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We thank the reviewer for their comments.  Responses to comments are shown below in red, while 
quotations from the revised manuscript are indicated in blue.  Line numbers for the reviewer comments 
refer to the original manuscript while line numbers in the author responses refer to the revised 
manuscript unless otherwise indicated. 
 
Reviewer 1 
 
With the advance of satellite instruments and machine learning techniques, atmospheric chemistry 
research is developing fast. This paper does an attempt to build a machine learning method for total 
(tropospheric) column OH, based on satellite observations. To this end, they train a GBRT model on 
results of a chemistry transport model and apply this model to satellite observations from mainly 
MOPITT, OMI, AIRS, but also location (i.e. solar intensity). The basic idea is that OH in the remote 
atmosphere in the tropics is driven mainly by the abundance of O3, H2O, NOx, CO, and hydrocarbons. In 
that respect, this provides an original contribution and shows some promises for the future. 
 
The main problem I have with the paper is that is insufficiently credits and discusses other 
developments in the field. Reading the paper, I was wondering if the authors are aware of these 
developments at all? In a fast-advancing field, reading, referencing, and discussing the work of others is 
of utmost importance. And the paper fails to do this. References to own work dominate. Below I outline 
how the paper should improve to become acceptable for publication. 
 
General methodology 
 
In studying OH in the remote atmosphere, we have to rely on knowledge on atmospheric chemistry. In 
this paper, the authors use results of atmospheric chemistry simulations to train a machine learning 
algorithm. No criticism here. In the discussion, however, they “come up” with the idea to reduce the 
uncertainties between the 3D model results and satellite observations (without any references). Long-
standing efforts have been made to “merge” satellite information and models in a process called data 
assimilation. First, there is the idea of chemical data assimilation, performed in e.g. the EU Copernicus 
services (e.g. https://atmosphere.copernicus.eu/sites/default/files/custom-uploads/3rd-jointtraining/ 
ACT2021_AInness.pdf).   
 
The authors of this manuscript work in the NASA Atmospheric Chemistry and Dynamics Laboratory, 
whose researchers have contributed to advances in atmospheric data assimilation for decades, so we 
have substantial familiarity with data assimilation.  However, the methodology we describe here is 
fundamentally different from data assimilation in that we are only using the 3D model as a training 
dataset for a machine learning model.  We are making no efforts to ingest satellite data into a 3D model 
to improve representation of any species within that model.  At no point are we running our own 3D 
model.  As such, we did not feel that a discussion of data assimilation methods in the introduction was 
warranted.  We have, however, added the following (Line 84): 
 

Miyazaki et al. (2020) created a data assimilation framework that ingested satellite 
observations of CO, NO2, O3, and HNO3 (nitric acid) into multiple CTMs.  The data 
assimilation reduced the spread in average OH among the models and brought the 
interhemispheric ratio closer to unity, in line with values suggested by MCF observations 
(e.g. Patra et al., 2014). These results suggest that the incorporation of satellite 
observations into a modeling framework can improve the representation of OH.   
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For the discussion in Section 6, we acknowledge that there are similar applications between data 
assimilation methods and what we propose here, although again, they are fundamentally different in 
that we are not proposing to re-run a 3D model.  We have added the following to the manuscript (Line 
754): 
 

“This would serve as a computationally efficient complement to other methodologies 
constraining models with observations (e.g. Miyazaki et al., 2020, Miyazaki et al., 2021) 
to identify the impacts of these errors on the atmospheric oxidation capacity.”   

 
 
Second, some authors worked their whole life on the subject of OH, satellites, and models, and do not 
receive even a citation in the manuscript (e.g. https://acp.copernicus.org/articles/20/931/2020/). I am 
not claiming that the work in this paper is useless. What I am saying is that the added value could be 
much more when proper credit and discussion is dedicated to related studies. 
 
We have added the following references to the paper, in addition to the Miyazaki et al (2020) and 
Boersma et al (2018) papers suggested by the reviewer, so that the cited works are more 
comprehensive: 
 
Stevenson et al. (2020) (Line 52): “…with modeled trends disagreeing with those derived from 
observationally constrained methods (Stevenson et al., 2020).” 
 
Wild et al. (2020) (Line 55): “Using Gaussian emulation, Wild et al. (2020) found that the relative 
importance of drivers of OH variability differed widely among three CTMs.” 
 
Spivakovsky et al. (1990) and Lelieveld et al. (2016) (Line 64): “This spatial heterogeneity is further 
caused by the large variation in the relative importance of drivers of OH loss and production in different 
regions of the atmosphere (e.g. Spivakovsky et al., 1990;Lelieveld et al., 2016).” 
 
Naus et al. (2021) (Line 76) : “…although there has been recent success when using three dimensional 
inversion techniques (Naus et al., 2021).”   
 
