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Abstract.  

 

Model Output Statistics (MOS) approaches relying on machine learning algorithms were applied to downscale regional air 

quality forecasts produced by CAMS (Copernicus Atmosphere Monitoring Service) at hundreds of monitoring sites across 10 

Europe. Besides the CAMS forecast, the predictors in the MOS typically include meteorological variables but also ancillary 

data. We explored first a “local” approach where specific models are trained at each site. An alternative “global” approach 

where a single model is trained with data from the whole geographical domain was also investigated. In both cases, local 

predictors are used for a given station in predictive mode. Because of its global nature, the latter approach can capture a variety 

of meteorological situation within a very short training period and is thereby more suited to cope with operational constraints 15 

in relation with the training of the MOS (frequent upgrades of the modelling system, addition of new monitoring sites). Both 

approaches have been implemented using a variety of machine learning algorithms: random forest, gradient boosting, standard 

and regularized multi-linear models. The quality of the MOS predictions is evaluated in this work for four key pollutants, 

namely particulate matter PM10 and PM2.5, ozone O3 and nitrogen dioxide NO2, according to scores based on the predictive 

errors and on the detection of pollution peaks (exceedances of the regulatory thresholds). Both the local and the global 20 

approaches significantly improve the performances of the raw Ensemble forecast. The most important result of this study is 

that the global approach competes with and can even outperform the local approach in some cases. This global approach gives 

the best RMSE scores when relying on a random forest model, for the prediction of daily mean, daily max and hourly 

concentrations. By contrast, it is the gradient boosting model which is better suited for the detection of exceedances of the 

European Union regulated threshold values for O3 and PM10. 25 
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1 Introduction 

Outdoor air pollution induced by natural sources and human activities remains a major environmental and health issue 

worldwide. Producing reliable short-term forecasts of pollutants concentrations is a key challenge to support national 35 

authorities in their duties regarding the European Air Quality Directive, like planning and communications about the air quality 

status toward the general public in order to limit the exposure of populations. Progress in computing technologies during the 

last decades has allowed the rise of large-scale chemistry transport models (CTMs) which provide a comprehensive view of 

the air quality on a given time period and geographical domain by solving the differential equations that govern the transport 

and transformation of pollutants in the atmosphere. An overview of such deterministic air quality forecasting systems operating 40 

in Europe was provided by Zhang et al. (2012). Ensembles of several CTMs models have also been used in order to improve 

single model forecasts (Delle Monache and Stull, 2003; Wilczak et al., 2006). Such an Ensemble approach is currently used 

in the frame of the Copernicus Atmospheric Monitoring Service (Marécal et al. 2015) to provide daily air quality forecasts 

over the European territory (https://atmosphere.copernicus.eu/air-quality).  

Statistical post-processing offers a way to improve the raw outputs of deterministic models, not undermining inherent 45 

capacities of CTMs. For instance, one must acknowledge that regional scale CTMs are primarily designed to capture 

background air pollution so that spatial representativeness remains a concern in the immediate vicinity of large emission 

sources. Spatial downscaling is therefore a good example of the relevance of hybrid statistical and deterministic modelling, 

but correction of systematic biases and better modelling of extreme values can also be achieved at the deterministic model’s 

grid scale. Modellers are working to solve such issues by continuously improving models and input data, but post-processing 50 

offers a pragmatic solution that must be considered. 

Running-mean bias correction, Kalman-filter, and analogs (Delle Monache et al., 2006; Kang et al., 2008; Djalalova et al., 

2015) are the most widespread examples of Model Output Statistics (MOS) proposed in the literature to improve air quality 

forecasts. Another very common type of MOS, is multi-linear regression statistical modelling to predict a corrected 

concentration at a given location using any available information, including the deterministic forecast, meteorological 55 

variables, or any other ancillary data. Such regression-based MOS approaches have been implemented in Europe in several 

national air quality forecasting service, sometimes for more than a decade such as in the French operational forecasting system 

PREV’AIR (Honoré et al., 2008; Rouïl et al; 2009). More recently, Petetin et al. (2022), performed a systematic evaluation of 

one of the most exhaustive selections of MOS techniques (including Kalman Filter, Analogs in addition to tree-based machine 

learning algorithms) for the specific case of ozone forecasts in the Iberian Peninsula. 60 

The goal of this work is to explore the use of several machine learning algorithms to improve the air quality forecasts of the 

CAMS Regional Ensemble model at hundreds of monitoring sites across Europe for the ozone (O3) particulate matter (PM10 
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and PM2.5) and nitrogen dioxide (NO2) pollutants. The classical MOS approach consists in building an individual model at 

each monitoring site using local data. In this context, some MOS methods (including those based on machine learning 

algorithms) need long training periods, based on model outputs and observations to reach optimized performances.  The need 65 

for long training period (with constant model formulation over this period) is a difficulty for the maintenance of operational 

MOS systems since the evolution of pollutants emissions, the upgrades of the deterministic model and the addition of new 

monitoring sites require frequent re-calibrations of the MOS. This issue is particularly pregnant in our context since, as a 

regularly maintained operational model, the CAMS Ensemble model (composed of 7 members during the period of study) is 

subject to frequent upgrades. Every year there are between one and two upgrades in the set-up of the CAMS individual models 70 

producing air quality forecasts at regional scale over Europe. Therefore, an alternative “global” approach, building one single 

model for all the monitoring sites with a very small training period (a few days preceding the forecast), but using data from 

the whole geographical domain was also tested for comparison. In the following article, we present first, in section 2, the 

observations and model data sets used to train and test the predictive models. Then, MOS approaches, and algorithms are 

presented in section 3. Finally, section 4 explores the sensitivity of the 2 MOS approaches to training data and section 5 75 

compares and discuss their performances in the frame of the selected scenarios. 

