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Abstract 17 
Despite its importance in controlling the abundance of methane (CH4) and a myriad of other 18 
tropospheric species, the hydroxyl radical (OH) is poorly constrained due to its large spatial 19 
heterogeneity and the inability to measure tropospheric OH with satellites.  Here, we present a 20 
methodology to infer tropospheric column OH (TCOH) in the tropics over the open oceans using a 21 
combination of a machine learning model, output from a simulation of the GEOS model, and satellite 22 
observations.  Our overall goals are to assess the feasibility of our methodology, to identify potential 23 
limitations, and to suggest areas of improvement in the current observational network.  The 24 
methodology reproduces the variability of TCOH from independent 3D model output and of 25 
observations from the Atmospheric Tomography mission (ATom).  While the methodology also 26 
reproduces the magnitude of the 3D model validation set, the accuracy of the magnitude when applied 27 
to observations is uncertain because current observations are insufficient to fully evaluate the machine 28 
learning model.  Despite large uncertainties in some of the satellite retrievals necessary to infer OH, 29 
particularly for NO2 and HCHO, current satellite observations are of sufficient quality to apply the 30 
machine learning methodology, resulting in an error comparable to that of in situ OH observations.  31 
Finally, the methodology is not limited to a specific suite of satellite retrievals.  Comparison of TCOH 32 
determined from two sets of retrievals does show, however, that systematic biases in NO2, resulting 33 
both from retrieval algorithm and instrumental differences, lead to relative biases in the calculated 34 
TCOH.  Further evaluation of NO2 retrievals in the remote atmosphere is needed to determine their 35 
accuracy.  With slight modifications, a similar methodology could likely be expanded to the extra-tropics 36 
and over land, with the benefits of increasing our understanding of the atmospheric oxidation capacity 37 
and, for instance, informing understanding of recent CH4 trends. 38 
 39 
1 Introduction 40 
The hydroxyl radical (OH) dictates the lifetime of many tropospheric species, including carbon monoxide 41 
(CO), methane (CH4), and numerous volatile organic compounds (VOCs).  Knowledge of OH is therefore 42 
necessary to understand the abundance, distribution, and variability of these species.  For instance, 43 
Rigby et al. (2017) and Laughner et al. (2021) attribute recent trends and increases in CH4 at least 44 
partially to changes in OH abundance.  Current constraints on OH are insufficient, however, to assess its 45 
relative importance in controlling these trends (Turner et al., 2017).   46 
 47 
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Differences in OH distributions among chemistry transport (CTM) and chemistry climate models (CCM) 48 
suggest that these models are insufficient to inform understanding of OH abundance and variability 49 
without further observational constraints.  OH abundance can differ by up to 80% among models 50 
constrained with identical emissions in intercomparison projects (Voulgarakis et al., 2013;Nicely et 51 
al.;Zhao et al., 2019;Murray et al., 2021), with modeled trends disagreeing with those derived from 52 
observationally constrained methods (Stevenson et al., 2020).  Variables such as the photolysis 53 
frequency of O3 (JO1D) (Nicely et al., 2020), the NOX lifetime (NOX = NO + NO2), and the oxidation 54 
efficiency of VOCs (Murray et al., 2021) contribute to these inter-model variations in OH.  Using 55 
Gaussian emulation, Wild et al. (2020) found that the relative importance of drivers of OH variability 56 
differed widely among three CTMs. Likewise, the response of OH to the El Niño Southern Oscillation 57 
(ENSO), the dominant mode of OH variability on monthly and seasonal timescales (e.g. Anderson et al., 58 
2021;Turner et al., 2018), and other modes of internal climate variability can vary widely among models 59 
(Anderson et al., 2021).   60 
 61 
Despite this need for better constraints, observations of tropospheric OH are limited. The hydroxyl 62 
radical has a lifetime of approximately 1s (Mao et al., 2009), resulting in large spatial heterogeneity in 63 
both the horizontal and vertical.  This spatial heterogeneity is further caused by the large variation in the 64 
relative importance of drivers of OH loss and production in different regions of the atmosphere (e.g. 65 
Spivakovsky et al., 2000;Lelieveld et al., 2016).  A strategic, representative in situ observational network 66 
is therefore unfeasible.  As a result, observations of OH are generally limited to intensive field campaigns 67 
(Miller and Brune, 2022) that have narrow spatial and temporal coverage.  While remotely-sensed OH 68 
observations are available, those from satellites are limited to the stratosphere (e.g., Pickett et al., 69 
2008), while ground-based observations of total column OH are dominated by the stratospheric 70 
contribution (e.g., Burnett and Minschwaner, 1998).  71 
 72 
Reference gases with well-characterized sources and an OH sink, such as methyl chloroform (MCF), can 73 
be used to infer OH abundance (Lovelock, 1977).  This methodology, however, generally yields no 74 
information on spatial heterogeneity beyond the hemispheric scale (e.g., Montzka et al., 2011;Rigby et 75 
al., 2017;Naus et al., 2019), although there has been recent success when using three dimensional 76 
inversion techniques (Naus et al., 2021).  For MCF in particular, recent declines in tropospheric 77 
abundance will soon dictate the need for a new reference species (Liang et al., 2017). 78 
 79 
Multiple studies have attempted to constrain OH through the creation of proxies and the application of 80 
satellite retrievals of OH drivers.  Murray et al. (2014) showed that global OH strongly correlated with a 81 
combination of JO1D, water vapor (H2O(v)), and the tropospheric sources of reactive nitrogen and carbon 82 
in the GEOS-Chem model.  Murray et al. (2021) demonstrated that OH correlated with this proxy in 83 
multiple CTMs, although the relationship differs strongly among models.  Miyazaki et al. (2020) created 84 
a data assimilation framework that ingested satellite observations of CO, NO2, O3, and HNO3 (nitric acid) 85 
into multiple CTMs.  The data assimilation reduced the spread in average OH among the models and 86 
brought the interhemispheric ratio closer to unity, in line with values suggested by MCF observations 87 
(e.g. Patra et al., 2014). These results demonstrate that the incorporation of satellite observations into a 88 
modeling framework can improve the representation of OH.  Wolfe et al. (2019) developed a proxy for 89 
OH based on formaldehyde (HCHO) production and loss rates. They applied that proxy to satellite HCHO 90 
observations to estimate OH columns in the remote troposphere, a region where HCHO abundance is 91 
low and the satellite retrievals are reflective of the a priori (Zhu et al., 2016).  Using machine learning, 92 
chemical transport model output, and retrievals of NO2 and HCHO, Zhu et al. (2022b) developed a 93 
method to estimate surface OH in North American urban areas.  Finally, Pimlott et al. (2022) used a 94 
steady state approximation of OH, including primary production from H2O and O3 and loss from CO, CH4, 95 
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and O3, to estimate OH between 600 and 700 hPa using observations from IASI (Infrared Atmospheric 96 
Sounding Interferometer).  A logical next step, building on the results of these studies, is the 97 
development of a methodology to constrain OH that ingests multiple satellite retrievals, encompasses 98 
the breadth of OH chemical and dynamical drivers, and spans a significant enough portion of the globe 99 
to inform variability and trends in CH4 and CO loss. 100 
 101 
Combining machine learning, chemical transport model (CTM) output, and satellite data has the 102 
potential to constrain tropospheric column OH (TCOH).  A variety of machine learning techniques, such 103 
as neural networks (Nicely et al., 2017;Nicely et al., 2020;Kelp et al., 2020), self-organizing maps 104 
(Stauffer et al., 2016), random forest regression (Keller and Evans, 2019), and gradient boosted 105 
regression trees (GBRTs) (Ivatt and Evans, 2020;Zhu et al., 2022b;Anderson et al., 2022) show promise in 106 
helping to solve problems in atmospheric chemistry.  In particular, Zhu et al. (2022b) and Anderson et al. 107 
(2022) demonstrated the ability of GBRTs to predict OH from a chemical transport model with 108 
reasonable accuracy.  GBRT models (Elith et al., 2008;Chen and Guestrin, 2016) use an ensemble of 109 
decision trees to predict the value of a target based on multiple inputs, even for targets with highly non-110 
linear dependencies on the inputs. 111 
 112 
Here, we present a methodology to infer clear sky TCOH in the tropics from space-based observations of 113 
its chemical and dynamical drivers with the goal of assessing the feasibility of our methodology, 114 
identifying potential limitations, and suggesting areas of improvement in the current observational 115 
network.  We train a GBRT model using output from a simulation of the NASA GEOS (Goddard Earth 116 
Observing System) model, and then estimate TCOH in the actual atmosphere at the satellite overpass 117 
time using inputs from a suite of satellite retrievals.  In Section 2, we describe the methodology for 118 
generating the machine learning model as well as the satellite retrievals used to constrain TCOH.  We 119 
then evaluate the suitability of MERRA2 GMI as a training dataset (Sect. 3) and, in Section 4, present a 120 
satellite-constrained OH product for one month from each season.  Finally, in Section 5, we explore 121 
potential methodological limitations and benefits, including lack of validation data, the impacts of 122 
observational uncertainties, and the ability to use different satellites and retrievals as inputs to the GBRT 123 
model. 124 