Patra et al. (2014) (Line 88): “The data assimilation reduced the spread in average OH among the models 
and brought the interhemispheric ratio closer to unity, in line with values suggested by MCF 
observations (e.g. Patra et al., 2014).” 
 
Miyazaki et al. (2021)  
 
We would also point out that OH modeling and chemistry are vast topics with decades of literature 
behind each, so we have focused on providing the background that we feel is necessary to lay the 
groundwork for our study while also keeping the paper to a manageable length. 
 
In the revised manuscript, the authors should catch up with existing work and should discuss that in the 
introduction and discussion. This should replace the current self-centered manuscript with restricted 
references to work of other groups. 
 
In the original manuscript, 12% of the cited works have one of the co-authors of this paper as the 
primary author, so we do not believe that our manuscript focuses too heavily on our work at the 
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expense of other researchers.  When we do cite ourselves, it is mostly because we are building on 
previous work that is highly relevant to this study. 
 
NO2 satellite data 
More or less along the same lines. NO2 abundance in the remote tropics appears to be very important in 
determining TCOH. In section 5, the authors attempt to use alternative satellite products. In their 
evaluation of the results, they systematically refer to differences with their product as ‘biases’. Although 
they evaluated to some extend their TCOH product against Atom data, with relative OK result, this does 
not imply that their product is OK in May 2018 (the analyzed month) and that all the other results are 
biased.   
First, the evaluation with the ATom data is an evaluation of the methodology itself, not of the satellite 
product TCOH.  We use observations from the ATom campaign as inputs to the model to determine 
whether we can reproduce observed TCOH.  This is different than evaluating the satellite product 
determined from the OMI/MOPITT/AIRS observations.  Nowhere in the paper do we make assertions on 
the absolute accuracy of the OMI/MOPITT/AIRS TCOH product, primarily, because as we state in the 
conclusions, there are insufficient observations of TCOH to fully evaluate the product. 
 
Second, it was not our intention to judge the absolute accuracy of any satellite retrieval or imply that 
any retrieval was better than another, as we clearly stated in the original manuscript (Line 628 of the 
original manuscript).  Indeed, one of the conclusions of the work is that we need more observations in 
the remote atmosphere to determine which retrievals, if any, are accurate in this area.  To make this 
point more explicitly clear, we have removed the word bias from the paper and use “difference” or 
analogous words.  For example, the paragraph comparing OMI/MOPITT/AIRS retrievals to TROPOMI 
now reads (Line 664): 
 

In general, observations from TROPOMI agree with those from the satellites in Table 1, 
with the exception of NO2 and HCHO.  Ozone, H2O(v), and CO from TROPOMI are highly 
correlated (r2 of 0.85 or higher) and agree within 10% on average with their respective 
retrievals from OMI, MOPITT, and AIRS.  On the other hand, TROPOMI KNMI-NO2 is 
systematically higher (145% on average), and TROPOMI HCHO is 20% lower than their 
corresponding OMI retrievals. The higher TCOH from the TROPOMI product is consistent 
with the increase in NO2, which would lead to higher secondary production of OH.  
Further, while TROPOMI KNMI-NO2 is modestly correlated with OMI NO2 (r2 = 0.61), 
TROPOMI and OMI HCHO are not correlated (r2 = 0.23), highlighting the difficulty of the 
HCHO retrieval.  Note that we are not seeking to determine which retrieval, if any, is 
more accurate.  We are highlighting the differences to emphasize the impact that 
systematic differences in retrieval magnitudes of GBRT model inputs can have on the 
resultant TCOH. 

 
On top of that, they fail to refer to an extensive (EU-funded) program QA4eCV in which the NO2 
products (e.g. of OMI) have been evaluated (e.g. https://amt.copernicus.org/articles/11/6651/2018/). 
This effort is so central to the discussion, that it really shameful that relevant literature is not cited. 
We have added a reference to this paper (Line 776): 
 

Recent efforts, such as the QA4ECV (Quality Assurance for the Essential Climate Variables, 
to improve NO2 retrieval algorithms have reduced uncertainty, particularly over land 
(Boersma et al., 2018), although it is unclear how the accuracy of these retrievals 
translates to the remote tropics as validation data are still extremely limited. 
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As you point out, our work is centered in the remote tropics, a region where there is very little published 
literature with NO2 retrieval validation.  The QA4eCV paper only shows validation of the OMI product 
against observations at one site in China, a region outside of our study domain.  Because uncertainties 
over the remote ocean are generally higher than in more polluted regions, it is unlikely that these results 
are applicable to the research region.  In the original manuscript, we do cite the work of Wang et al 
(2020) who evaluated the TROPOMI retrieval used in this study over the remote Pacific.  We now also 
include a reference to Verhoelst et al, 2021 which compares TROPOMI retrievals over Reunion to 
ground-based observations (Line 626). 
 