2 Training data 

The MOS development is based on three years of air pollution and meteorological data covering the 2017-2019 period. This 

data includes hourly in situ observations of  PM10, PM2.5, NO2 and O3 concentrations at hundreds of urban, suburban, and rural 

background regulatory monitoring stations and is retrieved from the Up-To-Date (UTD) dataset of the Air Quality E-reporting 80 

database (https://www.eea.europa.eu/data-and-maps/data/aqereporting-9) of the European Environment Agency. Daily mean, 

daily 1h maximum and daily 1h minimum where calculated when 75% of the hourly data was available for the considered 

dates (i.e., at least 18h over 24h). All the stations located into the European region, over a domain ranging from -25° W to 

45° E longitude and 30° S to 70° N latitude have been considered in this work. The total number of stations available for 

training and testing the MOS is 1535 for O3, 957 for PM10, 1468 for NO2 and 498 for PM2.5.  85 

Hourly concentrations from the CAMS European Ensemble forecast have been retrieved from the Atmosphere Data Store 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/home). During the 2017-2019 period1, the CAMS Ensemble was defined as 

the median of 7 individual models covering the European region at the resolution of 0.1° and developed by several European 

modelling teams, namely: CHIMERE (INERIS, France), EMEP (MET Norway, Norway), EURAD-IM (RIU-UK, Germany), 

LOTOS-EUROS (KNMI-TNO, The Netherlands), MATCH (SMHI, Sweden), MOCAGE (METEO-FRANCE, France), and 90 

SILAM (FMI, Finland). Note that the CAMS Ensemble was upgraded during the month of June 2019 with the use of a new 

anthropogenic emissions dataset, extension of the geographical domain and provision of dust (within PM10) and secondary 

                                                           
1 Since then, 4 new models have been added to the Ensemble calculation, namely DEHM (Aarhus University, Denmark), 
GEMAQ (IEP-NRI, Poland), MINNI (ENEA, Italy) and MONARCH (BSC, Spain). 
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inorganic aerosols (aggregation of ammonium sulphates and nitrates within PM2.5) in near real time production. The impact 

of this upgrade on the MOS will be discussed in the conclusion section. Hourly surface meteorological data was interpolated 

from the IFS (Integrated Forecasting System2 – ECMWF). The specific list of meteorological variables is discussed in Section 95 

3.3. Both concentration and meteorological forecasts were extracted at the locations of monitoring station using a distance 

weighted average interpolation. 

3 Design of the MOS approaches 

The MOS strategy can be called “hybrid” modelling in the sense that it uses both a deterministic forecast (here the CAMS 

Regional Ensemble) and other relevant predictors to produce a statistically corrected output concentration. In machine learning 100 

terminology it corresponds to a supervised learning problem as we use a training data set composed of a number of predictor 

variables (also called features) labelled with the corresponding pollutant concentration observations. The model fitted with the 

training data is then applied to future situations (new predictors values) to forecast pollutant concentrations. Three distinct 

problems have been considered in this work: prediction of daily mean, daily maximum and hourly concentrations. The quality 

of the predictions is explored for the first day (D+0) or first 24 hours of the forecast in this work, but the methodologies 105 

proposed are adapted to tackle longer forecast leads.  

3.1 Machine learning algorithms 

Five types of predictive models based on different machine learning algorithms are tested and compared to each other. Three 

of them belong to the family of the linear models, namely the standard, the LASSO (Least Absolute Shrinkage and Selection 

Operator) and the ridge linear model. They are formulated as (eq. 1):  110 

𝑦∗ = 𝛼଴ + ෍  𝛼௝𝑥௝

௣

௝ୀଵ

           (1) 

Where 𝑦∗  denotes the predicted value for the pollutant’s concentration, 𝛼଴  is the intercept term, 𝑥௝  denotes a continuous 

variable or a dummy variable (taking values 0 or 1) that indicates the absence or presence of some categorical effect, 𝛼௝ are 

the coefficients of the statistical model that have to be determined and 𝑝 the number of predictors. The coefficients are chosen 

to minimize the Penalized Residual Sum of Squares (eq. 2): 115 

𝑃𝑅𝑆𝑆 = ෍ ቌ𝑦௜− 𝛼଴ − ෍  𝛼௝𝑥௜௝

௣
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ቍ

ଶ
ே
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+ 𝜆 ෍ 𝑓(𝛼௝)

௣

௝ୀଵ

         (2) 

Where 𝑦௜  denotes an observed concentration and 𝑥௜௝  the associated value for the predictor 𝑗. 𝑁 is the number of observations 

in the training data set, 𝜆 a penalty coefficient, and 𝑓 denotes either the absolute-value or the square function. In the case where 

                                                           
2 https://www.ecmwf.int/en/research/modelling-and-prediction 
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𝜆 is set to zero, the regularization term on the rightmost part of the equation nullifies and we obtain a standard linear model 

(LM) based on the minimization of residual sum of squares. Otherwise, 𝜆 will have to be tuned (see below) and depending on 120 

the choice of 𝑓 - absolute-value or square function - we obtain a LASSO or a ridge linear model respectively. The ridge and 

the LASSO regression were introduced separately by Hoerl and Kennard (1970) and Tibshirani (1996) respectively. For both 

the ridge and LASSO approaches, the regularization term in eq. 2 favours solutions with coefficient values of small amplitude, 

thus reducing the risk of overfitting, i.e. of producing a model that stick too close to the training data and has poor generalization 

skills. In contrast to the ridge regularization, the LASSO tends to produce exactly zero values for those coefficients associated 125 

with the less important predictors, offering a way to deal with variable selection and improving model interpretability. In this 

study, we used the implementation of the ridge and LASSO regression in the “glmnet” package in the R language (Friedman 

et al. 2010). 