 125 
2 Description of the methodology to generate the GBRT model and of the associated datasets 126 
Our overall aim is to demonstrate the feasibility of our approach to constrain TCOH with satellite-based 127 
observations over broad regional scales.  As a first step, we restrict our analysis to latitudes equatorward 128 
of 25° and regions over water.  We chose to focus initially on this domain as it has appreciable OH 129 
concentrations and simplified chemistry, as compared to regions with large biogenic and anthropogenic 130 
VOC emissions.  Nevertheless, this portion of the atmosphere accounts for 50 – 60% of global CO and 131 
CH4 loss.  In this section, we describe the creation of the machine learning model used to predict TCOH 132 
(Sect. 2.1) for this region as well as the satellite products used as inputs to the machine learning model 133 
(Sect. 2.2). 134 
 135 
2.1 Creation of the TCOH model 136 
2.1.1 Creation of the GBRT training dataset 137 
For the machine learning model training dataset, we use a subset of output from the MERRA2 GMI 138 
simulation (https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/).  MERRA2 GMI is a 40 year 139 
(1980 – 2019) simulation of the NASA GEOS model run in replay mode (Orbe et al., 2017) with MERRA2 140 
(Modern Era Retrospective analysis for Research and Applications, version 2) meteorology (Gelaro et al., 141 
2017).  The simulation has a resolution of c180 on the cubed sphere (approximately 0.625° longitude by 142 
0.5° latitude) with 72 vertical layers and uses the Global Modeling Initiative (GMI) chemical mechanism 143 
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(Duncan et al., 2007;Strahan et al., 2007).  Output is available at daily- and monthly-averaged resolution, 144 
as well as instantaneous values at 10:00 and 14:00 LST.  These times are within approximately 30 145 
minutes of the overpass times of the satellites described in Section 2.2.  Anderson et al. (2021) and 146 
Strode et al. (2019) provide detailed information about the simulation, including emissions. 147 
 148 
The training target for the machine learning model is TCOH.  In Anderson et al. (2022), we developed a 149 
GBRT parameterization trained on MERRA2 GMI output to predict in situ OH concentrations using 27 150 
inputs, only a small fraction of which are observable from space.  That parameterization, designed to be 151 
integrated into the GEOS modeling framework, performed better when there was a separate model for 152 
each month as opposed to one model for all months.  While that GBRT model is not appropriate for the 153 
application described here, we employ a similar approach, creating a separate set of TCOH training 154 
targets for each month.  We use instantaneous OH output from MERRA2 GMI at 14:00 local time for 155 
each day of a given month across the years 2005 to 2019, a timeframe that maximizes overlap between 156 
the operational lifetime of the satellites listed in Table 1 and the period of the MERRA2 GMI simulation.   157 
We omitted data from 2017 to evaluate model performance.  For a given month and year, we calculate 158 
daily tropospheric column values across the grid, filtering out columns where the maximum cloud 159 
fraction in that column was greater than 30% in order to align the training targets more closely with 160 
satellite data, where retrievals of some species are often filtered for cloud cover. This yields 161 
approximately 43,000 valid grid boxes per day.  For each year, we then average these values to monthly 162 
resolution.  This results in approximately 600,000 total training targets for each month over the 15-year 163 
period. 164 
 165 
Table 1: Input variables to the machine learning model and the corresponding satellite retrieval used to create the 166 
satellite OH product.  Overpass times are ~13:30 LST for all satellites except MOPITT, which has a 10:30 LST 167 
overpass. 168 

Variable Satellite retrieval 
Original horizontal 

and temporal 
resolution 

Reference 

Total O3 column OMI TOMS-Like L3 version 3 0.25° ´ 0.25°, daily McPeters et al. 
(2015) 

Tropospheric NO2 column OMI GSFC L3 version 4 0.25° ´ 0.25°, daily Lamsal et al. (2021) 
CO column MOPITT L3 version 8 1.0° ´ 1.0°, monthly Deeter et al. (2019) 

HCHO column OMI SAO L3 version 3 0.1° ´ 0.1°, daily González Abad et 
al. (2015) 

H2O(v) column AIRS L3 version 6 1.0° ´ 1.0°, monthly 
Susskind et al. 
(2014) 

Sea surface temperature MUR L4 version 4.2 0.25° ´ 0.25°, daily Chin et al. (2017) 
Aerosol optical depth at 550 nm MODIS Aqua L3 collection 6 0.5° ´ 0.5°, daily Levy et al. (2013) 
H2O(v) layers: 925 – 850 hPa, 850 
– 700 hPa, 700 – 600 hPa, 600 – 
500 hPa, 500 – 400 hPa, 400 – 
300 hPa, and 300 - 250 hPa 

AIRS L3 version 6 1.0° ´ 1.0°, monthly 
Susskind et al. 
(2014) 