Wang et al. (2020) found that this retrieval was biased high when compared to ship-based 
observations from a MAX-DOAS instrument over the remote oceans, while Verhoelst et 
al. (2021) found good agreement between the retrieval and ground-based observations 
in Reunion.   

 
I found the paper a pleasant read, presenting an interesting view for future exploration. In that respect, 
publication is possible, but the paper should discuss and give credit to internationally well-established 
efforts, which would require a major overhaul of the introduction and discussion. 
 
Specific Comments:  
 
Line 144 – 145: Nothing said yet about satellites… I assume OMI? 
That is correct.  We have added the following text for clarification (Line 155): 
 

We use instantaneous OH output from MERRA2 GMI at 14:00 local time for each day of a 
given month across the years 2005 to 2019, a timeframe that maximizes overlap between 
the operational lifetime of the satellites listed in Table 1 and the period of the MERRA2 
GMI simulation. 

 
Line 148: I can imagine that cloud fractions < 0.3 still could be included in machine learning? 
As stated in the manuscript, we omit grid boxes with cloud fractions greater than 0.3 in the training 
dataset.  While those values could be included, we wish to make the training dataset as close as possible 
to the satellite data that will be used as inputs.  We’ve clarified this in the text (Line 158): 
 

For a given month and year, we calculate daily tropospheric column values across the 
grid, filtering out columns where the maximum cloud fraction in that column was greater 
than 30% in order to align the training targets more closely with satellite data, where 
retrievals of some species are often filtered for cloud cover. 

 
Table 1: CO overpass is not at 14:00. 
We mention the MOPITT overpass time in Lines 192 and again in Lines 271.  For clarification, we have 
also added the following text to the Table 1 caption: 
 

Overpass times are ~13:30 LST for all satellites except MOPITT, which has a ~10:30 LST 
overpass. 

 
Line 174: Why not 14:00? 
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The time used for the SZA calculation is arbitrary.  Because we’re looking at monthly averages and SZA is 
independent of longitude when calculated for a given LST, SZA in the GBRT model primarily provides 
additional information about the distance from the latitude with maximum insolation.  Because this is 
not a process-based model, the actual SZA value is not relevant to the calculation, only the relative 
difference of the SZA from one location to another. 
 
Line 232: Mention if you use tropospheric sub-column (stratospheric correction…) 
Good point.  We mention that we use the tropospheric column NO2 in Table 1 but failed to highlight that 
here.  We have made the correction. 
 
Line 247: Above, 10 LST 
While the MOPITT overpass is ~10:30 LST, output from MERRA2 GMI is at 10:00 LST.  We have clarified 
this point in the text (Line 144): 
 

Output is available at daily- and monthly-averaged resolution, as well as instantaneous 
values at 10:00 and 14:00 LST.  These times are within approximately 30 minutes of the 
overpass times of the satellites described in Section 2.2. 

 
Line 420: Rather strange. What differences. I could imagine that you could perform an analysis by which 
the satellite data are one-by-one replaced by the model counterpart, to understand what drives the 
lower TCOH in the multi-satellite product compared to the model. Why would this be beyond the scope? 
This type of analysis is certainly possible, as demonstrated between our comparisons of the OMI and 
TROPOMI NO2. Our goal with this manuscript, however, is not to understand the differences between 
the MERRA2 GMI simulation and a satellite-constrained OH product.  As stated in the last paragraph of 
the introduction, our goals for this manuscript are “assessing the feasibility of our methodology, 
identifying potential limitations, and suggesting areas of improvement in the current observational 
network.”  While understanding these differences are interesting questions and are something we will 
most likely look at in future work, adding a discussion here would be a distraction from our intended 
objectives. 
 
Line 505: now I am confused. I though Atom TCOH was derived from measured OH? How this suggests a 
box model is employed to derive Atom OH. 
In response to the second reviewer, we have removed this discussion. 
 
Line 543: This is a strange addition, because you seem to propagate errors through the GBRT model. 
We’ve reworded the text to clarify our point (Line 577): 
 

“In contrast to NO2, uncertainties in TCOH resulting from HCHO maximize in regions with 
higher HCHO columns (Fig. 6).  The magnitude of that uncertainty is likely an overestimate 
as the actual retrieval uncertainty for HCHO in these regions is significantly lower than 
the value assumed for the error analysis.” 

 
Line 553: Some indication of these scales is needed. Yearly? 1x1 degree? 
We specify the temporal and spatial scales as monthly and 1 x 1 degree in the second paragraph of the 
section. 
 
Line 583: I thought this was only for the NO2 product? 
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The text now reads “Horizontal resolution for the month examined here (May 2018) is as high as 7km x 
3.5 km at nadir”. 
 
