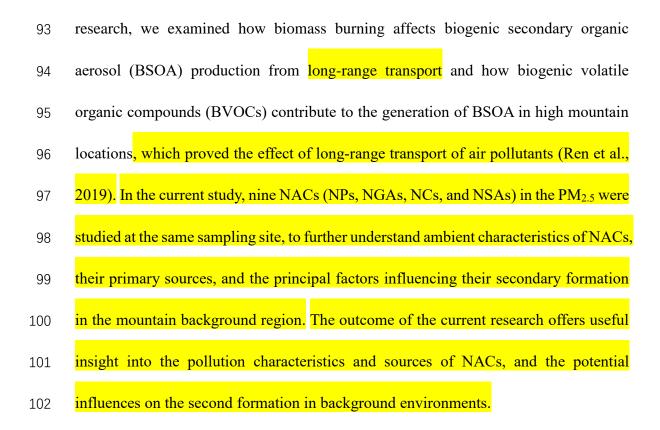
1	Contributions of primary emissions and secondary formation to nitrated aromatic
2	compounds in mountain background region of Southeast China
3 4 5 6 7 8	Yanqin Ren ¹ , Gehui Wang ² , Jie Wei ³ , Jun Tao ⁴ , Zhisheng Zhang ⁴ , Hong Li ¹
9 10 11 12 13 14 15 16 17 18 19	 ¹State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China ²Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai 200142, China ³Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China ⁴South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
20	
21 22 23 24	Correspondence: Gehui Wang (<u>ghwang@geo.ecnu.edu.cn</u>) and Jie Wei (<u>weijie@igsnrr.ac.cn</u>)
25	
26	
27	
28	

29 Abstract

30	As a major component of brown carbon (BrC), nitrated aromatic compounds (NACs)
31	have a significant role in the atmosphere's ability to absorb light. However, the sources
32	and major influencing factors of NACs in the mountain background atmosphere are
33	mostly lacking. Based on a thorough field investigation of NACs from fine particle
34	samples taken in 2014 and 2015 at the peak of Mt. Wuyi (1139 meters above sea level),
35	the current work discussed the seasonal fluctuations in their composition, sources, and
36	the important influencing factors. The total abundance of nine quantifiable NACs
37	increased significantly in the winter $(3.9 \pm 1.5 \text{ ng m}^{-3})$ and autumn $(2.1 \pm 0.94 \text{ ng m}^{-3})$,
38	whereas it decreased in the spring (1.3 \pm 0.75 ng m^-3) and summer (0.97 \pm 0.36 ng m^-
39	3). According to the results of structural equation modeling, the majority of NACs (93%)
40	were influenced by biomass, coal, and petroleum combustion over the entire year. This
41	work identified the origins of NACs with applying the Positive Matrix Factorization
42	receptor model. The five major source factors were biomass burning, coal combustion,
43	secondary formation by nitration reaction, secondary formation by photochemical
44	reaction, and other sources. Among them, biomass burning and coal combustion played
45	an important role, especially in the wintertime, with a contribution of more than 50%.
46	Meanwhile, contributions from secondary formation were significant in this remote
47	areas, which mainly by photochemical reaction in the summertime, and nitration
48	reaction in the wintertime. Further analysis indicated that the formation of NACs was
49	comparatively sensitive to NO ₂ under low-NO _x conditions, suggesting that NACs

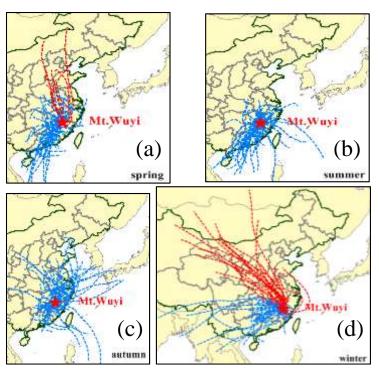

would become significant in the aerosol characteristics when nitrate concentrations
decreased as a result of emission reduction measures.