The other 2 predictive models are based on the decision trees described by Breiman et al. (1984). These trees are based on 

series of nodes that represent both a predictor and an associated threshold value. Each node is divided into 2 subsequent nodes 130 

until we reach a final node (a leaf) that gives the value of the prediction. The prediction function can also be seen as a partition 

of the predictors space where each sub-region is associated to a constant output value. Decision trees are an interesting solution 

as they can capture complex non-linear interactions and internally handle the selection of relevant predictors. However, they 

suffer from poor generalization skills. To tackle this issue, Ensemble methods based on an aggregation of decision trees have 

been proposed. In this work we have tested two popular tree-based Ensemble algorithms, namely the random forest (RF) and 135 

the gradient boosting model (GBM). RF models were introduced by Breiman (2001). They rely on an aggregation of binary 

decision trees that are built independently, using a bootstrap sample of the training data and randomly selecting subsets of 

candidate predictors at each node. The RF prediction is then given by the average of the trees predictions for regression 

problems or using majority vote for classification problems. Unlike Random Forest, GBM relies on relatively small trees that 

are built sequentially. After the first tree is trained, each subsequent tree is trained to predict the error left by the already trained 140 

Ensemble of trees. When the final number of trees is reached, the GBM prediction is given by the sum of the initial 

concentration prediction and errors predicted by each tree. This mechanism, called Boosting, was first described by Freund & 

Schapire (1996) with the adaBoost algorithm for the prediction of a binary variable. The Gradient Boosting Machine algorithm 

is an adaptation, from Friedman (2001), for the prediction of quantitative variables. In this study we used the “randomForest” 

(Liaw & Wiener, 2002) and “gbm” (Greenwell et al., 2019) R packages for the implementation of the RF and GBM algorithms, 145 

respectively. 

A key challenge with statistical learning methods is to learn as much as possible from the training data, without losing 

generalization skills. To reach an optimal balance and optimize the predictive performances, a learning algorithm may be tuned 

by choosing values for some parameters often referred to as hyper-parameters. The method used for tuning these hyper-

parameters consists in a grid search, where possible values for each hyper-parameter are pre-defined. A model is trained and 150 

tested for every possible combination of hyper-parameter value using a 5-fold cross validation procedure. The best combination 

of hyper-parameter is then selected to train the final model, this time using the full training dataset. The tuning of these hyper-
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parameters is performed at every monitoring site for the local MOS approach or every day for the global MOS approach (local 

and global approaches are defined in section 3.2). The number of parameters to be tuned depends on the algorithm. It is limited 

to 1 for the LASSO and ridge model, 2 for the random forest model and 4 for the GBM model. To limit the number of 155 

combinations and computation time, the grids of possible values for each parameter were kept simple, with very few values to 

test, and remained the same in all the learning configurations of this study. The grids of tuning values for each algorithm are 

described in appendix A. The tuning of the learning algorithms was performed using the caret R package (Kuhn, 2008).  

3.2 Local and global approaches 

The first approach tested in this work is local, meaning that a different MOS model is built for each observation station. This 160 

approach is implemented for example in the French national forecasting system PREV’AIR (Honoré et al., 2008). As each 

model is trained with local data only, we expect that it will be able to correct the deterministic model output in a way that 

reflects local specificities contributing to the station representativeness. A limitation of this local approach (referring to the 

methods computing a dedicated model per stations) is that it often requires long timeseries of model output and observations 

(with constant model formulation and set-up over this period) to build an optimized predictive model at each observation site. 165 

Any upgrade of the modelling system that might sensitively impact the model behaviour and performances might lead to a 

deterioration of the MOS performances and thereby requires resource consuming for re-running simulations with a consistent 

set-up over past period in order to build updated MOS. Newly installed observation stations will not be integrated into the 

MOS until enough data is gathered to train a robust model (typically at least a full year). Moreover, this local approach is 

optimized if the conditions (model set up, input data) during the predictions remain close to that of the training period. In 170 

practice this might not be the case, for example because of a drastic reduction of pollutants emissions due to local action plans 

or even not anticipable circumstances such as the drop in activity induced by the COVID crisis. In such situations, the local 

MOS correction might be biased due to inadequacy with the training period’s conditions. This feature is interesting and has 

been exploited for example to assess the impact of COVID-19 lockdown upon NO2 pollution in Spain (Petetin et al., 2020) 

based on a “business as usual” concentration correction, following the meteorological normalisation method by Grange et al., 175 

2018. However, there is also a need for more flexible MOS approaches that rapidly adapt to unanticipated changes in emissions. 

In the present study, the local approach was investigated using 2017 and 2018 data for training the MOS and using 2019 data 

to evaluate its performances. 