Solar zenith angle N/A   
Latitude N/A   

 169 
We selected the input variables for the machine learning model (Table 1) based on their relevance to OH 170 
chemistry and variability as well as our current ability to observe the variable with satellites.  171 
Performance was similar for a model including total column ozone only and for a model also including 172 
the tropospheric column.  We therefore use total column ozone because of the uncertainties inherent in 173 
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separating the column into two parts in the satellite retrieval.  We chose the water vapor layers to 174 
correspond with the Atmospheric Infrared Sounder (AIRS) layers product.  Layers are averages over the 175 
indicated pressure range, and we denote the layer names by the highest pressure in that range.  We 176 
include sea surface temperatures (SST) as a proxy for the Indian Ocean Dipole and ENSO, which has a 177 
strong impact on OH variability in the tropics (Anderson et al., 2021;Turner et al., 2018;Naus et al., 178 
2021).  In addition, we include latitude and solar zenith angle as previous work has shown that these 179 
variables can explain a large fraction of the spatial OH variability (Duncan et al., 2000;Anderson et al., 180 
2022). 181 
 182 
We sampled the MERRA2 GMI output to create the training dataset in the same manner as for the TCOH 183 
targets.  The inputs to the machine learning model each correspond to the same model column as the 184 
OH target.  All column values are instantaneous and taken from 14:00 to correspond with satellite 185 
overpass times, except for CO, which is for 10:00, near the Measurement of Pollution in the 186 
Troposphere (MOPITT) overpass time.  Model performance was similar when using CO output at 14:00 187 
and 10:00, likely because of limited diurnal variability in CO column in the study region.  SSTs are 188 
monthly averages of 24-hour averaged values, and we calculated solar zenith angle at the surface for 189 
noon on the 15th of a given month. 190 
 191 
2.1.2 Creation and tuning of the GBRT model 192 
We used the XGBoost package (Chen and Guestrin, 2016) version 0.81 in Python version 3.6 to create a 193 
GBRT model of TCOH for each month using the training datasets from MERRA2 GMI. For each month, 194 
we used 90% of the dataset for model training and the remainder for model validation.  As mentioned in 195 
Section 2.1.1, we also used MERRA2 GMI output from 2017, which was omitted from the training 196 
dataset, as further validation. 197 
 198 
To maximize parameterization performance while also balancing the potential of overfitting, we tuned 199 
hyperparameters, including the learning rate, the maximum tree depth, and the number of trees.  We 200 
chose hyperparameter values that minimized the parameterization root mean square error (RMSE) of 201 
the training dataset.  We set the learning rate, which controls the magnitude of change when adding a 202 
new tree, to 0.1, while we varied the maximum tree depth and number of trees from 6 to 22 and from 203 
10 to 150, respectively.  For both maximum tree depth and number of trees, RMSE initially dropped 204 
significantly with increasing value, representing sharp improvement in parameterization performance.  205 
RMSE values eventually plateaued, increasing parameterization runtime without noticeably improving 206 
performance.  A combination of a maximum tree depth of 18 and 100 trees balanced performance with 207 
model training and run time. 208 
 209 
To determine whether the inputs to the machine learning model improved or hindered performance, we 210 
performed a “leave one out” analysis.  Using 5-fold cross validation, we retrained the model, individually 211 
omitting each of the inputs, to determine the percent difference between the mean RMSE of the 5 folds 212 
for the model without a specific input and one including all inputs.  Omitting the inputs listed in Table 1 213 
lead to increases in the RMSE, suggesting that each is necessary for improved model performance.  As a 214 
result of this analysis, we do not use water vapor layers for pressures less than 300 hPa because these 215 
decreased model performance. 216 
 217 
Finally, we found that it was not necessary to apply satellite averaging kernels and shape factors to the 218 
training dataset.  Of the satellite retrievals used in this work (discussed in Sect. 2.2 and listed in Table 1), 219 
only CO, HCHO, and NO2 could require convolving the model with the averaging kernel.  Shape factors 220 
for the OMI NO2 retrieval are determined from a similar setup of the GEOS model, also employing the 221 
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GMI chemical mechanism and MERRA2 meteorology.  Applying the satellite shape factors to the 222 
simulation discussed here would therefore not result in significant changes in the modeled NO2 223 
(Anderson et al., 2021).  To test whether it is necessary to apply the averaging kernels for CO and HCHO, 224 
we created a separate training dataset, where we convolved the daily MERRA2 GMI output with the 225 
averaging kernel and a priori from the level 2 data for both species for February 2005 - 2019.  All other 226 
inputs were kept the same.  We then retrained the model with these adjusted CO and HCHO variables.  227 
When we applied the satellite data to the model for February 2017, as described in Section 4, the 228 
resulting TCOH differed by less than 1% on average from the model that did not include averaging kernel 229 
information.  This level of uncertainty is significantly smaller than the other uncertainties discussed in 230 
Section 5, so we do not include averaging kernels in our analysis. 231 
 232 
2.2 Description of satellite products  233 
To create the observationally-constrained OH product, we use multiple satellite retrievals, listed in Table 234 
1 and briefly described here.  Each instrument is located onboard a polar orbiting satellite that provides 235 
near global coverage daily.  For each satellite retrieval, we use the level 3 gridded product, with the 236 
exception of SST which is level 4.  Where necessary, we regridded the retrieval to a common horizontal 237 
grid with a resolution of 1.0° ´ 1.0° and averaged to the monthly scale.   238 
 239 
We use these resolutions because, in the study domain, individual pixel retrievals, particularly of NO2 240 
and HCHO, are frequently at or below detection limits (González Abad et al., 2015;Lamsal et al., 2021), 241 
necessitating averaging to relatively coarse temporal and spatial scales.  The study domain partially 242 
mitigates limitations of the 1.0° ´ 1.0° resolution, as spatial heterogeneity of the relevant species is 243 
generally much lower over the remote tropical oceans than over land.  Missing data due to cloud cover 244 
and the Ozone Monitoring Instrument (OMI) row anomaly further increase the need for monthly-scale 245 
averaging.  While other satellites, such as OMPS (Ozone Mapping and Profiler Suite) and TROPOMI 246 
(Tropospheric Monitoring Instrument), provide retrievals with increased signal to noise ratios and more 247 
complete data coverage, the satellites used here cover a far longer time period.  Nevertheless, the 1.0° 248 
´ 1.0° and monthly resolutions, in combination with the long data record, provide new constraints on 249 
regional trends in TCOH and some aspects of TCOH temporal and spatial variability. 250 
 251 
We use retrievals of three species – HCHO, O3, and NO2 – from OMI, an ultraviolet-visible spectrometer 252 
located onboard the Aura satellite, which has an overpass of approximately 13:30 local solar time (LST).  253 
We use the Smithsonian Astrophysical Observatory (SAO) version 3 HCHO retrieval (González Abad et 254 
al., 2015).  Wolfe et al. (2019) found that this retrieval captured the variability of the HCHO columns in 255 
the remote atmosphere observed during the Atmospheric Tomography (ATom) campaign with little bias.  256 
For total column O3, we use the TOMS-like (Total Ozone Mapping Spectrometer) retrieval version 3 257 
(McPeters et al., 2015), which agrees with ground-based and other satellite observations within 258 
approximately 1% (Labow et al., 2013).  Finally, we use the Goddard Space Flight Center version 4 NO2 259 
tropospheric column retrieval (Lamsal et al., 2021).  While previous studies have thoroughly evaluated 260 
this retrieval in more polluted atmospheres (e.g., Lamsal et al., 2014;Choi et al., 2020), evaluation in the 261 
remote tropical atmosphere, as defined in this study, is limited. 262 
 263 
For water vapor and aerosol optical depth (AOD) at 550 nm, we use retrievals from AIRS and the 264 
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, respectively, both located 265 
onboard the Aqua satellite with an overpass of approximately 13:30 LST.  We use the total column water 266 
vapor standard physical retrieval as well as the 7 water vapor layers listed in Table 1 (Susskind et al., 267 
2014).  Multiple studies have evaluated the accuracy of the AIRS H2O(v) column and layers retrievals in 268 
the remote tropical atmosphere, finding bias of 5% or less and high correlation against both remote and 269 
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in situ observations (Bedka et al., 2010;Anderson et al., 2016;Pérez-Ramírez et al., 2019).  We use 270 
collection 6 of the dark target MODIS AOD retrieval at 550 nm, which is highly correlated with 271 
observations from the AERONET network over the ocean (Levy et al., 2013). 272 
 273 
We also use retrievals of CO from MOPITT, which is onboard the Terra satellite with an overpass of 274 
10:30 LST. We use the version 8 retrieval that includes both near and thermal infrared radiances (Deeter 275 
et al., 2019).  CO retrievals from MOPITT in the remote tropics generally agree with ground-based 276 
remotely-sensed observations within 10% (Hedelius et al., 2019;Buchholz et al., 2017).   277 
 278 
Finally, we use SSTs from the Multi-scale Ultra-high Resolution (MUR) analysis, which combines 279 
nighttime SST observations from multiple satellite platforms, including MODIS, as well as in situ 280 
observations and agrees with other SST analyses within 0.36° C (Chin et al., 2017). 281 
 282 
3 Evaluating the Suitability of the MERRA2 GMI Simulation as a Training Dataset 283 
Before generating the GBRT model to predict TCOH, we first demonstrate that the MERRA2 GMI 284 
simulation is suitable to use as a training dataset.  Because of the paucity of in situ observations of OH 285 
over most of the globe, we necessarily use output from an atmospheric chemistry model to train the 286 
machine learning model.  The atmospheric chemistry model output must reasonably capture the 287 
distribution, magnitude, and ENSO-related variability of OH and the drivers listed in Table 1, as GBRT 288 
models are unable to extrapolate beyond the photochemical environments on which they are trained 289 
(Anderson et al., 2022).    290 
 291 
3.1 Comparison of the Distribution and Magnitude of Simulated OH Drivers to Observations 292 
Simulated OH from MERRA2 GMI agrees with observations over the remote ocean within the 293 
instrumental uncertainty.  Anderson et al. (2021) compared MERRA2 GMI output to in situ observations 294 
from the first two deployments of ATom, finding modest correlation (r2 values between 0.3 and 0.78 295 
depending on the hemisphere and season) between observations and the model.  The average 296 
normalized mean bias was on the order of 20%, a slight high bias but within the 2s observational 297 
uncertainty of 35%.  Agreement was highest in the remote atmosphere, whereas the largest error was in 298 
regions of fresh, continental outflow off the coasts of South America and New Zealand.   299 
 300 
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 301 
Figure 1: Comparison of the normalized distributions of the training dataset (red) for the February model and 302 
satellite observations of the indicated species for February 2017 (blue).  Purple indicates regions of overlap.  We 303 
use H2O(v) at 700 hPa as an example for all H2O(v) layers.  Distributions of the other H2O(v) layers are shown in Figure 304 
S1.  We also indicate the r2 of the correlation between MERRA2 GMI output for February 2017 and the 305 
corresponding satellite retrieval as well as the normalized mean bias of that output. 306 

