
We thank the reviewer for their insightful and helpful comments.  Our responses are shown 
below in red, while changes to the text are shown in blue. 

This study introduces a new framework to infer tropospheric column OH, TCOH, over the 
tropical remote oceans based on a random forest regression and gradient boosted regression trees 
(GBRT) techniques using outputs from MERRA2 and several satellite observation data sets, 
including trace gaces and H2O. Satellite-based TCOH estimates were compared to the OH field 
of the original MERRA2 data, and an independent validation was then conducted against the 
ATom aircraft measurements. This methodology appears to be unique and innovative. The 
discussion section also contains interesting implications. Nevertheless, I have some concerns as 
described below. If the authors address them, this paper can be published. Note that another 
reviewer already posted many constructive comments to improve the manuscript, especially with 
regard to the relevance to other studies and the value of other satellite data. I have similar 
concerns and agree with most of the comments, so I do not duplicate the concerns in my 
comments. 

1. Because of the localized non-linear chemistry, the use of aggregated satellite information 
at the monthly scale and 1x1 degree resolution would not correctly capture the OH distributions 
needed to predict detailed chemical mechanisms and then OH mean states and variability. Daily 
L2 data would clearly be a better input for better use of satellite information. Combining the L2 
retrieval uncertainty information (and averaging kernels) provided for each pixel may also allow 
for improved use of satellite data products in ML. Because the current framework does not yet 
fully take the advantage of satellite products, the implications for future satellite requirements 
obtained may be limited or biased. In particular, the demonstrated large biases indicate the need 
for further refinement. Consistent with my concerns, Nicely et al. (2020) clearly stated that 
“Much future work is needed, though; observations must be incorporated to introduce a ground 
truth element to this analysis in a manner that either adjusts for or avoids disconnects between 
coarse versus local/instantaneous spatiotemporal scales and appropriately accounts for 
measurement uncertainty; an analysis of model output with much higher temporal frequency is 
needed to identify exactly where model differences in chemical mechanisms lie”. I see no reason 
to continue to use the aggregated L3/L4 data in this study. The increased computational costs 
should be manageable with a computationally efficient ML approach. 

We agree that higher temporal and spatial resolution would aid in both understanding OH 
variability and providing information on understanding the relative importance of OH drivers in 
different portions of the atmosphere.  We have, however, focused on a 1° x 1° horizontal 
resolution and monthly-averaged data in this work for two reasons.   

First, the satellite retrievals used as the basis for this study require relatively coarse spatial and 
temporal scales.  We added the following to the text (Line 240): 

We use these resolutions because, in the study domain, individual pixel retrievals, 
particularly of NO2 and HCHO, are frequently at or below detection limits (Gonzalez Abad, 
2015; Lamsal, 2021), necessitating averaging to relatively coarse temporal and spatial 
scales.  Missing data due to cloud cover and the OMI row anomaly further increase the 
need for monthly-scale averaging.  While other satellites, such as OMPS and TROPOMI, 
provide retrievals with increased signal to noise ratios and more complete data coverage, 



the satellites used here cover a far longer time period.  The 1.0° ´ 1.0° and monthly 
resolutions, in combination with the long data record, are sufficient to understand regional 
trends in TCOH and some aspects of TCOH temporal and spatial variability. 

Second, the goal of this particular work is to demonstrate the validity of our approach to 
constraining TCOH.  Doing this work at a relatively coarse resolution allows us to explore the 
feasibility of the methodology without the potential complications of the noisier data from finer 
temporal and spatial resolutions.  We also note that, even at 1° x 1°, the product we present here 
provides observational constraints on OH at far finer scales than existing methods (e.g. MCF 
inversions). 