Line 607: this now becomes very messy. Above you say that TROPOMI has a water vapour product. So, 
why not include that in the training ( I guess the model has to be sampled slightly  different) 
TROPOMI has a water vapor column product, but, as stated in the text, there is not an analogous water 
vapor layers product to that provided by AIRS.  We have added the word column to clarify further that 
we are using the TROPOMI column product.  As the text stands, it clearly states that we created a new 
model with all inputs except for the water vapor layers, implying that we include the water vapor 
column. 
 
Line 612: This makes more sense in section 5.3.1, which should then be renamed. 
We have renamed Section 5.3.1 and moved the first paragraph of Section 5.3.2 to the end of Section 
5.3.1. 
 
Line 616: AIRS does not make sense here, because AIRS is not used 
AIRS is used.  As discussed above and in the text, we only removed the water vapor layers from the 
product, not the water vapor column. 
 
Line 622: I do not agree with the wording here. Why would this estimate be overestimated. The 
validation of the other product with Atom was not that convincing. So, I propose not to qualify one 
product better than another... 
The text now reads (Line 659): 
 

While there is modest correlation between the two (r2 = 0.63), the TROPOMI product is 
27.6% larger than the OMI/MOPITT/AIRS product, with higher values across almost the 
entire domain. 

 
Line 627: again, wording suggests that OMI/MOPITT/AIRS is the truth. 
As we explicitly state in the text, we are not judging the accuracy of any particular retrieval.  We are not 
saying that TROPOMI is wrong and OMI/MOPITT/AIRS retrievals are correct.  We reported the difference 
in TROPOMI retrievals with respect to the other retrievals because those are the retrievals that underlie 
our baseline TCOH product.  We have changed the paragraph to the following to make this point even 
more explicitly clear (Line 664): 
 

In general, observations from TROPOMI agree with those from the satellites in Table 1, 
with the exception of NO2 and HCHO.  Ozone, H2O(v), and CO from TROPOMI are highly 
correlated (r2 of 0.85 or higher) and agree within 10% on average with their respective 
retrievals from OMI, MOPITT, and AIRS.  On the other hand, TROPOMI KNMI-NO2 is 
systematically higher (145% on average), and TROPOMI HCHO is 20% lower than their 
corresponding OMI retrievals. The higher TCOH from the TROPOMI product is consistent 
with the increase in NO2, which would lead to higher secondary production of OH.  
Further, while TROPOMI KNMI-NO2 is modestly correlated with OMI NO2 (r2 = 0.61), 
TROPOMI and OMI HCHO are not correlated (r2 = 0.23), highlighting the difficulty of the 
HCHO retrieval.  Note that we are not seeking to determine which retrieval, if any, is 
more accurate.  We are highlighting the differences to emphasize the impact that 
systematic differences in retrieval magnitudes of GBRT model inputs can have on the 
resultant TCOH. 
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Line 645: ??? This overvalues the capabilities of the machine learning model...I agree it would somehow 
represent the non-lineair nature, but here things are mixed up.... 
It’s unclear what you mean by this statement.  Swapping in variables to understand their relative 
importance on a target variable, even for non-linear systems, has been done before (see, for example, 
Nicely et al. 2016). 
 
Line 693: get more confused: is this against observation of a (potentially  biased low?) OMI retrieval 
We have changed this sentence to read: 
 
When compared to OMI, the MINDS NO2 retrieval is 58% higher, as compared to 145% higher for the 
KNMI retrieval. 
 
Line 674: what  I understand is that this information is available, but  not analysed in this manuscript? 
Why not? 
As we state in the introduction, the point of this manuscript is not a detailed analysis of OH using the 
TCOH product, rather it is to demonstrate the viability of the methodology and to understand its 
strengths and weaknesses.  An analysis of OH temporal and spatial variability is a topic unto itself and 
will be examined in future work. 
 
Line 679: VOC chemistry is also present in the tropics. So this is more a land-ocean aspect. 
Yes, we agree that there is VOC chemistry in the tropics.  To make it more explicitly clear we now say 
“Expansion of the product over land will likely require…”.   
 
Line 683: Very USA centric. You fail to refer to S4 (Copernicus) and GEMS (Asia, already launched.).... 
The text now reads (Line 723): 
 

For example, current and upcoming geostationary air quality satellites such as Sentinel 4, 
TEMPO (Tropospheric Emissions: Monitoring of Pollution), and GEMS (Geostationary 
Environment Monitoring Spectrometer) could provide most of the necessary inputs to the 
machine learning model… 

 
Line 707: See my main point: this methodology is followed by other groups, but you fail to address these 
methods in the introduction.... 
We have added the following (Line 753): 
 

“This would serve as a computationally efficient compliment to other methodologies 
constraining models with observations (e.g. Miyazaki et al., 2020) to identify the impacts 
of these errors on the atmospheric oxidation capacity.”   