1 Introduction

53	Nitrated aromatic compounds (NACs) are kinds of the most important constituents
54	of BrC, which have an aromatic moiety and the -OH and -NO ₂ functions (Desyaterik et
55	al., 2013; Wu et al., 2020). Nitrophenols (NPs), nitrosalicylic acids (NSAs),
56	nitroguaiacols (NGAs), and nitrocatechols (NCs) are the most common among various
57	kinds of NACs. Due to their capacity to absorb light, they have received a lot of
58	attention (Li et al., 2020c; Wang et al., 2018; Teich et al., 2017; Wang et al., 2016).
59	About 4% of the net water-soluble BrC absorption has been ascribed to them as
60	documented by several earlier studies (Mohr et al., 2013; Zhang et al., 2013). Moreover,
61	they manifest an influence on human health, because of NACs' strong mutagenicity,
62	cytotoxicity, and carcinogenicity (Iinuma et al., 2010).
62 63	cytotoxicity, and carcinogenicity (Iinuma et al., 2010). Various ambient atmospheres has been shown to have NACs, including rural
63	Various ambient atmospheres has been shown to have NACs, including rural
63 64	Various ambient atmospheres has been shown to have NACs, including rural (Liang et al., 2020; Teich et al., 2017; Lv et al., 2022), urban (Li et al., 2020b; Li et al.,
63 64 65	Various ambient atmospheres has been shown to have NACs, including rural (Liang et al., 2020; Teich et al., 2017; Lv et al., 2022), urban (Li et al., 2020b; Li et al., 2020c; Wang et al., 2019; Ren et al., 2022; Li et al., 2020a), suburban (Kitanovski et
63 64 65 66	Various ambient atmospheres has been shown to have NACs, including rural (Liang et al., 2020; Teich et al., 2017; Lv et al., 2022), urban (Li et al., 2020b; Li et al., 2020c; Wang et al., 2019; Ren et al., 2022; Li et al., 2020a), suburban (Kitanovski et al., 2021), and mountain (Wang et al., 2018). Biomass burning (Wang et al., 2017; Lin
63 64 65 66 67	Various ambient atmospheres has been shown to have NACs, including rural (Liang et al., 2020; Teich et al., 2017; Lv et al., 2022), urban (Li et al., 2020b; Li et al., 2020c; Wang et al., 2019; Ren et al., 2022; Li et al., 2020a), suburban (Kitanovski et al., 2021), and mountain (Wang et al., 2018). Biomass burning (Wang et al., 2017; Lin et al., 2017; Chow et al., 2015; Gaston et al., 2016; Salvador et al., 2021), traffic

71	al., 2013), whereas several other studies consider road traffic emissions as the primary
72	cause of the origin of nitrophenols (Zhang et al., 2010). Secondary formation is also a
73	very important source of particulate NACs although NACs are highly affected by
74	primary emissions, and NO_2 is a very important factor during the process (Ren et al.,
75	2022; Cai et al., 2022; Cheng et al., 2021). Secondary chemistry primarily classified as
76	the nitration of aromatic compounds, may occur in both aqueous and gas phases (Li et
77	al., 2020c; Harrison et al., 2005; Wang et al., 2019). According to recent research,
78	phenolic VOCs being oxidized by the nitrate radical (NO ₃ •) at night may also function
79	as a notable source of nitrophenols and additional BrC species (Mayorga et al., 2021).
80	Studies have revealed that there is a closer link between NACs and NO ₂ for samples
81	taken at night, further pointing to the importance of NO ₃ •-initiated oxidation in the
82	generation of NACs at night (Wang et al., 2018; Li et al., 2020c; Cai et al., 2022).
83	According to the previous research, the intermediate formed when phenol reacts with
84	either •OH during in the daytime or NO_3 • during the night produces phenoxy radical
85	(C ₆ H ₅ O•), which is where nitrophenol is produced (Berndt and Bge, 2003). Even
86	though researchers have started to study NACs, very little is known regarding the
87	relative significance of their corresponding primary and secondary sources. The
88	fundamental variables affecting the generation of NACs are also little known because
89	only a few investigations have been conducted thus far, in particular within China.
90	Field observations in both clean and polluted environments are essential for better