The second approach, called “global”, has been designed to address operational constraints such as the CTMs upgrades or 

changes in the network or observations. The idea is to build a single global model with data coming from the whole set of 180 

observation stations. Even if a single model is derived for Europe, it is subsequently used in predictive mode with local 

predictors for each station. Because of their spatial distribution over the European domain, a large variety of meteorological 

situations can be captured within a relatively small (a few days) training period. Due to the seasonal variability, a new model 

must be trained regularly with the most recent data in order to remain close to new forecasting situations. In this study a new 

global model was trained every day using the last 3 days, the last 7 days or the last 14 days as training data and was applied to 185 
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predict the concentrations of the upcoming day. This process was repeated 365 times to mimic an operational system running 

over the 2019-year period. With this global approach, any change in the CTM formulation will automatically be echoed into 

the MOS within a few days (depending on the choice for the training period duration). An important shortcoming of such a 

global approach is to ignore the local specificity in individual MOS models, whereas one of the main benefits of MOS 

approaches applied in addition to CTM results is precisely to remove systematic biases, for instance induced by spatial 190 

representativeness limitation of the models. To tackle the varying spatial representativeness of the stations, the deterministic 

raw concentration output at each station was replaced by an “unbiased concentration” predictor, meaning the raw concentration 

minus the average error of the deterministic model at the station during the training period. As such, the global approach 

combines tree-based or regression machine learning algorithm and moving average (Petetin et al., 2022) unbiasing. This 

strategy will for instance lead to distinct MOS predictions at 2 stations with comparable meteorological and raw concentration 195 

forecasts (e.g. 2 stations located into the same grid cell). We also expect that this approach will better adapt to rapid changes 

in emissions induced by the situations mentioned above (e.g. pollution mitigation policies, COVID crisis). 

3.3 Predictors 

Increasing the number of predictors might improve the performances of a model but can also lead to overfitting and poor 

performances if not correctly handled by the machine learning algorithm. We have carried out tests with different sets of 200 

predictors in order to evaluate the risks and benefits from adding predictors depending on the machine learning algorithm 

considered. The following table details the sets of predictors that have been tested. These predictors fall into four categories: 

Ensemble forecast, meteorological forecast, observations and other. MOS models have been trained to work both on an hourly 

basis and on a daily basis (to focus on the prediction of daily means or daily max). When designing an hourly model, all the 

quantitative predictors are hourly means, either forecasted for the considered time horizon (Ensemble and meteorological 205 

forecasts) or observed during the previous day at the same time. The same model is used for every hour of the day and the 

hour of the day is not explicitly passed to the model as a predictor. Somehow considering that the other predictors provide 

enough information. When designing a daily model, a selection procedure is achieved before the training in order to choose 

between the daily mean, daily min and daily max of each physical quantity the one which is best correlated with the output 

variable. For both the local and global approaches, this correlation is calculated based on the full training dataset, meaning 210 

typically with 365 records for a local model built with a 1-year training dataset and 3000 records for a global model based on 

1000 monitoring stations spread over the domain and a 3-days training period. 

Set1 is the base set of predictors. It includes the Ensemble forecasts (including the forecasts of the targeted pollutant and the 3 

others), a first selection of surface meteorological variables (namely the temperature, relative humidity, zonal and meridional 

wind speed and boundary layer’s height), as well as observations of the previous day. The categorical day of week predictor 215 

was only used with the local approach which includes a long training period. For the global approach, tests have been 

performed using as a predictor either the raw Ensemble (i.e. the median of the 7 individual deterministic models) forecast or 

the unbiased Ensemble concentration of the target pollutant. The unbiased concentration is defined as the forecasted Ensemble 
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concentration minus the bias observed at the station during the previous days (days of the chosen training period). Set2 includes 

set1 predictors plus 4 additional meteorological predictors, namely the shortwave radiation, the surface pressure, the cloud 220 

cover and precipitations.  

 

 

Set name Ensemble Forecasts* Meteorological Forecasts Observations Other 

 PM10 Temperature (2 m)   
Set1 O3 Relative Humidity (2 m) Obs. of the Day of week 

(base) NO2 Wind speed (10 m) previous day (7 levels) ** 
 PM2.5 Boundary layer’s height   
  Temperature (2 m)   

Set2 PM10 Relative Humidity (2 m) Obs. of the Day of week 
 O3 Wind speed (10 m) previous day (7 levels) ** 
 NO2 Boundary layer’s height   
 PM2.5 Shortwave radiation   
  Surface pressure   
  Cloud cover   
  Precipitations   

 

Table 1: Sets of predictors used in the MOS. * Raw or unbiased (for the global approach only) concentration forecasts. ** Only 225 

for the local (or long training) approach. 

4 Sensitivity of the MOS to training data and predictors  

Specific local approach simulations have been carried out to evaluate O3 daily max and PM10 daily mean predictions 

performances with various input data configurations. Only O3 daily max and PM10 daily mean predictions have been considered 

in this preliminary analysis in order to limit the number of simulations. These forecasts being critical in Europe because of the 230 

frequent exceedances of the regulatory threshold values that determine pollution peaks (180 µg m-3 for O3 daily max and 50 

µg m-3 for PM10 daily mean). Each pollutant was tested with 2 configurations regarding the size of the training data set. For 