The simulation captures both the observed variability and the magnitude of the majority of GBRT model 307 
inputs with reasonable fidelity, suggesting that the satellite retrievals highlighted in Section 2.2 are 308 
suitable inputs for a machine learning model trained on MERRA2 GMI output (Fig.1).  Figure 1 compares 309 
the distribution of the February training dataset created from the MERRA2 GMI simulation for 2005 – 310 
2019 to the satellite observations of the indicated species for February 2017, a month omitted from the 311 
training dataset.  Distributions of the remaining water vapor layers are shown in Figure S1.  In addition, 312 
correlations between observations and MERRA2 GMI output for February 2017 are shown, as an 313 
example, in Figures S2 and S3.  With the exception of HCHO, distributions of the species are similar 314 
between the observations and MERRA2 GMI, with the training dataset encompassing the full range of 315 
almost all species.  A GBRT model trained on MERRA2 GMI will therefore likely not have to extrapolate 316 
to photochemical environments on which it was not trained when applied to the satellite data.  Further, 317 
MERRA2 GMI total column O3, H2O(v) column, AOD, CO, and SSTs are all highly correlated (r2 of 0.65 or 318 
higher) with their respective satellite observations, and biases are within 10%, on average.  Anderson et 319 
al. (2021) did show that MERRA2 GMI CO columns demonstrate biases of opposite sign in the Northern 320 
and Southern Hemispheres, however.   321 
 322 
Agreement between MERRA2 GMI and satellite observations for NO2, HCHO, and the H2O(v) layers is 323 
more variable than for the other species.  While modeled NO2 is moderately correlated with 324 
observations (r2 = 0.68) with relatively similar distributions, MERRA2 GMI has a NMB of 63%.  This 325 
disagreement is most pronounced at low column values, however, where observational uncertainty is 326 
large.  Further, Anderson et al. (2021) demonstrated distinct regions of bias in NO2 related to biomass 327 
burning and lightning emissions.  Modeled HCHO, on the other hand, is not correlated with observations 328 
and is biased low by -77%.  Modeled water vapor layers are all modestly correlated with observations (r2 329 
of 0.64 or greater) but vary in their bias, with the 925, 850, 700, and 300 hPa layers biased within 30% 330 
and the remaining layers biased up to 71%. 331 
 332 
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The satellite product is insensitive to the differences between the HCHO distribution of the satellite and 333 
training dataset highlighted in Figure 1. To determine the effects of the difference in HCHO distribution, 334 
we extended the training dataset to cover the full time period of the MERRA2 GMI simulation (1980 – 335 
2019) and then subsampled the resultant data to match the satellite HCHO distribution.  Extending the 336 
training dataset to 1980 allows for the subsampled training dataset to have a similar size (~600,000 337 
points) as the original training set.  We then created a new machine learning model using this sub-338 
sampled dataset and calculated OH fields for Feb. 2017 using the satellite inputs from Table 1.  We 339 
compared this to the TCOH field calculated from a model using the original training dataset, finding 340 
agreement within 5%.  Similarly, the satellite-constrained TCOH product discussed in Section 4.2 differs 341 
by only 3% on average from one determined with a GBRT model that excludes HCHO as an input, 342 
suggesting the limited impact of potential errors in the MERRA2 GMI HCHO distribution on model 343 
performance.  These uncertainties are small in comparison to that resulting from uncertainties in the 344 
NO2 and HCHO satellite retrievals discussed in Section 5.2.  If the uncertainty of the satellite inputs 345 
decreases, as retrievals and instruments improve, then it will become necessary to more closely align 346 
the training and observed HCHO distributions. 347 
 348 
Finally, because NO2 and HCHO have the largest differences between satellite observations and the 349 
training dataset, we trained a separate machine learning model to predict TCOH, omitting these two 350 
species as inputs.  When this model was evaluated using the independent MERRA2 GMI output 351 
described in Section 4.1, the NRMSE was 10.1%, a more than factor of 2 degradation in performance as 352 
compared to the baseline model.  This suggests that omitting these species from the machine learning 353 
model would result in a greater uncertainty in the final TCOH product than that which results from the 354 
retrieval uncertainties and the potential discrepancies between observations and the training dataset.   355 
 356 
3.2 Evaluation of the simulated ENSO-related variability of OH drivers 357 
Because ENSO is the dominant mode of OH variability (Anderson et al., 2021;Turner et al., 2018), the 358 
training dataset must also capture the ENSO-related variability of the GBRT model inputs.  Anderson et 359 
al. (2021) demonstrated that the correlation of columns of CO, H2O(v), and to a lesser extent NO2, from 360 
the MERRA2 GMI simulation with the Multivariate ENSO Index (MEI) (Wolter and Timlin, 2011) agreed 361 
closely with correlations of the corresponding species for observations from MOPITT, AIRS, and OMI.  362 
Unsurprisingly, based on the strong correlation and low bias of MERRA2 GMI SSTs with observations, the 363 
simulation also captures the relationship between SSTs and ENSO.  The simulation therefore sufficiently 364 
captures the ENSO-related variability of these species to act as training data for the GBRT model.  We 365 
now evaluate this relationship for the remaining GBRT model inputs. 366 
 367 
The MERRA2 GMI-simulated ENSO-related variability of AOD and the various water vapor layers also 368 
agrees well with observations.  Figures 2 and S4 show the correlation of AOD, HCHO, and the various 369 
H2O(v) layers with the MEI for the satellite retrievals and MERRA2 GMI.  MERRA2 GMI captures the 370 
general distribution and magnitude of correlation between AOD and ENSO, despite the low optical 371 
depths over much of the domain.  There are some regional differences, however, particularly in the 372 
eastern Southern Hemispheric Pacific.  For the H2O(v) layers, the simulation underestimates the 373 
magnitude of the correlation in some areas, but in general, there is excellent agreement for all layers 374 
throughout the troposphere.  This suggests that, despite the high bias discussed above, including the 375 
H2O(v) layers could provide important, vertically-resolved information to the machine learning model. 376 
 377 
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 378 
Figure 2: Distribution of the regression coefficient of a linear least squares fit of the indicated variable against the 379 
MEI for the respective satellite retrieval (a, c, and e) and MERRA2 GMI (b,d, and f) for February.  Regressions of 380 
AOD are for 2010 to 2019, the years for which we have a one-degree, gridded satellite product, while HCHO and 381 
water vapor 700 hPa are for 2005 to 2019.  Satellite data are on a 1°´1° grid while model output is at the native 382 
model resolution. 383 