 
Line 732:  I think the issue is NOT the instrument design, but simply there is not enough effort to 
perform calibration and validation of satellite products. There has been a huge effort in Europe 
(QA4ECV) including NO2. Seems the authors are unaware if this, which is kind of frightening in light of 
this paper. 
 
We are aware of this effort and similar efforts at NASA (e.g. the MINDS project mentioned in the paper).  
The point of the final paragraph of the paper is to highlight the need for further validation of satellite 
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retrievals in the remote tropics, the region relevant to this work.  While there have been several 
validation efforts of the various OMI and TROMPOMI retrievals in polluted regions, to our knowledge, 
there is little published literature in the remote atmosphere.  The QA4ECV paper you cite does show 
excellent agreement between ground-based observations from one site in China and the OMI retrieval, 
but this is not located in our target region.  And as NO2 retrievals have evolved with time, their 
uncertainties have definitely improved, particularly in polluted regions, but, based on our understanding 
of the literature (e.g. Lamsal et al, 2021), in the remote atmosphere, uncertainties still remain high 
because of the methodology used to separate the tropospheric portion from the total column.    
 
The final paragraph now reads (Line 772):  

Finally, accuracy of the TCOH product is dependent on the accuracy of the satellite 
retrievals input into the machine learning model, with the NO2 retrieval having the largest 
effect.  To reduce the uncertainty of the TCOH product, more information about the 
accuracy of individual NO2 retrievals is required.  Currently, there is little validation of OMI 
and TROPOMI NO2 retrievals in the remote, tropical atmosphere, so it is difficult to assess, 
which retrievals, if any, are correct.  Recent efforts, such as the QA4ECV (Quality 
Assurance for the Essential Climate Variables, to improve NO2 retrieval algorithms have 
reduced uncertainty, particularly over land (Boersma et al., 2018), although it is unclear 
how the accuracy of these retrievals translates to the remote tropics as validation data 
are still extremely limited. Even retrievals of TROPOMI and OMI made with the same 
algorithm show differences, suggesting that instrumental differences could also affect the 
results.  Future satellite missions should focus on trying to reduce the uncertainty in NO2 
retrievals, particularly in the remote atmosphere, both through improvements in 
instrument design and algorithm development. 
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climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651-6678, 10.5194/amt-11-6651-2018, 
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Stevenson, D. S., Zhao, A., Naik, V., amp, apos, Connor, F. M., Tilmes, S., Zeng, G., Murray, L. T., Collins, 
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the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and 
Pandonia global networks, Atmos. Meas. Tech., 14, 481-510, 10.5194/amt-14-481-2021, 2021. 

Wild, O., Voulgarakis, A., amp, apos, Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global 
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diversity, Atmospheric Chemistry and Physics, 20, 4047-4058, 10.5194/acp-20-4047-2020, 2020. 

Reviewer 2 
This study introduces a new framework to infer tropospheric column OH, TCOH, over the 
tropical remote oceans based on a random forest regression and gradient boosted regression 
trees (GBRT) techniques using outputs from MERRA2 and several satellite observation data 
sets, including trace gaces and H2O. Satellite-based TCOH estimates were compared to the OH 
field of the original MERRA2 data, and an independent validation was then conducted against 
the ATom aircraft measurements. This methodology appears to be unique and innovative. The 
discussion section also contains interesting implications. Nevertheless, I have some concerns as 
described below. If the authors address them, this paper can be published. Note that another 
reviewer already posted many constructive comments to improve the manuscript, especially 
with regard to the relevance to other studies and the value of other satellite data. I have similar 
concerns and agree with most of the comments, so I do not duplicate the concerns in my 
comments. 

1. Because of the localized non-linear chemistry, the use of aggregated satellite information 
at the monthly scale and 1x1 degree resolution would not correctly capture the OH distributions 
needed to predict detailed chemical mechanisms and then OH mean states and variability. Daily 
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L2 data would clearly be a better input for better use of satellite information. Combining the L2 
retrieval uncertainty information (and averaging kernels) provided for each pixel may also allow 
for improved use of satellite data products in ML. Because the current framework does not yet 
fully take the advantage of satellite products, the implications for future satellite requirements 
obtained may be limited or biased. In particular, the demonstrated large biases indicate the need 
for further refinement. Consistent with my concerns, Nicely et al. (2020) clearly stated that 
“Much future work is needed, though; observations must be incorporated to introduce a ground 
truth element to this analysis in a manner that either adjusts for or avoids disconnects between 
coarse versus local/instantaneous spatiotemporal scales and appropriately accounts for 
measurement uncertainty; an analysis of model output with much higher temporal frequency is 
needed to identify exactly where model differences in chemical mechanisms lie”. I see no reason 
to continue to use the aggregated L3/L4 data in this study. The increased computational costs 
should be manageable with a computationally efficient ML approach. 