O3, one summer (June to September 2018) or two summers (June to September 2017 and 2018) have been used as training 

data sets. For PM10, year-round data have been used, either 1 year (2018) or 2 years (2017 and 2018). A training period limited 

to summer months has been chosen for O3 to optimize the performances during this season which is regularly subject to critical 235 

concentration levels. Similarly, model could be optimized for the cold season using winter months for training and year-round 

modelling could be achieved switching from one model to the other at some point during the inter-season. But we chose to 

limit our analysis to the hot season when most pollution peaks happen. In addition, both configurations have been tested using 
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2 distinct sets of predictors, namely Set1, the simplest (includes the base predictors plus the categorical day of week predictor), 

and Set2, including four additional meteorological predictors (see table 1). Performances have been evaluated with 2019 data, 240 

over the summer season (June to September) for O3 and whole year for PM10. As expected, the RMSE of the local MOS score 

average over all the monitoring stations, shown in Figure 1, is significantly reduced in comparison to that of the raw Ensemble 

model. The MOS allows to greatly reduce the bias (see also Appendix B, figure B1) and thus to significantly decrease the 

RMSE. The use of larger data sets is beneficial for all the machine learning algorithms tested and is particularly interesting for 

O3 daily max predictions (RMSE strongly decreases when using 8 months of summer data instead of 4). Results also suggest 245 

being very careful with the choice of predictors, using more predictors as in Set2 generally lead to no improvement or even a 

loss in performances, especially if the algorithm is not designed to handle over-fitting and if the training period is too short 

(see the deterioration of the O3 RMSE when using the larger set of predictors Set2 in the standard linear model). In addition 

to the raw ensemble and the 5 MOS, the persistence model (Pers), a very simple reference model which consists in forecasting 

for the day ahead the concentration that was observed at the station during the previous day, is plotted for comparison. 250 

Whatever the configuration, the MOS models allow to beat the RMSE score of this persistence model. Regularized linear 

models (ridge and LASSO) give the best RMSE scores independently of the set of predictors and of the size of the training 

period. With 2017 and 2018 data for training, and the simplest set of predictors (red bar), the RMSE reaches 13.0 µg m-3 for 

O3 daily max (decrease of 32 % compared to the raw Ensemble) and 5.64 µg m-3 for PM10 daily mean (decrease of 45 %). The 

Pearson correlation reaches 0.86 for O3 (against 0.81 for the raw Ensemble) and 0.83 for PM10 (against 0.7 for the raw 255 

Ensemble). See Appendix B, figure 1 to 2 for the mean bias and correlation scores with the distinct local approach modelling 

configurations. 
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Figure 1: RMSE score for the raw Ensemble (Raw) and local MOS approaches with the linear model (Lm), the LASSO (Lasso), the 260 
ridge (Ridge), the random forest (Rf) and the gradient boosting model (Gbm), depending on the training period and set of predictors. 
RMSE score is averaged over 1535 stations for O3 and 957 stations for PM10. Evaluation done over 2019 summer months for ozone 
and whole year 2019 for PM10. 

 

For the global approach, tests have been performed over the same 2019 periods (summer for O3 and whole year for PM10) with 265 

the simplest set of predictors Set1 to evaluate O3 daily max and PM10 daily mean MOS prediction according to the size of the 

training period (3 days, 7 days and 14 days) and the use of the raw (biased) or unbiased concentration forecasts as predictor. 

Figure 2 illustrates the decrease in RMSE when using unbiased concentrations instead of raw concentrations (compare the blue 

and plain green bars for 3 days training). RMSE can further be improved using 7 days as training period or even 14 days for 

PM10 daily mean. The random forest model gives the best RMSE scores independently of the length of the training period. 270 

With 14 days for training, and using the unbiased concentration predictor, the RMSE reaches 12.5 µg m-3 for O3 daily max 

(decrease of 34.6 % compared to the raw Ensemble) and 5.5 µg m-3 for PM10 daily mean (decrease of 46.7 %). The Pearson 

correlation reaches 0.85 for O3 (against 0.81 for the raw Ensemble) and 0.83 for PM10 (against 0.7 for the raw Ensemble). See 

Appendix B, figure 3 to 4 for the mean bias and correlation scores with the distinct global approach modelling configurations. 

 275 
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Figure 2: RMSE score for the raw Ensemble (Raw) and global MOS approaches with the linear model (Lm), the LASSO (Lasso), 280 
the ridge (Ridge), the random forest (Rf) and the gradient boosting model (Gbm), depending on the training period and the use of 
biased or unbiased concentration predictors. RMSE score is averaged over 1535 stations for O3 and 957 stations for PM10. Evaluation 
done over 2019 summer months for ozone and whole year 2019 for PM10. 

5 Comparison of the local and global MOS approaches 

For the 4 pollutants, O3, PM10, NO2 and PM2.5, the local and global MOS have been designed for the prediction of daily mean, 285 

daily max and hourly concentrations and compared to each other. For both the local and global approaches, since the benefit 

of using 4 additional predictors in Set2 compared to Set1 was infirmed in Section 4, we used the simplest sets of predictors 

(Set1, with unbiased concentrations for the global approach). Moreover, we used in this section the more realistic scenario 

where only one full year of data (2018) is available for training the local approach models. For the global approach, we present 

the 3-days training scenario which is supposed to adapt faster to a change in the modelling system. As mentioned above, 290 

performances can be optimized using larger training periods, but we chose to test the scenario which is more prone to cope 

with operational constraints. Table 2 shows RMSE scores average over the full set of monitoring stations across Europe with 

the 2019 testing period. As in the previous section, evaluation is focused on the June to September period for O3 and whole 

year for PM10, PM2.5 and NO2. 