Modeled accuracy of the HCHO-ENSO relationship is more difficult to assess.  While both the OMI 384 
retrieval and MERRA2 GMI demonstrate broad regions of anti-correlation between HCHO and ENSO, the 385 
correlations with OMI HCHO are weaker and noisier than for the other satellite retrievals.  Over much of 386 
the domain, HCHO abundance is low, often at or below the retrieval detection limit, suggesting that the 387 
HCHO retrieval might not be of sufficient quality to capture ENSO-related variability.  We investigate the 388 
impacts of the HCHO observational uncertainty in Section 5. 389 
 390 
Finally, because we use total column O3 as an input to the GBRT model, we do not evaluate the 391 
relationship between ENSO and O3, as the stratosphere dominates the O3 column and the ENSO-related 392 
variability is mostly confined to the troposphere.  Oman et al. (2013) found that a GEOS CCM simulation 393 
and a combination of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric 394 
Emission Spectrometer (TES) exhibited similar ENSO-related variability in the middle and upper 395 
troposphere, demonstrating that simulations in the GEOS framework can capture this relationship.  If a 396 
TES-like satellite retrieval were currently available, it could be a valuable contributor to the GBRT model 397 
described here, as it would provide vertically-resolved information about one of the primary drivers of 398 
OH production. 399 
 400 
4 Tropical tropospheric column OH constrained with observations of its drivers 401 
We now demonstrate the ability of the GBRT model to determine TCOH.  First, we show that the GBRT 402 
model can reproduce MERRA2 GMI modeled TCOH from a year independent of the training dataset, a 403 
so-called “hold out set” (Sect. 4.1).  We then input satellite data from one month from each season into 404 
the GBRT model to evaluate the realism of the calculated TCOH fields (Sect 4.2).   405 
 406 
4.1 Evaluation with an independent year from MERRA2 GMI 407 
The machine learning model is able to capture both the magnitude and the variability of TCOH across 408 
each season when applied to MERRA2 GMI output from 2017, a year independent of the training 409 
dataset.  For August 2017 (Fig. 3b), the predicted TCOH is highly correlated with MERRA2 GMI (r2 of 410 
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0.98).  TCOH from the machine learning model agrees with the CTM simulation within 4.8% on average.  411 
The overall normalized mean bias (NMB) is negligible (-0.1%), although there are some regions of 412 
coherent bias (Fig. 3a).  Results are similar for February, May, and October 2017 (Fig. S5).  The 413 
normalized root mean square error for each of these months is comparable to that found for a GBRT 414 
parameterization of OH created with a similar methodology that included 27 inputs (Anderson et al., 415 
2022).  This suggests that limiting inputs to model variables observable from space does not degrade the 416 
ability of the machine learning model to predict TCOH.  The low bias and high correlation between the 417 
GBRT and MERRA2 GMI TCOH for all four months examined here also suggests that any potential 418 
overfitting by the GBRT model is minimal. 419 

 420 
Figure 3: Percent difference between TCOH predicted by the machine learning model and that from MERRA2 GMI 421 
for August 2017, a month and year omitted from the training dataset (a).  A regression of the machine learning TCOH 422 
against MERRA2 GMI for the same month (b).  The r2 of a linear, least squares regression, along with the normalized 423 
mean bias (NMB) and normalized root mean square error (NRMSE), are also indicated.  424 

4.2 TCOH from satellite observations of its drivers 425 
We now apply satellite data from the four months corresponding to the ATom campaign (Aug. 2016, 426 
Feb. 2017, Oct. 2017, and May 2018) to the GBRT model to determine TCOH fields across the tropics.  427 
More details about ATom as well as evaluation of the GBRT model with ATom observations are in 428 
Section 5.  We use the satellite observations listed in Table 1, all of which have been averaged to the 429 
monthly scale and to a 1° ´ 1° horizontal resolution.  We include only grid boxes with observations for 430 
all GBRT model inputs and where those observations are within the range of the corresponding inputs 431 
from the training dataset.  Because the satellite inputs for most species exclude grid boxes with a cloud 432 
fraction greater than approximately 30%, the product presented here represents predominantly clear 433 
sky conditions. 434 
 435 
The GBRT model and multi-satellite inputs yield TCOH fields that are geophysically credible based on our 436 
current understanding of OH photochemistry.  Although the domain-wide average changes little with 437 
season, with a minimum of 5.84 ´ 1012 molecules/cm2 in May 2018 and a maximum of 6.35 ´ 1012 438 
molecules/cm2 in August 2016, the spatial distribution varies widely among the four months (Fig. 4).  In 439 
both Feb. 2017 and Aug. 2016, TCOH minimizes in the winter hemisphere, consistent with lower OH 440 
production due to low insolation.  The reverse is true for the summer hemisphere.  In addition, TCOH 441 
maximizes in regions with strong continental outflow and along coastlines, regions likely to be impacted 442 
by anthropogenic and biomass burning emissions of OH drivers.   443 
 444 
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 445 
Figure 4: TCOH calculated with the machine learning model using satellite inputs for the months of each ATom 446 
deployment: Feb. 2017 (a), May 2018 (b), Aug. 2016 (c), and Oct. 2017 (d).  The mean, domain-wide TCOH value in 447 
molecules/cm2 for each month is also indicated. 448 

In general, TCOH from the multi-satellite product differs in both magnitude and distribution from the 449 
MERRA2 GMI simulation.  For example, for Feb. 2017, mean MERRA2 GMI TCOH is 6.96 ´ 1012 450 
molecules/cm2, 12% higher than the satellite product (Fig. S6).  This is consistent with the comparison to 451 
in situ observations discussed in Section 3.1 where MERRA2 GMI overestimates ATom observations by 452 
~20% and underestimates CH4 lifetime, suggesting that the satellite product is again of reasonable 453 
magnitude.  While understanding the satellite/model differences in TCOH is beyond the scope of this 454 
work, we consider the variety in TCOH spatial distributions generated by the GBRT model to be 455 
promising.  The difference between the satellite-constrained product and MERRA2 GMI lends some 456 
confidence that the GBRT model is not overfit or “tied” to geographic determiners in the training 457 
dataset, but rather, is sensitive to variations in the chemical and dynamical drivers of OH.  These results 458 
all suggest that the methodology presented here can produce a reasonable satellite TCOH product in the 459 
tropics, with values and distributions independent of the chemistry model used to create the GBRT 460 
model. 461 
 462 
5 Understanding and mitigating potential challenges in using this methodology to constrain TCOH 463 
In this section, we outline possible limitations of the machine learning methodology and the current 464 
observational network of the GBRT model inputs and provide potential means to mitigate these 465 
limitations where necessary.  In section 5.1, we discuss the current lack of sufficient in situ observations 466 
to thoroughly evaluate the methodology, highlighting this point by validating the GBRT model with data 467 
from the ATom campaign.  In section 5.2, we investigate the impacts of random retrieval errors in 468 
satellite retrievals on the TCOH product, while in section 5.3, we evaluate the impacts on TCOH when 469 
using different satellite retrievals as inputs. 470 
 471 
5.1 Insufficient in situ observations for thorough independent evaluation 472 
While we demonstrated in Section 4.1 that TCOH calculated with the GBRT model agrees closely with a 473 
hold-out set from MERRA2 GMI, it is also important to demonstrate that the GBRT model can replicate 474 
observed TCOH from the actual atmosphere.  Because the satellite TCOH product shown in Figure 4 is 475 
monthly and at a 1° ´ 1° resolution, however, there are no observations with which to evaluate the 476 
product.  We can test the ability of the GBRT model to reproduce observed TCOH from field campaigns, 477 
however, assuming there are concomitant observations of the input species listed in Table 1.  The 478 
additional need for tropospheric column values of many of these species severely limits the datasets 479 
available for validation.  To our knowledge, the ATom campaign is the only source of the required inputs 480 
with enough observations to attempt a limited validation. 481 
 482 
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During ATom (Thompson et al., 2022), scientists measured a suite of air quality and climate relevant 483 
trace gases and aerosols throughout the atmosphere above the remote Pacific and Atlantic.  ATom took 484 
place in four parts: ATom 1 (July – August 2016), ATom 2 (January – February 2017), ATom 3 (September 485 
– October 2017), and ATom 4 (April – May 2018).  During each deployment, flights consisted of a series 486 
of ascents and descents across all tropical latitudes over the Pacific and Atlantic Oceans.  This allows for 487 
the calculation of tropospheric column content of the observed species and evaluation of the machine 488 
learning model across most latitudes of our study domain and across all seasons. 489 
 490 
To evaluate the GBRT model performance, we calculated TCOH using a modified GBRT model and 491 
observations from the ATom deployments as inputs.  We then compared the values to the observed OH 492 
columns.  To calculate the column values from the observations, we averaged data into 25 hPa pressure 493 
bins for each ATom profile.  We filled in missing data using a log-linear interpolation and then integrated 494 
the column.  Our analysis here includes only profiles with observations of all necessary species, that 495 
spanned at least 700 hPa, and where less than 25% of the pressure bin values were interpolated.  We 496 
also omitted any profiles that had pressure bins with negative OH values.  In addition, we restrict our 497 
analysis to latitudes within 25° of the equator and profiles conducted between 12:00 and 15:00 LST.  498 
Values for total column O3, AOD, and SSTs, for which there were no observations during ATom, were 499 
taken from the MERRA2 GMI simulation from the grid box closest to the center of the respective profile.  500 
Because ATom profiles did not span the entire tropospheric column, we trained a separate GBRT model 501 
where OH and all tropospheric column input variables were substituted with columns spanning 990 – 502 
250 hPa, the median range of ATom profiles.  This allows for a more direct comparison between 503 
observed and modeled TCOH.  The spatial distribution of the valid ATom columns and the corresponding 504 
columns calculated with the GBRT model are shown in Figure S7.   505 
 506 