2. With regard to the uncertainty discussion and the predicted positive bias against the Atom 
measurements, it is essential to understand the relative importance of each satellite measurement 
used in GBRT, in order to provide an optimal framework for inferring TCOH and suggesting 
future satellite measurements meaningfully. This can be simply done by applying each satellite 
data set separately in GBRT, validated against Atom measurements, similar to observing system 
impact analysis widely used in data assimilation. Furthermore, whether removing the OMI NO2 
from the calculation reduces the positive bias against Atom is a relevant question here (see also 
my comments below). Meanwhile, the random forest feature importance would provide 
additional information on the relative values. The current uncertainty section includes a related 
discussion and provides suggestions on the relative contribution of each measure, but is more 
indirect and limited. The suggested additional effort should also help to better understand the 
comparisons of OMI/AIRS/MOPITT and TROPOMI results. While the purpose of this paper is 
to present a methodology, understanding the role of each measurement cannot be ignored to 
ensure that the proposed methodology that combines multiple satellite data works properly and 
synergistically. 
 
As discussed in response to your next point, a GBRT model that excludes NO2 as an input shows 
a slight increase in agreement between the model and observations, suggesting that errors in the 
ATom NO2 might be contributing to measurement/model disagreement. In addition, we note that 
when the model excluding NO2 is applied to the hold-out set, the NRMSE increases by about 
50%, suggesting a strong degradation in performance which could result in additional errors that 
result in a high bias.  See the response to your next point for further discussion and changes to 
the text in regard to this point. 
 
The uncertainty analysis discussed in Section 5.2 suggests that the model responds strongly to 
changes in NO2 and to a lesser extent HCHO. Likewise, TROPOMI analysis in section 5.3, in 
which we systematically replace TROPOMI observations into the OMI/AIRS/MOPITT product, 
demonstrates a large response (29%) to changes in NO2 and a much more muted response (3%) 
to changes in HCHO, despite the poor agreement between OMI and TROPOMI HCHO 
retrievals.  Both these examples suggest that NO2 values are more important to the final TCOH 
than HCHO, whereas the feature importance has HCHO as the most important variable.  We 
have added the following to the text, along with Figure S11, which we also reproduce below 
(Line 582): 
 



This uncertainty analysis is in general agreement with the model feature importance 
(Supplementary Fig. 11), a measure of the relative importance of GBRT model inputs, 
where HCHO and NO2 consistently have the largest values of the satellite inputs. 

 

 

Figure S1: Feature importance, sorted by value, for the GBRT model for February (a), May (b), August (c), and 
October (d).  Bars are colored so that variables have the same color in each panel. 

3.    Although the variability of OH is relatively well reproduced, the large positive bias against 
AToM measurements remains a serious concern. Knowing the realistic OH magnitude can even 
be more important than variability for some important applications, such as chemical lifetime 
estimation. The highly biased estimates can have limited impacts on future applications. Several 
potential error sources are discussed in the manuscript, but they are not very convincing. The 
first point, “spanned 300 – 400 km in latitude” might not be the main reason, as the authors also 
discussed. The second point, “if a large fraction of the tropospheric column of one input was 
outside the range of the ATom profile, this would likely cause large errors in calculated TCOH.” 
can be verified by comparing the entire tropospheric column with that based on ATom sampling, 
using the OH field in MERRA2.  This requires assuming that MERRA-2 provides realistic 
vertical profiles, while multi-model simulation data can provide that uncertainty information. As 
for the third point, “Recalculating the TCOH from ATom with NO2 from a box model 
constrained with NO observations”, its approach and validity are unclear in the manuscript. 
While the purpose of this paper is to present the methodology, the reasons for the large positive 



bias need to be further explored to clarify why the proposed framework still does not reproduce 
the observed OH values that are essential for chemical lifetime estimation. 

In order to make a more direct comparison between the ATom columns and the GBRT output as 
well as to address the concern about inputs being outside of the range of the ATom profile, we 
have changed the way we evaluate the GBRT model using ATom data.  We describe this in the 
text as follows (Line 499): 

Because ATom profiles did not span the entire tropospheric column, we trained a separate 
GBRT model where OH and all tropospheric column input variables were substituted for 
columns spanning 990 – 250 hPa, the median range of ATom profiles.  This allows for a 
more direct comparison between observed and modeled TCOH.   