Field observations in both clean and polluted environments are essential for better identifying elements that have previously gone unnoticed and for confirming the mechanistic understanding attained from research on smog chambers. In our earlier



2 Materials and methods

2.1 Sample site and field observations

105	One national atmospheric background monitoring station is located at Mt. Wuyi
106	station (27°35'N, 117°43'E, 1139 m a.s.l., Fig. 1). There are no evident sources of
107	atmospheric pollution within 50 km^2 of the monitoring station, which is located at the
108	southern tip of the Mt. Wuyi national reserve. As a result, it can accurately depict the
109	atmospheric background conditions of southeast China's forest and mountain region.
110	Due to its high altitude and active airstream, it can also be used to observe the effects
111	of long-range transport. In this work, we used a high-volume air sampler (TE-6070DV-
112	BLX, Tisch Environmental Inc., USA) to gather $PM_{2.5}$ samples with an airflow
113	equivalent to $\frac{1.13}{1.13}$ m ³ min ⁻¹ . 49 PM _{2.5} samples in total were taken over seven days.

114	During the sampling, four blank specimens (one for individual seasons) were obtained
115	by mounting the filters onto the sampler without pumping any air. The samples and
116	blanks were collected onto pre-combusted quartz filter (450°C for 8 h). After the
117	sampling and before any analysis, all filters were sealed individually in an aluminum
118	bag, and stored in a freezer below -18°C. At the same time, we gathered data on
119	conventional pollutants and meteorological parameters, including temperature (T),
120	relative humidity (RH), SO ₂ , NO ₂ , and O ₃ . The meteorological data were monitored by
121	a Vaisala MAWS301 (Helsonki, Finland) automatic weather station, and the
122	conventional pollutants were monitored with a model $43i$ SO ₂ analyzer for SO ₂ , a model
123	17i NH ₃ analyzer for NO ₂ , and a model 49i O ₃ analyzer for O ₃ (Thermo Scientific
124	Company, Waltham, MA, USA). Sample site and sampling information has been
125	reported in detail in the literature (Ren et al., 2019).

126

Fig. 1 Location of the sampling site (Mt. Wuyi: 27°35′ N, 117°43′ E; 1139 m a.s.l.) and 48-hour backward trajectories reaching the summit during the sampling (spring:

129 March 20, 2014- June 4, 2014; summer: June 4, 2014- September 2, 2014; autumn:

September 2, 2014-December 4, 2014; winter: December 4, 2014- February 25, 2015. Red dotted line: the air masses coming from north and northwest; Blue dotted line: the air masses coming from other directions).

2.2 Chemical analysis

134	Organic compounds, including nine NACs (3-methyl-4-nitrophenol (3M4NP), 4-
135	nitrophenol (4NP), 2,4-dinitrophenol (2, 4-DNP), 4-nitroguaiacol (4NGA), 5-
136	nitroguaiacol (5NGA), 4-nitrocatechol (4NC), 4-methyl-5-nitrocatechol (4M5NC), 3-
137	nitro-salicylic acid (3NSA), and 5-nitro-salicylic acid (5NSA)), fossil fuel <i>n</i> -alkanes (ff
138	n-alkanes), PAHs, and sugars (e.g. trehalose, and levoglucosan), were identified in the
139	samples. Elemental carbon (EC), organic carbon (OC) and some inorganic ions (i.e.
140	SO_4^{2-} , NO_3^{-} , NH_4^+ , K^+) were also the constituents of the samples. The procedures for
141	sample extraction and derivatization have been elaborated elsewhere (Ren et al., 2022;
142	Ren et al., 2019). Briefly stated, an aliquot of the filter was extracted with a mixture of
143	methanol and dichloromethane (DCM, 1:2) under ultrasonication for three times. The
144	extracts are concentrated and dried by using pure nitrogen, derivatized with N, O-bis-
145	(trimethylsilyl) trifluoroacetamide (BSTFA), and analyzed by using gas
146	chromatography equipped with mass spectroscopy (GC-MS, 7890A/5975C, Agilent
147	Co., USA). The GC separation was carried out on a DB-5MS fused silica capillary
148	column, and the GC oven temperature programmed from 50°C (2min) to 120°C with
149	15°C min ⁻¹ and then to 300°C with 5°C min ⁻¹ , with a final isothermal hold at 300°C for
150	16 min. The sample was injected in a splitless mode at an injector temperature of 280°C,
151	and scanned from 50 to 650 Daltons using electron impact (EI) mode at 70eV. Using
152	the Interagency Monitoring of Protected Visual Environments (IMPROVE)