 507 
Figure 5: Regression of TCOH observed from the ATom deployments against that predicted from the GBRT model.  508 
Error bars represent the 2s observational uncertainty as reported in Brune et al. (2020) and the GBRT uncertainty 509 
described in Section 5.2.  The r2 of a linear least squares fit and the mean bias are also shown. 510 

The GBRT model captures the variability of the observed TCOH, and, while there is a modest overall high 511 
bias, the median normalized absolute error of 28.3% is within observational uncertainty.  When applied 512 
to all ATom deployments, predicted TCOH is correlated with the observations with an r2 of 0.67 and a 513 
mean bias of 1.14 ´ 1012 molecules/cm2 (Fig.5).  Many of the data points agree within the combined 514 
modeled and observational uncertainty.  The r2 values for individual deployments are 0.88 for ATom 1, 515 
0.73 for ATom2, and 0.78 for ATom 3 and 4.  The level of agreement between observed and predicted 516 
OH is comparable or better than that of other methods to infer OH from space.  For example, Pimlott et 517 
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al. (2022) found an r of 0.78 (r2 = 0.61) when estimating ATom OH using a steady state approach, with r 518 
values ranging from 0.51 to 0.85 (r2 of 0.26 to 0.72) for the different deployments.  The level of 519 
agreement we show here therefore demonstrates the validity of the machine learning method to 520 
capture the variability of OH. 521 
 522 
The source of the model/measurement disagreement, with over- and underprediction at low and high 523 
column content respectively, is unclear, although there are multiple potential error sources.  For 524 
example, a typical profile taken during ATom spanned 300 – 400 km in latitude, disconnecting the top 525 
and bottom of the profile in space.  This is in contrast to the data used to train the model, which were 526 
vertical columns over one location.  This could lead to a degradation in model performance when 527 
applied to ATom, since the columns are not directly analogous to the training dataset.  These effects are 528 
likely limited because ATom observations are in the remote atmosphere, where the spatial distribution 529 
of relevant species is likely to be more homogeneous than over land.   530 
 531 
Further, there is a known interference with the ATom NO2 observations, suggesting another possible 532 
contributor to disagreement between measured and modeled OH.  Because of thermal degradation of 533 
NO2 reservoir species, such as organic nitrates and peroxyacetyl nitrate, in the instrument inlet, ATom 534 
NO2 observations are likely biased high  (Silvern et al., 2018;Shah et al., 2023;Nault et al., 2015).  To test 535 
the potential impact of NO2 on the predicted OH columns, we applied the ATom observations to a model 536 
that omits NO2 as an input.  Removing NO2 increases the r2 to 0.74, decreases the mean bias to 0.82 ´ 537 
1012 molecules/cm2, and decreases the median normalized absolute error slightly to 25.7% (Fig. S8).  538 
These improvements in performance suggest that errors in NO2 could be contributing to the 539 
measurement/model differences.  Omitting NO2 does, however, likely introduce additional errors as NOX 540 
compounds are essential to OH production in some regions of the atmosphere.  When we apply the hold 541 
out set from MERRA2 GMI to this model, for example, the NRMSE increases by approximately 50%, 542 
highlighting the importance of keeping NO2 as an input variable. 543 
 544 
For more certain evaluation of the GBRT model with observations, greater certainty in the in situ NO2 545 
observations is needed.  Although the in situ observations are insufficient to evaluate the absolute 546 
accuracy of the product, the results presented here demonstrate that a machine learning model trained 547 
on data from a CTM simulation can capture TCOH variability in the actual atmosphere and suggest that 548 
predicted OH columns agree with observations within instrumental uncertainty. 549 
 550 
5.2 Impacts of uncertainties in the satellite retrievals on TCOH 551 
In the remote atmosphere where HCHO and NO2 abundances are low, retrieval uncertainty of an 552 
individual pixel for both species can be on the order of 100% and is often reflective of the a priori 553 
(González Abad et al., 2015;Lamsal et al., 2021).  Given the importance of these species to the GBRT 554 
model as well as to OH chemistry, it is necessary to determine how the propagation of the retrieval 555 
uncertainties from these and other model inputs impacts the predicted TCOH. 556 
 557 
We determined the total uncertainty in TCOH from all inputs as well as the resultant uncertainty from 558 
each individual input for Feb. 2017.  First, we estimated an average retrieval uncertainty for each input 559 
based on reported values in the retrieval files or from the literature (Table S1).  We note that for NO2 560 
and HCHO we use a fit uncertainty for a single retrieval.  Because we are using monthly-averaged data at 561 
1° ´ 1° horizontal resolution, this likely significantly overestimates the actual uncertainty in these 562 
retrievals as the random error from individual pixels will tend to cancel when averaged over such large 563 
spatial and temporal scales.  Our results are therefore an upper bound on the estimated TCOH 564 
uncertainty. 565 
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 566 
Next, for each grid box and model input, we created a Gaussian distribution of 2000 values with the 567 
modeled value for Feb. 2017 as the mean and the estimated uncertainty as the standard deviation.  For 568 
each input, we then ran the GBRT model 2000 times to create a distribution of predicted TCOH values 569 
for each grid box.  The normalized uncertainty in TCOH attributable to a given input is the ratio of the 570 
standard deviation of the resultant distribution divided by the mean value.  We repeated this process 571 
individually for all inputs.  In addition, to estimate a total uncertainty in TCOH, we varied all inputs 572 
simultaneously with the same Gaussian distributions described above. 573 
 574 
Uncertainty from the NO2 retrieval, and to a lesser extent HCHO, dominates the total uncertainty in the 575 
TCOH product but is of a magnitude comparable to that of in situ OH observations.  Median TCOH 1s  576 
uncertainty resulting from NO2 is 16.5%, with maxima in the remote atmosphere in regions where NO2 577 
columns are low.  Median uncertainty in TCOH resulting from HCHO is 7%, averaged over the study 578 
domain, despite the large uncertainty in the HCHO retrieval itself.  In contrast to NO2, uncertainties in 579 
TCOH resulting from HCHO maximize in regions with higher HCHO columns (Fig. 6).  The magnitude of 580 
that uncertainty is likely an overestimate as the actual retrieval uncertainty for HCHO in these regions is 581 
significantly lower than the value assumed for the error analysis.  In comparison, median TCOH 582 
uncertainties resulting from other inputs are 2.9% or less (Figs. S9 and S10).  Total TCOH uncertainty is 583 
16.6% and is dominated by the NO2 uncertainty.  This uncertainty analysis is in general agreement with 584 
the model feature importance (Supplementary Fig. 11), a measure of the relative importance of GBRT 585 
model inputs, where HCHO and NO2 consistently have the largest values of the satellite inputs. 586 
 587 

 588 
Figure 6: Normalized 1s uncertainty in the satellite TCOH product due to uncertainties in the HCHO (a) and NO2 589 
(b) retrievals.  The combined uncertainty from all input species is shown in panel c. 590 

These results demonstrate that the satellite retrieval inputs to the machine learning model are of 591 
sufficient quality to produce a meaningful TCOH data product when averaged over large spatial and 592 
temporal scales.  The 2s uncertainty in TCOH resulting from the uncertainties in these retrievals is on 593 
the order of that reported for in situ OH observations (Brune et al., 2020).  As discussed earlier, this is 594 
also likely an upper bound on the uncertainty from random retrieval errors, and uncertainties could be 595 
reduced through further averaging, although at the expense of reduced spatial and temporal resolution.  596 
Improving the satellite retrievals of NO2 and HCHO in the remote atmosphere, using retrievals with less 597 
noise over the remote atmosphere such as HCHO from OMPS (González Abad et al., 2016), or 598 
incorporating data from satellites with higher resolution, such as TROPOMI, could also reduce the 599 
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uncertainty in their retrievals and thus in TCOH.  As discussed in the next section, however, systematic 600 
biases between satellite retrievals can also lead to uncertainties in the TCOH. 601 