The random Forest is particularly adapted to optimize the RMSE of the global MOS approach as the best scores are obtain 295 

with this model for the 4 pollutants and for the predictions of daily mean, daily max and hourly concentrations. Depending on 

the prediction objective and on the pollutant, the improvement compared to the raw Ensemble oscillates between 48.1% 
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(decrease in RMSE) and 21.9%. The choice of the best algorithm is not that clear for the local MOS approach. Random Forest 

gives the best RMSE for the prediction of hourly means, but the LASSO and ridge linear models performs the best for daily 

means and daily max predictions. RMSE decreases oscillate between 54.1% (NO2 daily max) and 20% (PM2.5 hourly mean) 300 

with the best model scenarios, for this local approach. Still considering the best model scenarios, differences between the local 

and global approach reach 6.3%, in favour of the local approach, for NO2 daily max predictions and 4.6%, in favour of the 

global approach, for O3 daily max predictions. Table 3 presents the RMSE scores for the daily mean and daily max extracted 

from hourly MOS predictions. These scores are comparable with those of the models specifically trained for daily mean 

predictions but are significantly degraded for daily max predictions. As an example, the global approach with random forest 305 

model reduces the RMSE by 20.5% when daily max values are extracted from hourly predictions, against a reduction of 32.8% 

with the same model trained for daily max prediction. Therefore, depending on applications, one might consider using daily 

MOS instead of hourly MOS if performances must be optimized for the daily max statistics. 

 

  Local Global 

Raw Lm Lasso Ridge Rf Gbm Lm Lasso Ridge Rf Gbm 

RMSE 

for 

daily 

mean 

O3 16.1 39% 42% 41% 35% 35% 42% 42% 43% 44% 43% 

PM10 10.3 43% 44% 45% 43% 42% 39% 39% 42% 43% 40% 

NO2 9.6 54% 54% 54% 50% 52% 46% 46% 48% 48% 47% 

PM2.5 6.6 35% 36% 37% 36% 34% 32% 32% 35% 37% 34% 

RMSE 

for 

daily 

max 

O3 19.1 25% 28% 28% 23% 22% 30% 30% 32% 33% 31% 

PM10 25.2 35% 36% 36% 34% 30% 29% 29% 32% 33% 30% 

NO2 21.9 48% 48% 48% 46% 46% 40% 40% 42% 42% 40% 

PM2.5 14.9 32% 33% 33% 32% 29% 27% 27% 30% 31% 27% 

RMSE 

for 

hourly 

mean 

O3 22.6 28% 28% 28% 29% 27% 25% 25% 26% 29% 27% 

PM10 13.3 25% 25% 25% 25% 23% 23% 23% 24% 25% 23% 

NO2 12.6 31% 31% 31% 33% 32% 27% 27% 28% 29% 28% 

PM2.5 8.6 20% 20% 19% 20% 17% 19% 18% 20% 22% 18% 

Table 2: 2019 RMSE score (average of 1535 (O3), 957 (PM10), 1468 (NO2) and 498 (PM2.5) stations) for daily mean, daily 310 

maximum and hourly mean as percentage of decrease compared to the raw model RMSE. Raw model RMSE in µg m-3 is 

indicated in the “Raw” column. 

  Local Global 

Raw Lm Lasso Ridge Rf Gbm Lm Lasso Ridge Rf Gbm 

RMSE 

for 

daily 

mean 

O3 16.2 40% 41% 41% 42% 41% 40% 40% 42% 44% 42% 

PM10 10.4 42% 42% 43% 43% 43% 39% 39% 41% 43% 41% 

NO2 9.5 52% 52% 52% 54% 54% 46% 46% 47% 48% 47% 

PM2.5 6.6 35% 35% 34% 36% 36% 32% 31% 34% 38% 34% 
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RMSE 

for 

daily 

max 

O3 19.4 25% 25% 25% 25% 26% 16% 16% 16% 21%     20% 

PM10 25.9 27% 27% 26% 29% 30% 23% 23% 23% 27% 26% 

NO2 22.2 36% 36% 34% 39% 43% 32% 33% 33% 36% 37% 

PM2.5 15.2 25% 25% 25% 28% 28% 27% 27% 30% 31% 27% 

Table 3: 2019 RMSE scores as percentage of decrease compared to the raw Ensemble model for the daily mean and daily max 

extracted from the hourly MOS predictions. 

 315 

For the 4 pollutants investigated in this study, this reduction in RMSE score is associated with a strong decrease in the mean 

bias. As illustrated in Figure 3 for the prediction of hourly concentrations, the raw Ensemble model tends to over-estimate O3 

levels and to under-estimate PM10, PM2.5 and NO2 concentrations in Central Europe (EUC), Northern Europe (EUN), Southern 

Europe (EUS) and Western Europe (EUW). These biases are well corrected by both the local and global MOS (see the red and 

blue bars which represent the local and global MOS approaches with their respective best model scenarios). The reduction in 320 

RMSE is also associated with a significant increase in the correlation score. Similar results have been obtained with the MOS 

designed for daily mean and daily max (see appendix C). While the local and global approaches compete with each other for 

O3, PM10 and PM2.5 daily and hourly forecasts, the local approach outperforms the global approach for the NO2 pollutant. This 

difference is attributed to the local nature of this pollutant, i.e., the fact that concentration levels are more influenced by local 

emission, and to a smaller extent by meteorological conditions. However, the global MOS approach still clearly improves 325 

performances compared to the raw Ensemble model for this pollutant. 
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 330 

Figure 3: Comparison of the raw Ensemble model and best model scenarios for the local and global MOS approaches. Scores include 
stations means of RMSE, mean bias and correlation for the prediction of hourly mean concentrations over Central Europe (EUC), 
Northern Europe (EUN), Southern Europe (EUS) and Western Europe (EUW). 