thermal/optical reflectance (TOR) methodology, OC and EC were measured by a DRI model 2001 Carbon Analyze (Atmoslytic Inc., Calabasas, CA, USA). OC collected by filter membrane are first volatilized with the proceeding of temperature up to 580 °C in the protection of He and determined. EC are analyzed then with the increasing of temperature to 840°C in the presence of He and O₂ by the NDIR non-dispersive infrared CO₂ detector. Dionex-600 ion chromatography was used to quantify inorganic ions in samples after extracted with Mili-Q pure water (Thermo Fisher Scientific Inc., USA).

160

2.3 Model calculation

As a receptor model, Positive Matrix Factorization (PMF) (EPA PMF 5.0 version) 161 has been extensively employed for the source distribution of atmospheric pollutants 162 (Ren et al., 2022; Wu et al., 2020; Wang et al., 2018). To quantify the source 163 apportionment for NACs, the mass concentrations of SO₂, NO₂, CO, O₃, sulfate (SO_{4²⁻}), 164 nitrate (NO₃⁻), NH₄⁺, K⁺, ff-*n*-alkanes, PAHs, levoglucosan, trehalose, 3M4NP, 4NP, 165 4NGA, 5NGA, 2,4-DNP, 4M5NC, 4NC, 5NSA, and 3NSA, were employed as input 166 data. The direct and indirect effects of air pollutants variables on NACs were quantified 167 by utilizing structural equation modeling (SEM). Initially, a conceptual model of 168 hypothetical linkages was developed using past and theoretical information. The 169 measured data were then integrated into the model using the maximum-likelihood 170 171 estimation technique. AMOS 24.0 (IBM, Chicago, IL, USA) was used to analyze the above statistical analyses. 172

2.4 Quality assurance and quality control (QA/QC)

174	For pre-treatment experiments, all glassware used were rinsed and baked at 450 °C
175	for 8 h and further cleaned by using methanol, DCM and hexane immediately before
176	using. Limit of detection (L.O.D.) of the target compounds were calculated with signal-
177	to-noise ratios of 3:1, according to the method reported by previous studies (Bandowe
178	et al., 2014; Li et al., 2016). In this work L.O.D. of NAC species were in the range of
179	0.0001-0.002 (Table S1). Field blank sample analysis showed no serious contamination
180	(less than 5% of real samples). GC/MS response factors of all organic species were used
181	those of the authentic standards. The recovery experiment was done by spiking the
182	standard solution onto blank filters (n=3) and analyzed using the above procedure.
183	Recoveries of the quantified organic compounds were generally between 80% and
184	110%. Data reported here were all corrected for the blanks.
185	For PMF, the model was iterated upon using a variety of combinations of the
186	concentration data set and three to six covariates. Q value and r, which were defined as
187	the agreement between the model fit and the correlation between estimated and
188	measured concentrations, respectively, are used to determine the appropriate factor
189	number for modeling (Comero et al., 2009). The best solution was determined to be
190	five components based on the Q value and r^2 (Table S2) values. For SEM, we identified
191	the model that best fits the data by methodically deleting non-significant routes from
192	the base model. The p-value, χ^2 -test, goodness-of-fit index (GFI) and root mean square
193	error of approximation (RMSEI) index were used to assess the model's suitability. The
194	conceptual model was acceptable if the <i>p</i> -value > 0.05, Low RMSEA (<0.08), high GFI

- 195 (>0.9), and low χ^2 values were regarded as positive model fits. In this work, the model
- 196 fits the data well, i.e. $\chi^2 = 0.235$, df=1, *p*=0.628, GFI=0.999, and RMSEA=0.000 in 197 annual); $\chi^2 = 0.690$, df=2, *p* =0.708, GFI=0.980, and RMSEA=0.000 in winter.