We agree that higher temporal and spatial resolution would aid in both understanding OH 
variability and providing information on understanding the relative importance of OH drivers in 
different portions of the atmosphere.  We have, however, focused on a 1° x 1° horizontal 
resolution and monthly-averaged data in this work for two reasons.   

First, the satellite retrievals used as the basis for this study require relatively coarse spatial and 
temporal scales.  We added the following to the text (Line 240): 

We use these resolutions because, in the study domain, individual pixel retrievals, 
particularly of NO2 and HCHO, are frequently at or below detection limits (Gonzalez Abad, 
2015; Lamsal, 2021), necessitating averaging to relatively coarse temporal and spatial 
scales.  Missing data due to cloud cover and the OMI row anomaly further increase the 
need for monthly-scale averaging.  While other satellites, such as OMPS and TROPOMI, 
provide retrievals with increased signal to noise ratios and more complete data coverage, 
the satellites used here cover a far longer time period.  The 1.0° ´ 1.0° and monthly 
resolutions, in combination with the long data record, are sufficient to understand regional 
trends in TCOH and some aspects of TCOH temporal and spatial variability. 

Second, the goal of this particular work is to demonstrate the validity of our approach to 
constraining TCOH.  Doing this work at a relatively coarse resolution allows us to explore the 
feasibility of the methodology without the potential complications of the noisier data from finer 
temporal and spatial resolutions.  We also note that, even at 1° x 1°, the product we present here 
provides observational constraints on OH at far finer scales than existing methods (e.g. MCF 
inversions). 

2. With regard to the uncertainty discussion and the predicted positive bias against the Atom 
measurements, it is essential to understand the relative importance of each satellite measurement 
used in GBRT, in order to provide an optimal framework for inferring TCOH and suggesting 
future satellite measurements meaningfully. This can be simply done by applying each satellite 
data set separately in GBRT, validated against Atom measurements, similar to observing system 
impact analysis widely used in data assimilation. Furthermore, whether removing the OMI NO2 
from the calculation reduces the positive bias against Atom is a relevant question here (see also 
my comments below). Meanwhile, the random forest feature importance would provide 
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additional information on the relative values. The current uncertainty section includes a related 
discussion and provides suggestions on the relative contribution of each measure, but is more 
indirect and limited. The suggested additional effort should also help to better understand the 
comparisons of OMI/AIRS/MOPITT and TROPOMI results. While the purpose of this paper is 
to present a methodology, understanding the role of each measurement cannot be ignored to 
ensure that the proposed methodology that combines multiple satellite data works properly and 
synergistically. 
 
As discussed in response to your next point, a GBRT model that excludes NO2 as an input shows 
a slight increase in agreement between the model and observations, suggesting that errors in the 
ATom NO2 might be contributing to measurement/model disagreement. In addition, we note that 
when the model excluding NO2 is applied to the hold-out set, the NRMSE increases by about 
50%, suggesting a strong degradation in performance which could result in additional errors that 
result in a high bias.  See the response to your next point for further discussion and changes to 
the text in regard to this point. 
 
The uncertainty analysis discussed in Section 5.2 suggests that the model responds strongly to 
changes in NO2 and to a lesser extent HCHO. Likewise, TROPOMI analysis in section 5.3, in 
which we systematically replace TROPOMI observations into the OMI/AIRS/MOPITT product, 
demonstrates a large response (29%) to changes in NO2 and a much more muted response (3%) 
to changes in HCHO, despite the poor agreement between OMI and TROPOMI HCHO 
retrievals.  Both these examples suggest that NO2 values are more important to the final TCOH 
than HCHO, whereas the feature importance has HCHO as the most important variable.  We 
have added the following to the text, along with Figure S11, which we also reproduce below 
(Line 582): 
 

This uncertainty analysis is in general agreement with the model feature importance 
(Supplementary Fig. 11), a measure of the relative importance of GBRT model inputs, 
where HCHO and NO2 consistently have the largest values of the satellite inputs. 
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Figure S1: Feature importance, sorted by value, for the GBRT model for February (a), May (b), August (c), and 
October (d).  Bars are colored so that variables have the same color in each panel. 