 

The European Union has defined concentration thresholds to characterize pollution peaks. Exceedance of these thresholds 335 

require to inform the exposed population and the set-up of mitigation actions by local authorities to reduce the adverse effects 

of the pollution. We therefore paid a special attention to the ability of the models to detect such thresholds exceedances. The 

threshold value of 180 µg m-3 for O3 daily max concentration and 50 µg m-3 for PM10 daily mean are regularly exceeded in 

Europe. These exceedances events remain relatively rare. In our 2019 testing dataset (only summer months for O3), the base 

rate is 1.3% and 2% respectively for O3 and PM10 exceedances. In average, the duration of these episodes of exceedances at 340 

a station is 1.6 days for O3, with 30% of the episodes lasting 2 days or more and 4% lasting 5 days or more. For PM10, the 

episodes tend to be a little bit longer, with an average duration of 1.8 days, 40% of the episodes lasting 2 days or more and 5% 

lasting 5 days or more.  

To assess the ability of a model to detect these exceedances, we use the so-called contingency table which counts the number 

of good detections (predicted and observed exceedances), missed (observed but not predicted) and false alarms (predicted but 345 

not observed) over the whole set of monitoring stations. Figure 4 represents the contingency table for O3 daily max exceedances 

and PM10 daily mean exceedances of the raw Ensemble model and the local MOS. The persistence model, referred to as “Pers” 

has been added to the plot as a reference. It is a trivial model which consists in forecasting for the oncoming day the 

concentration that we observed during the previous day. To characterize detection skills, 4 scores can be derived from the 

contingency table and plotted into a single performance diagram (Figure 5 and 6). The Probability Of Detection (on the y-axis) 350 

is defined as the ratio of good detections to the total number of observed exceedances, the Success Ratio (x-axis) is defined as 

the ratio of Good Detections to the total number of predicted exceedances, the Critical Success Index (CSI) represented by the 

black contours is the ratio of Good Detections to the total number of predicted or observed exceedances and the Frequency 

Bias (dashed straight line) is the ratio of the total number of predicted exceedances to the total number of observed exceedances. 

All these scores take values between 0 and 1, except for the Frequency bias which takes any positive value. A perfect model 355 

would take the value of 1 for all these scores and would be located on the upper right corner of the performance diagram. 

Figure 5 and 6 illustrate the detection performances of the MOS for O3 and PM10 respectively. In both figures, 4 performance 

diagrams represent the scores for the local-daily (top-left) and global-daily (top-right), local-hourly (bottom-left) and global-

hourly (bottom-right) MOS approaches. For O3 (Figure 5), the high value (close to 0.8) of the success ratio for the raw 

Ensemble model means that when it detects a threshold exceedance, there is a high probability to actually observe a threshold 360 

exceedance. But the downside is that observed exceedances have a very low probability to be detected by this model as 

illustrated by the very low Probability Of Detection (y-axis). In other words, the raw model is strongly biased (in frequency) 

with much more observed than predicted exceedances. In contrast, the MOS allows to get a frequency bias closer to 1, reducing 
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the success ratio but greatly improving the probability of detection. Both the local and global approaches enable to improve 

the overall detection performances, reaching CSI scores between 0.3 and 0.4 for the MOS dedicated to daily predictions (see 365 

the top panels). The small loss in the Success Ratio is largely compensated by the gain in Probability Of Detection. In that 

configuration, with 4 months of data for training, the local approach works better with linear models (standard, LASSO and 

ridge) than with tree-based models (RF and GBM). The best CSI score is obtained with the global-daily approach and GBM 

model (0.34). This is much better than the persistence model which produces a CSI score of 0.22. Note that by construction, 

the Frequency Bias of the persistence model (grey circle in the performance diagrams) is equal to one (i.e. located over the 370 

bisector of the performance diagram) since the number of predicted exceedances always equals the number of observed 

exceedances (exceedances are predicted with 1 day of delay). The position on the bisector line depends on the length of the 

episodes. Long episodes of exceedances (several consecutive days) will tend to produce good scores (closer to the upper right 

corner of the performance diagram). For this O3 threshold of exceedance, performances are clearly degraded when using the 

hourly approach (bottom panels).   375 

Results are comparable for the detection of exceedances of PM10 daily mean threshold (Figure 6), with Success Ratio scores 

between 0.59 and 0.68, Probability of detection between 0.42 and 0.51 and CSI between 0.35 and 0.4 depending on the MOS 

approach and on the model considered. Best CSI score of 0.4 is obtained with the global-hourly approach associated with the 

random forest model. Unlike for the O3 pollutant, detection performances of the hourly approaches are similar to those of the 

daily approaches. 380 

  

 

Figure 4: Contingency table of the raw Ensemble, the local MOS models and the persistence model, over the 2019 testing period, for 
O3 (left) and PM10 (right) thresholds exceedances 

  385 

 



17 
 

 

  

 

Figure 5: Detection scores for the local-daily (top-left), global-daily (top-right), local-hourly (bottom-left) and global-hourly (bottom-390 
rigth) MOS approaches for O3 daily max 180 µg m-3 threshold 
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Figure 6: Detection scores for the local-daily (top-left), global-daily (top-right), local-hourly (bottom-left) and global-hourly (bottom-
rigth) MOS approaches for PM10 daily mean 50 µg m-3 threshold 395 
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6 Conclusion 400 

This work allows to compare the performances of two Model Output Statistics (MOS) approaches for the correction of the 

Copernicus Atmosphere Monitoring Service (CAMS) forecasts for 4 regulated pollutants, for the upcoming day at daily and 

hourly time scales, at monitoring sites covering the European territory. Both approaches (local and global) are implemented 

with 5 distinct machine learning algorithms ranging from simple linear regressions to more sophisticated tree-based models. 