198 **3 Results and discussion**

199 **3.1 Meteorological Features and Air masses**

From March 2014 through February 2015, a total of four seasons were covered by 200 the sampling campaign. In the area under investigation, the four seasons are typically 201 referred to as spring (March through May), summer (June through August), autumn 202 (September through November), and winter (December through February). The rise in 203 temperature starts in March, and peaks in July (25 °C), before falling to a minimal value 204 of 2.9 °C in January–February. When determining the origin of air masses at a certain 205 206 location, air mass backward trajectories are taken into account. The Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT) model supplied 48-hour air 207 mass backward trajectories for this study. The source regions of primary aerosol 208 209 gathered from an area located at a distance from the source location, have been also identified using air mass backward trajectories (Chiapello et al., 1997; Wang et al., 2013; 210 Wang et al., 2014). The 48-hour backward trajectories (Fig. 1) show that during the 211 sampling, winds from the north were reaching the top, particularly in winter (Fig. 1d), 212 when there were large concentrations of air pollutants due to anthropogenic emissions. 213 This explains why SO₂, NO₂, ff-*n*-alkanes (fossil fuel markers), PAHs (coal and fossil 214 fuel markers), levoglucosan (biomass burning markers), SO₄²⁻, NO₃⁻, and other 215

- 216 anthropogenic pollutants were typically higher in winter (Table 1). This has been
- 217 demonstrated in our previous studies that these anthropogenic pollutants can affect the
- 218 generation of certain SOA species (Ren et al., 2019).

	spring (n=11)	summer (n=13)	autumn (n=13)	winter (n=12)
PM _{2.5} (μg m ⁻³)	16±5.5	14±7.8	20±7	21±7.8
$r_{12.5}$ (µg m)	(7.6-24) <mark>b</mark>	(4.9-32)	(8.3-31)	(5-32)
T (°C)	16±3.6	23±1.3	17±4.7	6.4±2.8
I (C)	(8.2-21)	(21-25)	(9.6-23)	(2.9-11)
DU (0/)	78±9.7	79±6.5	75±9.2	64±16
RH (%)	(57-89)	(67-91)	(60-92)	(43-96)
SO_{1} (up m ⁻³)	1.7 ± 1.2	0.9±0.74	3.1±2	6.7±3.9
SO ₂ (μg m ⁻³)	(0.5-4)	(0.21-2.8)	(0.58-6.5)	(0.42-14)
NO $(\dots, \dots, 3)$	4.2±2.1	1.7±1.3	4±1.9	6.2±2.3
NO ₂ ($\mu g m^{-3}$)	(1.8-9.1)	(0.31-4.5)	(1.1-8.2)	(1.5-10)
$CO(m + m^3)$	0.42±0.07	0.27 ± 0.08	0.43±0.09	0.46 ± 0.07
CO (mg m ⁻³)	(0.31-0.55)	(0.18-0.45)	(0.27-0.58)	(0.36-0.58)
$O(\ldots,\ldots,3)$	$104\pm\!12$	82±25	93±20	83±20
O ₃ (µg m ⁻³)	(89-121)	(62-142)	(68-127)	(34-109)
OO(-3)	2.2±1.2	1.6±0.86	3.1±1.5	4.6±1.9
OC (μg m ⁻³)	(0.98-4.7)	(0.49-3.7)	(0.84-6.1)	(0.91-7.3)
	0.51±0.11	0.48±0.20	0.56±0.15	0.69±0.13
EC (µg m ⁻³)	(0.35-0.68)	(0.15-0.83)	(0.29-0.78)	(0.43-0.89)
Inorganic components (n	g m ⁻³)			
SO 2-	6.2±2.2	5.0±3.9	7.6±2.9	6.3±3.0
SO ₄ ²⁻	(2.6-9.8)	(1.2-15)	(2.8-11)	(1.1-13)
NO -	0.06±0.11	0.01 ± 0.02	0.19±0.39	1.3±1.1
NO ₃ -	(NA ^a -0.39)	(0.002-0.06)	(0.008-1.5)	(0.07-4.2)
	1.7±0.55	1.4±1.2	2.3±0.99	2.2±1.2
$\mathrm{NH_{4}^{+}}$	(0.75-2.3)	(0.3-4.5)	(0.72-3.8)	(0.36-5.1)
	0.21±0.1	0.13±0.14	0.28±0.15	0.39±0.15
\mathbf{K}^+	(0.08-0.42)	(0.03-0.46)	(0.06-0.49)	(0.08-0.59)
Nitrated aromatic compo	ounds (ng m ⁻³)			
	0.18±0.13	0.05 ± 0.04	0.32±0.28	0.74±0.34
4-nitrophenol (4NP)	(0.04-0.49)	(0.01-0.16)	(0.04-1.1)	(0.14-1.3)
3-methyl-4-nitrophenol	0.03±0.03	0.05 ± 0.02	0.04 ± 0.02	0.06±0.04
(3M4NP)	(0.01-0.09)	(0.03-0.08)	(0.02 - 0.09)	(0.01-0.12)
2,4-dinitrophenol	0.06±0.03	0.06±0.03	0.08±0.03	0.09±0.05
(2,4-DNP)	(0.03-0.13)	(0.03-0.14)	(0.03-0.14)	(0.03-0.18)
	0.07±0.03	0.07±0.03	0.07±0.03	0.05±0.02
4-nitroguaiacol (4NGA)	(0.03-0.10)	(0.03-0.14)	(0.02-0.14)	(0.03-0.09)
	0.21±0.10	0.29±0.13	0.32±0.11	0.22±0.1
5-nitroguaiacol (5NGA)	(0.06-0.37)	(0.07-0.48)	(0.11-0.51)	(0.07-0.42)
	0.34±0.31	0.14±0.07	0.64±0.48	1.6±0.87
4-nitrocatechol (4NC)	(0.07-1.1)	(0.03-0.27)	(0.13-1.7)	(0.27-3.0)