3.    Although the variability of OH is relatively well reproduced, the large positive bias against 
AToM measurements remains a serious concern. Knowing the realistic OH magnitude can even 
be more important than variability for some important applications, such as chemical lifetime 
estimation. The highly biased estimates can have limited impacts on future applications. Several 
potential error sources are discussed in the manuscript, but they are not very convincing. The 
first point, “spanned 300 – 400 km in latitude” might not be the main reason, as the authors also 
discussed. The second point, “if a large fraction of the tropospheric column of one input was 
outside the range of the ATom profile, this would likely cause large errors in calculated TCOH.” 
can be verified by comparing the entire tropospheric column with that based on ATom sampling, 
using the OH field in MERRA2.  This requires assuming that MERRA-2 provides realistic 
vertical profiles, while multi-model simulation data can provide that uncertainty information. As 
for the third point, “Recalculating the TCOH from ATom with NO2 from a box model 
constrained with NO observations”, its approach and validity are unclear in the manuscript. 
While the purpose of this paper is to present the methodology, the reasons for the large positive 
bias need to be further explored to clarify why the proposed framework still does not reproduce 
the observed OH values that are essential for chemical lifetime estimation. 
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In order to make a more direct comparison between the ATom columns and the GBRT output as 
well as to address the concern about inputs being outside of the range of the ATom profile, we 
have changed the way we evaluate the GBRT model using ATom data.  We describe this in the 
text as follows (Line 499): 

Because ATom profiles did not span the entire tropospheric column, we trained a separate 
GBRT model where OH and all tropospheric column input variables were substituted for 
columns spanning 990 – 250 hPa, the median range of ATom profiles.  This allows for a 
more direct comparison between observed and modeled TCOH.   

Limiting the training dataset to the range of the ATom profiles greatly improves the comparison between 
observed TCOH and that predicted by the GBRT model, with the near uniform high bias of 2.87 ´ 1012 
molecules/cm2 being reduced by more than a factor of two to 1.14 ´ 1012 molecules/cm2, where the model 
somewhat underpredicts TCOH at higher values, although still within the observational uncertainty.  The 
r2 also increases slightly from 0.61 to 0.67.  The portion of the tropospheric OH column in MERRA2 GMI 
outside the vertical extent covered by sampling during ATom was 22% for February 2005, on average.  
Consistent with this value, predicted columns from the modified GBRT model were ~30% lower than for 
the model trained on the full tropospheric column.  The high bias presented in the initial version of the 
manuscript was therefore an artifact resulting from the difference in the range of the ATom columns from 
the training dataset.  We have omitted references to the previous comparison in the text, and only use the 
new comparison here.  The discussion of the comparison in the text now reads (Line 509): 

The GBRT model captures the variability of the observed TCOH. While there is a modest 
overall high bias, the median normalized absolute error of 26% is within observational 
uncertainty. When applied to all ATom deployments, predicted TCOH is correlated with 
the observations with an r2 of 0.67 and a mean bias of 1.14 ´ 1012 molecules/cm2 (Fig.5).  
Many of the data points agree within the combined modeled and observational 
uncertainty.  The r2 values for individual deployments are 0.88 for ATom 1, 0.73 for 
ATom2, and 0.78 for ATom 3 and 4.  The level of agreement between observed and 
predicted OH is comparable or better than that of other methods to infer OH from space.  
For example, Pimlott et al. (2022) found an r of 0.78 (r2 = 0.61) when estimating ATom OH 
using a steady state approach, with r values ranging from 0.51 to 0.85 (r2 of 0.26 to 0.72) 
for the different deployments.  The level of agreement we show here therefore 
demonstrates the validity of the machine learning method to capture the variability of 
OH. 
 



 14 

 
Updated Figure 2: Regression of TCOH observed from the ATom deployments against that predicted from the GBRT 
model.  Error bars represent the 2s observational uncertainty as reported in Brune et al. (2020) and the GBRT 
uncertainty described in Section 5.2.  The r2 of a linear least squares fit and the mean bias are also shown. 

There is still disagreement between observations and the predicted OH, however, although the median 
normalized absolute error is 26%, within observational uncertainty.  NO2 is still a likely contributor to at 
least some of this disagreement, and we include the following discussion in the text (Line 521): 

The source of the model/measurement disagreement, with over- and underprediction at 
low and high column content respectively, is unclear, although there are multiple 
potential error sources.  For example, a typical profile taken during ATom spanned 300 – 
400 km in latitude, disconnecting the top and bottom of the profile in space.  This is in 
contrast to the data used to train the model, which were vertical columns over one 
location.  This could lead to a degradation in model performance when applied to ATom, 
since the columns are not directly analogous to the training dataset.  These effects are 
likely limited because ATom observations are in the remote atmosphere, where the 
spatial distribution of relevant species is likely to be more homogeneous than over land.   
 
