for the 

“formation of PM2.5”, we admit that we used an improper word, which may mislead 

the referee. We will rephrase the sentence in the revised manuscript. 

Regarding the differences between the observations and the simulations in Figure 

1, they, as discussed in Comment 1.1 (critical comments), are due to combined effect 

of uncertainties of meteorology forecast, emission inventory, and model itself. As for 

the differences between the two simulations in Figure 1, they, as argued in Comment 

3 (Minor issues), are only attributed to the uncertainties in the meteorological initial 

fields; that is to say, the differences between initial wind, temperature, and moisture 

cause the substantially difference of the two simulations. 

24. L 687: …”then formulates a theoretical basis to implement practical field 

campaigns associated with air quality forecasts”. Please indicate where this can 

be found! 

Response: Sorry for this ambiguous description. From the results, we showed that the 

sensitive areas of meteorological initial fields associated with the PM2.5 forecasts 



indeed exists; meanwhile, these sensitive areas are verified to be valid in improving 

PM2.5 forecast. So the CNOP method is an effective tool to identify the sensitive areas 

of meteorology on PM2.5 forecasts. These results are adequate to encourage us to 

implement the targeted observations of meteorological initial fields according to the 

CNOP sensitivity in practical field campaigns and to enhance the PM2.5 forecasting 

skills, thus formulating a theoretical basis in practical field campaigns. 

25. L 697: What does “logistical verification” mean? 

Response: We are sorry for the improper use of the word. We would like to present 

that “the sensitive areas revealed in the present study are still instructive for practical 

field observations of PM2.5 forecasts because of the verifications through a series of 

OSSEs and reasonable physical interpretation shown in the context”. We will rephrase 

the sentence in the revised manuscript. 
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