Limiting the training dataset to the range of the ATom profiles greatly improves the comparison between 
observed TCOH and that predicted by the GBRT model, with the near uniform high bias of 2.87 ´ 1012 
molecules/cm2 being reduced by more than a factor of two to 1.14 ´ 1012 molecules/cm2, where the model 
somewhat underpredicts TCOH at higher values, although still within the observational uncertainty.  The 
r2 also increases slightly from 0.61 to 0.67.  The portion of the tropospheric OH column in MERRA2 GMI 
outside the vertical extent covered by sampling during ATom was 22% for February 2005, on average.  
Consistent with this value, predicted columns from the modified GBRT model were ~30% lower than for 
the model trained on the full tropospheric column.  The high bias presented in the initial version of the 
manuscript was therefore an artifact resulting from the difference in the range of the ATom columns from 
the training dataset.  We have omitted references to the previous comparison in the text, and only use the 
new comparison here.  The discussion of the comparison in the text now reads (Line 509): 

The GBRT model captures the variability of the observed TCOH. While there is a modest 
overall high bias, the median normalized absolute error of 26% is within observational 
uncertainty. When applied to all ATom deployments, predicted TCOH is correlated with 
the observations with an r2 of 0.67 and a mean bias of 1.14 ´ 1012 molecules/cm2 (Fig.5).  
Many of the data points agree within the combined modeled and observational 
uncertainty.  The r2 values for individual deployments are 0.88 for ATom 1, 0.73 for 
ATom2, and 0.78 for ATom 3 and 4.  The level of agreement between observed and 
predicted OH is comparable or better than that of other methods to infer OH from space.  
For example, Pimlott et al. (2022) found an r of 0.78 (r2 = 0.61) when estimating ATom OH 
using a steady state approach, with r values ranging from 0.51 to 0.85 (r2 of 0.26 to 0.72) 
for the different deployments.  The level of agreement we show here therefore 
demonstrates the validity of the machine learning method to capture the variability of 
OH. 
 



 
Updated Figure 2: Regression of TCOH observed from the ATom deployments against that predicted from the GBRT 
model.  Error bars represent the 2s observational uncertainty as reported in Brune et al. (2020) and the GBRT 
uncertainty described in Section 5.2.  The r2 of a linear least squares fit and the mean bias are also shown. 

There is still disagreement between observations and the predicted OH, however, although the median 
normalized absolute error is 26%, within observational uncertainty.  NO2 is still a likely contributor to at 
least some of this disagreement, and we include the following discussion in the text (Line 521): 

The source of the model/measurement disagreement, with over- and underprediction at 
low and high column content respectively, is unclear, although there are multiple 
potential error sources.  For example, a typical profile taken during ATom spanned 300 – 
400 km in latitude, disconnecting the top and bottom of the profile in space.  This is in 
contrast to the data used to train the model, which were vertical columns over one 
location.  This could lead to a degradation in model performance when applied to ATom, 
since the columns are not directly analogous to the training dataset.  These effects are 
likely limited because ATom observations are in the remote atmosphere, where the 
spatial distribution of relevant species is likely to be more homogeneous than over land.   
 