Table 1. Concentrations (ng m⁻³) of organic compounds in $PM_{2.5}$ samples in Mt. Wuyi during the sampling time.

4-methyl-5-nitrocatechol	0.20 ± 0.08	0.19±0.06	0.34±0.1	0.39±0.19
(4M5NC)	(0.09-0.33)	(0.11-0.31)	(0.2-0.53)	(0.1-0.73)
3-nitrosalicylic acid	0.07 ± 0.05	0.04 ± 0.02	0.09 ± 0.04	0.19±0.08
(3NSA)	(0.03-0.2)	(0.01-0.08)	(0.04-0.18)	(0.04-0.31)
3-nitrosalicylic acid	0.12 ± 0.10	0.07 ± 0.04	0.23±0.13	0.55±0.29
(5NSA)	(0.04-0.39)	(0.02-0.17)	(0.08-0.53)	(0.08-1.1)
NACs	1.3 ± 0.75	$0.97{\pm}0.36$	2.1 ± 0.94	3.9±1.5
NACS	(0.52-3.1)	(0.34-1.7)	(0.72-4.0)	(1.3-6.3)
Other organic component	s (ng m ⁻³)			
Fossil fuel <i>n</i> -alkanes	6.3±3.1	3.2±1.3	9.3±4.7	18±5.6
(ff- <i>n</i> -alkanes)	(2.7-12)	(1.5-6.1)	(3.9-20)	(5.7-28)
PAHs	1.5±0.86	0.54±0.30	2.1 ± 1.1	4.5 ± 1.8
PARS	(0.59-3.1)	(0.23-1.3)	(0.68-4.2)	(1.2-6.5)
	15±17	4.2±1.7	23±13	52±21
Levoglucosan	(3.8-62)	(1.3-7.5)	(5.7-41)	(20-86)
	0.63±0.25	0.87±0.41	0.49±0.33	0.36±0.14
Trehalose	(0.29-1.1)	(0.25-1.5)	(0.23-1.3)	(0.12-0.65)
^a NA: not available.				