Further, there is a known interference with the ATom NO2 observations, suggesting 
another possible contributor to disagreement between measured and modeled OH.  
Because of thermal degradation of NO2 reservoir species, such as organic nitrates and 
peroxyacetyl nitrate, in the instrument inlet, ATom NO2 observations are likely biased high  
(Silvern et al., 2018;Shah et al., 2023;Nault et al., 2015).  To test the potential impact of 
NO2 on the predicted OH columns, we applied the ATom observations to a model that 
omits NO2 as an input.  Removing NO2 increases the r2 to 0.74, decreases the mean bias 
to 0.82 ´ 1012 molecules/cm2, and decreases the median normalized absolute error 
slightly to 25.7% (Fig. S8).  These improvements in performance suggest that errors in NO2 
could be contributing to the measure/model differences.  Omitting NO2 does, however, 
likely introduce additional errors as NOX compounds are essential to OH production in 
some regions of the atmosphere.  When we apply the hold out set from MERRA2 GMI to 
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this model, for example, the NRMSE increases by approximately 50%, highlighting the 
importance of keeping NO2 as an input variable. 
 
For more certain evaluation of the GBRT model with observations, greater certainty in the 
in situ NO2 observations is needed.  Although the in situ observations are insufficient to 
evaluate the absolute accuracy of the product, the results presented here demonstrate 
that a machine learning model trained on data from a CTM simulation can capture TCOH 
variability in the actual atmosphere and suggest that predicted OH columns agree with 
observations within instrumental uncertainty. 
 

 
Figure S3: Same as Figure 5 except using a GBRT model that omits NO2 as an input.   

4.    The large discrepancy between the MERRA2 and satellite HCHO remains a concern. This 
could lead to significant degradation in OH predictions. This can be demonstrated based on the 
ML framework with and without HCHO data.  

We have trained a model that omits HCHO as an input variable, finding little difference from the 
satellite constrained OH product that includes all inputs.  We now mention that here (Line 339): 

Similarly, the satellite-constrained TCOH product discussed in Section 4.2 differs by only 
3% on average for one determined with a GBRT model that excludes HCHO as an input, 
suggesting the limited impact of potential errors in the MERRA2 GMI HCHO distribution 
on model performance. 

These results are also consistent with the relative small change in TCOH when using TROPOMI 
vs OMI HCHO discussed in Section 5.3.  While this analysis suggests that we could exclude 
HCHO from the model, we continue to include it because of its importance as a proxy for other 
VOCs and their role as an OH sink. 
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5.    Future discussion is needed on satellite data products. In particular, satellite column 
measurements should have different vertical information due to different vertical sensitivities 
and profiles among measurements and variables. Meanwhile, OH variability can be largely 
independent between the lower and upper troposphere. This would complicate the prediction and 
interpretation of TCOH. 

As we discuss in Section 2.1, we did not find a significant difference in the satellite constrained 
TCOH product when applying averaging kernel/shape factor information for CO and HCHO.  
This is likely because the model seems relatively insensitive to HCHO and applying MOPITT 
CO averaging kernel information does not markedly change the MERRA2 GMI CO.  We do not 
apply OMI NO2 averaging kernel/shape factor information as a GEOS simulation with a similar 
setup to MERRA2 GMI is used for the shape factors.  This would not be the case for TROPOMI 
KNMI-NO2, however, so this could be one source of error.  We have added the following (Line 
699): 

In addition, the training dataset does not take TROPOMI averaging kernels and shape 
factors into account, which could also contribute to the observed differences. 

We agree that using tropospheric column OH could obscure variability/trends in different levels 
of the atmosphere.  For instance, in MERRA2 GMI, ENSO-related OH variability in the UT is 
controlled by changes in NOX while, near the surface, O3-related variability drives OH.  We do 
show in Anderson et al, 2021, however, that there is still an ENSO-related signal in the 
tropospheric column, so some information still exists.  Further, tropospheric columns would still 
be a significant advance over the current observational constraints on tropical OH.  As we 
reference in Section 6, we are investigating trying to use a similar methodology to constrain OH 
at different layers in the atmosphere, although that work is not significantly enough advanced to 
discuss here.  We mention the utility of understanding OH drivers in different levels of the 
atmosphere here (Line 732): 

Vertically-resolved OH could also help understand differences in OH drivers in the upper 
and lower troposphere {Spivakovsky, 1990; Lelieveld, 2016}, which can often be 
decoupled from the column. 

Reviewer 3 
The authors present a gradient-boosted regression tree (GBRT) machine-learning (ML) model 
for tropospheric OH columns trained on synthetic satellite observations from the NASA Global 
Modeling Initiative (GMI) chemical transport model driven by the MERRA-2 meteorological 
reanalysis. They evaluate the ML model with available in situ observations from the ATom field 
campaign and then apply the model to actual satellite observation inputs for the recent past. 
The paper is well-written and clear, and a rare example of a manuscript I have reviewed that I 
think needs no modifications to be suitable for publication. That being said, I do think the other 
two reviewers have provided some helpful and constructive comments that would add to the 
discussion in useful ways. However, the scientific guts of the paper are sound and interesting, 
and I recommend publication. 
 
We thank the reviewer for their time and response. 