 602 
5.3 Sensitivity of TCOH to different satellite retrievals of GBRT inputs 603 
The satellite retrievals listed in Table 1 provide the benefit of a long record, with data from most 604 
retrievals available from at least 2005 to the present.  Such a rich dataset would allow for long-term 605 
trend analysis of TCOH.  These instruments are near the end of their life cycle, however, so it is 606 
instructive to see how retrievals from newer satellites impact the predicted TCOH from the GBRT model.  607 
In addition, although these newer satellites, such as TROPOMI, have a significantly shorter observational 608 
record than those in Table 1, TROPOMI also has finer spatial resolution and the added advantage of 609 
providing retrievals for CO, NO2, O3, HCHO, and H2O(v).  Using retrievals of multiple species from the 610 
same instrument could negate errors resulting from differences in viewing geometry as well as from 611 
overpass time.  Here, we investigate the effects of applying retrievals from TROPOMI to the machine 612 
learning model and compare them to the results from the product described in Section 4, highlighting 613 
potential impacts resulting from instrumental differences as well as those resulting from differences in 614 
retrieval algorithms.  The results emphasize the need for thorough retrieval validation in the remote 615 
atmosphere, particularly of NO2. 616 
 617 
5.3.1 Description of TROPOMI and a modified GBRT model 618 
TROPOMI, a successor instrument to OMI, is a spectrometer covering portions of the ultraviolet, visible, 619 
and infrared spectrum (Veefkind et al., 2012).  It is located onboard the Sentinel 5 Precursor satellite, 620 
which is polar orbiting and has a local overpass time of approximately 13:30.  Horizontal resolution for 621 
the month examined here (May 2018) is as high as 7 km ´ 3.5 km at nadir.  All TROPOMI retrievals used 622 
here, unless otherwise indicated, are the reprocessed version 1 products.  We have gridded the Level 2 623 
product for each species to a 1° ´ 1° resolution and averaged the data to the monthly scale, applying the 624 
recommended quality flags and filtering for cloud fraction greater than 30%. 625 
 626 
We use two different retrievals of TROPOMI NO2 for this analysis.  First, we use the KNMI (Royal 627 
Netherlands Meteorological Institute) NO2 retrieval (van Geffen et al., 2020), which is based on the 628 
DOMINO (Dutch OMI NO2 product) retrieval developed for the OMI instrument.  Wang et al. (2020) 629 
found that this retrieval was biased high when compared to ship-based observations from a MAX-DOAS 630 
instrument over the remote oceans, while Verhoelst et al. (2021) found good agreement between the 631 
retrieval and ground-based observations in Reunion.  In addition, we use the MINDS (Multi-Decadal 632 
Nitrogen Dioxide and Derived Products from Satellites) retrieval, which uses the same algorithm as for 633 
the OMI product described in Section 2 (Lamsal et al., 2022).  This retrieval has not been evaluated in 634 
the remote tropics.   635 
 636 
We also use TROPOMI retrievals of HCHO, H2O(v) column, total column O3, and CO.  The HCHO retrieval 637 
(De Smedt et al., 2018) was found to have a 30% low bias with respect to an OMI retrieval using the 638 
same algorithm due to differences in cloud processing (De Smedt et al., 2021).  While evaluation in the 639 
remote tropics is limited, the TROPOMI retrieval does overestimate HCHO in polluted regions (De Smedt 640 
et al., 2021) when compared to ground-based observations.  The TROPOMI H2O(v) (Chan et al., 2022) 641 
retrieval has a slight dry bias with comparison to other satellite products, while the total column O3 642 
retrieval (Garane et al., 2019) agrees within 0 – 1.5% with ground-based observations.  Finally, the CO 643 
retrieval (Borsdorff et al., 2019) agrees with MOPITT over the oceans within 3% on average (Martínez-644 
Alonso et al., 2020).  TROPOMI does not have an equivalent retrieval of the AIRS H2O(v) layers. 645 
 646 
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To calculate TCOH using TROPOMI data, we trained a separate machine learning model using all inputs 647 
from Table 1 except the water vapor layers, for which there are no TROPOMI retrievals.  Removal of the 648 
layers from the machine learning model does not significantly degrade performance.  For example, for 649 
May 2017, removing the H2O(v) layers from the model, increases the NRMSE from 5.34% to 5.73% when 650 
applying the GBRT model to the hold out set.  For this new model, we then calculate TCOH using 651 
TROPOMI data, including the KNMI NO2 retrieval.  For SSTs and AOD, we use the MUR and MODIS 652 
products respectively.  While TROPOMI does have an aerosol product, the UV aerosol index, the 653 
corresponding output from the MERRA2 GMI simulation is unavailable.  We refer to this TCOH as the 654 
TROPOMI-KNMI product.  We have also calculated TCOH using the satellite retrievals in Table 1, except 655 
for the water vapor layers, using this GBRT model, and refer to that as the OMI/MOPITT/AIRS product.  656 
We restrict our analysis to May 2018, the only month for which we have TROPOMI water vapor data. 657 

 658 
5.3.2 TROPOMI data applied to the GBRT model 659 
TCOH from the TROPOMI-KNMI product is higher than that from the OMI/MOPITT/AIRS product for May 660 
2018.  Figure 7 shows TCOH calculated from the TROPOMI-KNMI product as well as the percent 661 
difference between the two products.  While there is modest correlation between the two (r2 = 0.63), 662 
the TROPOMI product is 27.6% higher than the OMI/MOPITT/AIRS product, with higher values across 663 
almost the entire domain.  Differences between the products are most pronounced in the Indian Ocean 664 
and off the coasts of Indonesia and the Philippines.  665 
 666 

 667 
Figure 7: TCOH for May 2018 determined using TROPOMI inputs, including the KNMI NO2 retrieval (a).  The 668 
difference between the TROPOMI and multi-satellite product is shown in (b).  Panel (c) shows the regression of 669 
TCOH calculated from TROPOMI against that calculated from retrievals from MOPITT, OMI, and AIRS as well as the 670 
percent difference between the two TCOH products. 671 