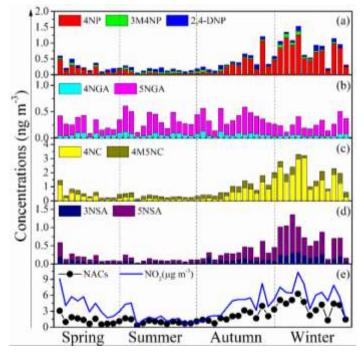
^b The numbers in the first line indicate mean \pm std, and the numbers in the second line indicate lowest value-highest value.

219 **3.2 Abundance and seasonal variations of NACs**

Table 1 lists the measured concentrations of the major PM2.5 constituents, and 220 221 Fig.2 shows the seasonal fluctuations of the nine NACs throughout the year. Nine different NACs' average concentrations varied significantly throughout the year, with 222 winter having the greatest levels $(3.9 \pm 1.5 \text{ ng m}^{-3})$, followed by autumn $(2.1 \pm 0.94 \text{ ng})$ 223 m⁻³), spring (1.3 ± 0.75 ng m⁻³), and summer (0.97 ± 0.36 ng m⁻³). The total NACs 224 concentrations in the current and earlier works have been compared in Table 2. The 225 total NACs concentration in this study was significantly lower in comparison to that 226 predicted for urban sites in China, particularly in winter and autumn, such as in Beijing 227 $(20\pm 12 \text{ ng m}^{-3} \text{ in autumn}, 74\pm 51 \text{ ng m}^{-3} \text{ in winter})$ (Li et al., 2020c), Jinan (9.8± 4.2 228 ng m⁻³ in autumn, 48 ± 26 ng m⁻³ in winter) (Wang et al., 2018), Xi'an (17 \pm 12 ng m⁻³ 229

230	in winter) (Wu et al., 2020), and Hong Kong (12 \pm 14 ng m ⁻³ in winter) (Chow et al.,
231	2015). The main reason was that there are more pollutant emissions in and around
232	urbans with the high levels of precursors and oxidants. Moreover, as compared to the
233	levels in rural and background sites during summertime in China, the levels in this work
234	were also much lower, for instance, Wangdu (Wang et al., 2018), Yucheng, (Wang et al.,
235	2018), Mt.Tai (Wang et al., 2018), and Xianghe (Teich et al., 2017). The anthropogenic
236	pollutants (e.g. SO ₂ , NO ₂ , CO) were typically lower in summer, indicating the air at the
237	time of sampling was relatively clean in this work. While at above mentioned rural and
238	background sites, the atmospheric environment in summer is often affected by
239	surrounding pollution sources (e.g. coal combustion from nearby industries) (Wang et
240	al., 2018). In comparison with the studies abroad, the total NAC concentrations in this
241	investigation were also comparatively lower than the measurements in winter, such as
242	in the Detling, UK (Mohr et al., 2013), TROPOS institute and the Melpitz research site,
243	Germany (Teich et al., 2017), Ljubljana, Slovenia (Kitanovski et al., 2012) and Hamme,
244	Belgium (Kahnt et al., 2013), where NACs measured all had a significant contribution
245	from biomass burning during the sampling time.