Further, there is a known interference with the ATom NO2 observations, suggesting 
another possible contributor to disagreement between measured and modeled OH.  
Because of thermal degradation of NO2 reservoir species, such as organic nitrates and 
peroxyacetyl nitrate, in the instrument inlet, ATom NO2 observations are likely biased high  
(Silvern et al., 2018;Shah et al., 2023;Nault et al., 2015).  To test the potential impact of 
NO2 on the predicted OH columns, we applied the ATom observations to a model that 
omits NO2 as an input.  Removing NO2 increases the r2 to 0.74, decreases the mean bias 
to 0.82 ´ 1012 molecules/cm2, and decreases the median normalized absolute error 
slightly to 25.7% (Fig. S8).  These improvements in performance suggest that errors in NO2 
could be contributing to the measure/model differences.  Omitting NO2 does, however, 
likely introduce additional errors as NOX compounds are essential to OH production in 
some regions of the atmosphere.  When we apply the hold out set from MERRA2 GMI to 



this model, for example, the NRMSE increases by approximately 50%, highlighting the 
importance of keeping NO2 as an input variable. 
 
For more certain evaluation of the GBRT model with observations, greater certainty in the 
in situ NO2 observations is needed.  Although the in situ observations are insufficient to 
evaluate the absolute accuracy of the product, the results presented here demonstrate 
that a machine learning model trained on data from a CTM simulation can capture TCOH 
variability in the actual atmosphere and suggest that predicted OH columns agree with 
observations within instrumental uncertainty. 
 

 
Figure S3: Same as Figure 5 except using a GBRT model that omits NO2 as an input.   

4.    The large discrepancy between the MERRA2 and satellite HCHO remains a concern. This 
could lead to significant degradation in OH predictions. This can be demonstrated based on the 
ML framework with and without HCHO data.  

We have trained a model that omits HCHO as an input variable, finding little difference from the 
satellite constrained OH product that includes all inputs.  We now mention that here (Line 339): 

Similarly, the satellite-constrained TCOH product discussed in Section 4.2 differs by only 
3% on average for one determined with a GBRT model that excludes HCHO as an input, 
suggesting the limited impact of potential errors in the MERRA2 GMI HCHO distribution 
on model performance. 

These results are also consistent with the relative small change in TCOH when using TROPOMI 
vs OMI HCHO discussed in Section 5.3.  While this analysis suggests that we could exclude 
HCHO from the model, we continue to include it because of its importance as a proxy for other 
VOCs and their role as an OH sink. 



5.    Future discussion is needed on satellite data products. In particular, satellite column 
measurements should have different vertical information due to different vertical sensitivities 
and profiles among measurements and variables. Meanwhile, OH variability can be largely 
independent between the lower and upper troposphere. This would complicate the prediction and 
interpretation of TCOH. 

As we discuss in Section 2.1, we did not find a significant difference in the satellite constrained 
TCOH product when applying averaging kernel/shape factor information for CO and HCHO.  
This is likely because the model seems relatively insensitive to HCHO and applying MOPITT 
CO averaging kernel information does not markedly change the MERRA2 GMI CO.  We do not 
apply OMI NO2 averaging kernel/shape factor information as a GEOS simulation with a similar 
setup to MERRA2 GMI is used for the shape factors.  This would not be the case for TROPOMI 
KNMI-NO2, however, so this could be one source of error.  We have added the following (Line 
699): 

In addition, the training dataset does not take TROPOMI averaging kernels and shape 
factors into account, which could also contribute to the observed differences. 

We agree that using tropospheric column OH could obscure variability/trends in different levels 
of the atmosphere.  For instance, in MERRA2 GMI, ENSO-related OH variability in the UT is 
controlled by changes in NOX while, near the surface, O3-related variability drives OH.  We do 
show in Anderson et al, 2021, however, that there is still an ENSO-related signal in the 
tropospheric column, so some information still exists.  Further, tropospheric columns would still 
be a significant advance over the current observational constraints on tropical OH.  As we 
reference in Section 6, we are investigating trying to use a similar methodology to constrain OH 
at different layers in the atmosphere, although that work is not significantly enough advanced to 
discuss here.  We mention the utility of understanding OH drivers in different levels of the 
atmosphere here (Line 732): 

Vertically-resolved OH could also help understand differences in OH drivers in the upper 
and lower troposphere {Spivakovsky, 1990; Lelieveld, 2016}, which can often be 
decoupled from the column. 

 