In general, observations from TROPOMI agree with those from the satellites in Table 1, with the 672 
exception of NO2 and HCHO.  Ozone, H2O(v), and CO from TROPOMI are highly correlated (r2 of 0.85 or 673 
higher) and agree within 10% on average (Fig. S12) with their respective retrievals from OMI, MOPITT, 674 
and AIRS.  On the other hand, TROPOMI KNMI-NO2 is systematically higher (145% on average), and 675 
TROPOMI HCHO is 20% lower than their corresponding OMI retrievals. The higher TCOH from the 676 
TROPOMI product is consistent with the increase in NO2, which would lead to higher secondary 677 
production of OH.  Further, while TROPOMI KNMI-NO2 is modestly correlated with OMI NO2 (r2 = 0.61), 678 
TROPOMI and OMI HCHO are not correlated (r2 = 0.23), highlighting the difficulty of the HCHO retrieval.  679 
Note that we are not seeking to determine which retrieval, if any, is more accurate.  We are highlighting 680 
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the differences to emphasize the impact that systematic differences in retrieval magnitudes of GBRT 681 
model inputs can have on the resultant TCOH. 682 
 683 
NO2 drives the differences between the two TCOH products.  To determine the impacts of the different 684 
TROPOMI inputs on the TCOH product, we individually swapped each TROPOMI input into the 685 
OMI/MOPITT/AIRS product, replacing the corresponding input from Table 1.  We then determined the 686 
difference in TCOH from the OMI/MOPITT/AIRS product that does not include TROPOMI.  While this 687 
method will not yield the exact contribution from a particular retrieval because of the non-linear nature 688 
of OH chemistry, it does yield information about the relative importance of each species.  Swapping in 689 
TROPOMI CO, H2O(v), and O3 changed TCOH by less than 2%, while using TROPOMI HCHO increased 690 
TCOH by 3%.  In contrast, TROPOMI NO2 increased TCOH by 29%, showing that the higher TCOH in the 691 
TROPOMI product is driven by differences in NO2.   692 
 693 
The increased TCOH in the TROPOMI product likely results from a combination of differences in the NO2 694 
retrieval algorithm as well as instrumental differences.  Comparison of the KNMI and MINDS retrievals 695 
illustrate this point.  When compared to OMI, the MINDS NO2 retrieval is 58% higher for May 2018, as 696 
compared to 145% higher for the KNMI retrieval.  The closer agreement is unsurprising since the MINDS 697 
NO2 uses the same retrieval algorithm as for OMI.  Substituting the MINDS NO2 as an input to the 698 
TROPOMI product (TROPOMI-MINDS product) reduces the difference with respect to the 699 
OMI/MOPITT/AIRS product to 18% (Fig. S13).  While this is an improvement in agreement, the 700 
differences in TCOH as well as the lack of change in r2 value still suggest that differences between OMI 701 
and TROPOMI unrelated to the retrieval algorithm account for some of the discrepancy.  In addition, the 702 
training dataset does not take TROPOMI averaging kernels and shape factors into account, which could 703 
also contribute to the observed differences. 704 
 705 
The results here demonstrate the sensitivity of the methodology to any systematic bias in the input 706 
retrievals.  As with the random error analysis, the level of uncertainty introduced by these biases is low 707 
enough to allow for a meaningful OH product.  Despite these differences, the methodology to determine 708 
TCOH using machine learning that we have presented here still captures the variability in TCOH, 709 
consistent with the ATom evaluation outlined in Section 5.1.  To reduce the uncertainty of TCOH, better 710 
evaluation of NO2 in the remote atmosphere is needed to determine which retrievals, if any, are 711 
accurate. 712 
 713 
6 Discussion and recommendations for future observations 714 
The method of estimating clear-sky TCOH presented here has the potential to increase our 715 
understanding of the atmospheric oxidation capacity.  Because of the long record of observations from 716 
MOPITT, OMI, AIRS, and MODIS, we can calculate tropical TCOH from 2005 to the present, and since the 717 
methodology is not constrained to a particular satellite, newer satellite missions could extend the 718 
dataset beyond the end of these instruments’ lifetimes.  In addition, this methodology will provide sub-719 
hemispheric information on OH variability, supplementing information available from MCF inversions.   720 
 721 
The methodology could be expanded to the extra-tropics and over land, allowing for global constraints 722 
on OH.  Expansion over land will likely require additional satellite retrievals, like that of isoprene (Wells 723 
et al., 2020), in regions with more complex VOC chemistry than in the remote atmosphere.  A higher 724 
resolution TCOH product over land would also likely be feasible, because of the increased signal to noise 725 
of the NO2 and HCHO retrievals.  Expanding this product beyond the tropics could increase 726 
understanding of global CH4, CO, and VOC trends and variability and allow for a wider range of satellite 727 
retrievals as inputs.  For example, current and upcoming geostationary air quality satellites such as 728 
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Sentinel 4, TEMPO (Tropospheric Emissions: Monitoring of Pollution), and GEMS (Geostationary 729 
Environment Monitoring Spectrometer) could provide retrievals of most of the necessary inputs to the 730 
machine learning model, allowing for the understanding of diurnal variability in TCOH and potentially in 731 
the diurnal variability of ozone production (Zhu et al., 2022a).  732 
 733 
A similar methodology could likely be used to determine OH at different layers of the atmosphere.  734 
Because CH4 loss is not evenly distributed throughout the tropospheric column, vertically resolved OH 735 
would better help inform this process.  Vertically-resolved OH could also help understand differences in 736 
OH drivers in the upper and lower troposphere (Spivakovsky et al., 1990;Lelieveld et al., 2016), which 737 
can often be decoupled from the column. While column inputs, such as those discussed here, could be 738 
used, the inclusion of vertically resolved satellite retrievals, such as the AIRS H2O(v) layers, would provide 739 
additional information.  Tropospheric O3 at different atmospheric layers, such as that previously 740 
provided by the TES satellite, could also be invaluable here, as O3 is a large driver of primary OH 741 
production. 742 
 743 
Satellite-derived OH would also a provide a much-needed, observational constraint on OH variability in 744 
global chemistry models.  Because the methodology can capture variability in TCOH of both 745 
observations and 3-dimensional model output, TCOH trends from a satellite-constrained product could 746 
be used to evaluate modeled trends and as well as the spatial variability resulting from events like ENSO.  747 
While the satellite-derived OH could not explicitly indicate the cause of differences, the spatial 748 
distribution of the differences as well as differences in observed and modeled machine learning model 749 
inputs could indicate potential dynamical or emission sources of error in the 3D model. 750 
 751 
Further, the combination of the satellite-derived OH and the machine learning model could help identify 752 
the impacts of any diagnosed errors in emissions inventories as well as the impacts of unexpected 753 
events, such as COVID-19-related shutdowns, on TCOH.  For example, if there are significant 754 
discrepancies between observed and modeled NO2 in a specific region of the atmosphere, the satellite 755 
NO2 could be scaled to more closely match the 3D model values and then be input into the machine 756 
learning model.  The difference in TCOH would then indicate the relative impact of the model error.  This 757 
would serve as a computationally efficient complement to other methodologies constraining models 758 
with observations (e.g. Miyazaki et al., 2020;Miyazaki et al., 2021) to identify the impacts of these errors 759 
on the atmospheric oxidation capacity.  A similar methodology could be used for unexpected events that 760 
significantly impact emissions of OH drivers, allowing for quick determination of their potential impacts 761 
on the atmospheric oxidation capacity before emissions inventories could be revised. 762 
 763 
While we have shown that the methodology captures the variability of observed OH and generally 764 
agrees with observations within measurement uncertainty, it is unclear whether differences result from 765 
GBRT model deficiencies or structural differences between the in situ observations and the training 766 
dataset.  Additional field campaigns with observations of OH and the GBRT model inputs would allow for 767 
a more thorough evaluation of both the OH product and the methodology itself.  Such a field campaign 768 
would need to provide complete tropospheric columns of all species and cover less horizontal distance 769 
than the ATom profiles (e.g. from spiral flight patterns).  In situ observations of NO2 without significant 770 
interference from NOX reservoir species are also needed to reduce uncertainty.  Alternatively, NO2 and 771 
other species could be measured through aircraft-based remote sensing. Finally, repeated sampling over 772 
the same locations for multiple days within a defined area would allow for meaningful statistical analysis 773 
while also allowing for the comparison of TCOH columns calculated from satellite observations. 774 
 775 
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Finally, accuracy of the TCOH product is dependent on the accuracy of the satellite retrievals input into 776 
the machine learning model, with the NO2 retrieval having the largest effect.  To reduce the uncertainty 777 
of the TCOH product, more information about the accuracy of individual NO2 retrievals is required.  778 
Currently, there is little validation of OMI and TROPOMI NO2 retrievals in the remote, tropical 779 
atmosphere, so it is difficult to assess which retrievals, if any, are correct.  Recent efforts, such as the 780 
QA4ECV (Quality Assurance for the Essential Climate Variables), to improve NO2 retrieval algorithms 781 
have reduced uncertainty, particularly over land (Boersma et al., 2018), although it is unclear how the 782 
accuracy of these retrievals translates to the remote tropics as validation data are still extremely limited. 783 
Even retrievals of TROPOMI and OMI made with the same algorithm show differences, suggesting that 784 
instrumental differences could also affect the results.  Future satellite missions should focus on trying to 785 
reduce the uncertainty in NO2 retrievals, particularly in the remote atmosphere, both through 786 
improvements in instrument design and algorithm development. 787 
 788 
7 Data Availability 789 
Output from the MERRA2 GMI simulation are publicly available at https://acd-790 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/ (NASA Goddard Space Flight Center, 2023).  All 791 
satellite products, except for TROPOMI water vapor, are available at https://disc.gsfc.nasa.gov (GES 792 
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