The construction of optimized local MOS needs relatively large periods of data available for training individual models at each 405 

site. It was therefore tested with a reasonable scenario, where a full year of training data was available for PM10, PM2.5 and 

NO2 pollutants. For O3, we focused on summer predictions and the MOS was trained with 4 months of summer data. In this 

context, the local MOS approach performs best with the linear models for the RMSE of daily predictions and for detection 

performances, while the random forest model gives the best RMSE scores for the hourly predictions. We insist that this result 

is only true with one year (4 summer months for O3) of training data. It could be different with shorter training period as linear 410 

models are more prone to overfitting as suggested by the results described in section 4. The global MOS is an innovative 

approach designed to cope with operational constraints. Its very short training period (3 days) allows to adapt in a short time 

to any changes in the modelling system (upgrade of the deterministic model, addition of new monitoring stations). In addition 

to its operational flexibility, the global approach shows performances that compete with those of the local approach. For this 

global approach, the random forest algorithm gives the best RMSE scores whatever the pollutant and time scale considered. 415 

However, if the MOS is designed for hourly prediction, the Gradient Boosting Machine (GBM) algorithm is more adapted 

than random forest to detect O3 daily max threshold exceedances. We would therefore recommend the GBM model in that 

situation. But one might also consider using a MOS specifically designed for daily maximum predictions to further improve 

detection skills. 

As mentioned above, the local approach was performed in this study with relatively large training data set. Interestingly, such 420 

a local approach was tested with CAMS O3 forecasts by Petetin et al 2022, using a selection of MOS methods (including basic 

methods such as persistence or moving average to more sophisticated methods such as GBM) to build a model at every 

monitoring station located in the Iberian Peninsula. To compare the distinct MOS methods, Petetin mimics a worst-case 

operational scenario where very few prior data is available for training, i.e., new models are trained regularly with a growing 

history, starting with 30 days and ending with 2 years of data for a February 2018 to December 2019 simulation. Performances 425 

cannot be directly compared to this work because of their distinct spatial and temporal (year-round versus summer months) 

coverage. Nevertheless, the authors highlight, that the GBM model present poor detection skills (worse than the persistence 

model) despite having the best RMSE and correlation performances. Our study confirms this result for the GBM and random 

forest models, even with 4 summer months for training. We further demonstrate that with a constant 3-days training period, 

the global approach offers stable performances, with optimized continuous and categorical skills, from the very first days 430 

following a deterministic modelling system upgrade. As mentioned in section 2, the CAMS ensemble model was subject to an 

upgrade in June 2019 (i.e. during the testing period). We verified that no break up in the scores occurred during this period 
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and thus consider this upgrade had little impact on the local MOS (despite being calibrated with a slightly different CAMS 

ensemble version). Nevertheless, we emphasize there is no reason that the local MOS will behave the same way in future 

upgrades and re-affirm the benefit of the global (short training) MOS approach to deal with those situations. In the future, such 435 

a global approach could also be used with a gradually expanding training dataset as in Petetin et al, being mindful however on 

the computing demand of automated learning of such a MOS in an operational setup. Because of its flexibility, we also expect 

that this global approach is prone to adapt in real time to rapid changes in pollutant emissions as experimented during the 

COVID crisis. Further investigation could be made using 2020 data to test this approach in such a situation. 

 440 
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Appendix A : Grids of tunning values for the hyper-parameters of each algorithm 

For both the LASSO and ridge, the penalty coefficient (lambda) is tested with values in {0, 0.05, [0.1 to 5.0 by increments of 

0.1], 6, 7, 8, 10, 12, 15}. For the random Forest algorithm, the number of trees (ntree) to grow is fixed to 100 and the number 470 

of variables randomly sampled at each split (mtry) is taken as the largest integer less than or equal to the square root of P, 

where P is the number of predictors. For the GBM algorithm, the number of trees (n.tree) is fixed to 100. The learning rate 

(shrinkage) takes values in {0.05, 0.1, 0.3}. The number of splits to perform in each tree (interaction.depth) takes values in 

{2, 7} and the minimum number of observation in a node (n.minobsinnode) takes values in {1, 5}. 

 475 

 

Appendix B 

 

 

 480 

Figure B1: Mean Bias score for the raw Ensemble model and the local MOS approach with 4 training configurations 
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 485 

 

Figure B2: Correlation score for the raw Ensemble model and the local MOS approach with 4 training configurations 
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 490 

 

Figure B3: Mean Bias score for the raw Ensemble model and the global MOS approach with 4 training configurations 
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 495 

 

FigureB4: Correlation score for the raw Ensemble model and the global MOS approach with 4 training configurations 
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Appendix C 

 535 

Figure C1: Comparison of the raw Ensemble model and best model scenarios for the local and global MOS approaches. Scores 
include stations means of RMSE, mean bias and correlation for the prediction of daily mean concentrations over Central Europe 
(EUC), Northern Europe (EUN), Southern Europe (EUS) and Western Europe (EUW). 



27 
 

 

 540 

Figure C2: Comparison of the raw Ensemble model and best model scenarios for the local and global MOS approaches. Scores 
include stations means of RMSE, mean bias and correlation for the prediction of daily max concentrations over Central Europe 
(EUC), Northern Europe (EUN), Southern Europe (EUS) and Western Europe (EUW). 
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