Sampling site	Sampling period	Aerosol Type	NAC Species ^a	Concentrations (ng m ⁻³)	References	
	Spring, 2014			1.3 ± 0.75		
Mt. Wuyi,	Summer, 2014		123456	0.97 ± 0.36		
China	Autumn, 2014	PM _{2.5}	789	2.1 ± 0.94	This study	
	Winter, 2014-2015			3.9 ± 1.5		
	Apr., 2017		123456	8.6 ± 6.7	Ren et al.,	
Beijing, China	Jul., 2017	PM _{2.5}	(789)	8.5 ± 3.9	2022	
	SepNov.,2017		123467	20 ± 12	Li et al.,	
Beijing, China	Dec., 2017-Feb., 2018	PM _{2.5}	89	74 ± 51	2020	
			123456		~ 1 1	
Dezhou, China	Nov. 2017-Jan. 2018	PM _{2.5}	7891	<mark>299</mark>	Salvador e	
			(11)(12)(13)(14)(15)		<mark>al., 2020</mark>	
			126710		Wang et al	
Beijing, China	May-Jun., 2016	PM _{2.5}	(11)(12)(13)	6.6	2019	
	Jan., 2017		123456	17 ± 12	Wu et al.,	
Xi'an, China	JulAug., 2017	PM _{2.5}	(789)	0.40 ± 0.27	2020	
r' cl'	Nov. 2013-Jan., 2014			48 ± 26		
Jinan, China	Sep., 2014			9.8 ± 4.2	TT 7 , 1	
Yucheng, China	Jun., 2014	PM _{2.5}	126789	5.7 ± 2.8	Wang et al	
Wangdu, China	Jun., 2014		10(11)(12)	5.9 ± 3.8	2018	
Mt.Tai, China	JulAug., 2014			2.5 ± 1.6		
Wangdu, China	Jun., 2014	DN (1238910	9.2	Teich et al	
Xianghe, China	JulAug., 2013	PM_{10}	(13)(14)	3.6	2017	
	Spring, 2010-2012			2.7 ± 3.6		
Hong Kong,	Summer, 2010-2012		126710	2.2 ± 4.9	Chow et al	
China	Autumn, 2010-2012	PM _{2.5}	(11)(12)(13)	6.5 ± 6.9	2015	
	Winter, 2009-2012			12 ± 14		
TROPOS,	Ion Each 2014			16		
Germany	JanFeb., 2014		122389	10		
Melpitz,	JanFeb., 2014	PM_{10}	10(13(14)	12	Teich et al.	
Germany	Jul., 2014	P 1 V1 10		0.3	2017	
Waldstein,	Jul., 2014		89	0.4		
Germany	Jul., 2014		00	0.4		
Port Angeles,	Jan.21-Mar.6. 2014	PM _{2.5}	<mark>134567</mark>	<mark>92</mark>	Gaston et a	
WA	van.21 mar.0.2017	<u>•</u> ••••2.3	15	<mark>/ 2</mark>	<mark>2016</mark>	
Detling, UK	JanFeb., 2012	PM_1	13675	19	Mohr et al. 2013	
	Spring, 2010			3.8	2010	
Hamme,	Summer, 2010		(1)(6)(7)	2.2	Kahnt et al	
Flanders,	Autumn, 2010	PM10	PM_{10}	(11)(12)(13)	13	2013
Belgium	Winter, 2010					

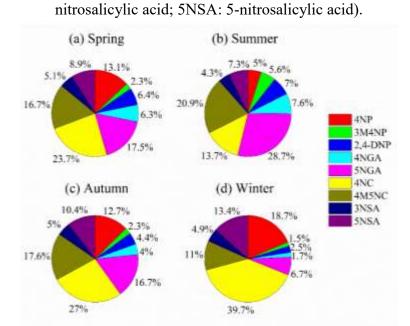

 Table 2. Measured concentrations of nitrated aromatic compounds in domestic and foreigh researches over the last decade.

	Ljubljana, Slovenia	Dec., 2010-Jan., 2011 Aug., 2010	PM ₁₀	123456 78910 (1)(12)	150 0.9	Kitanovski et al., 2012
	64-nitrocated	nol 23-methyl-4-nitrophe chol 74-methyl-5-nitroca crophenol 113-methyl-5-ni nitrophenol 43,4-0	techol (8). trocatecho	-dinitrophenol ④4-n 3-nitro-salicylic acid	(95-nitro-salie catechol (13)2,	cylic acid 102-
246	For each N	NAC species, NPs (inc	luding 41	NP, 3M4NP, 2, 4-I	ONP) (Fig. 2	a), NCs
247	(including 4NC	, 4M5NC) (Fig. 2c), and	d NSAs (including 3NSA, 5	NSA) (Fig. 2	2d) have
248	the same seas	sonal trends as the	total NA	ACs, with charac	cteristics of	higher
249	concentrations i	in winter than in other s	easons. It	t should be noted th	nat some NP	species,
250	such as 2,4-DN	P, did not have a distin	ct season	al variation mainly	due to the c	lifferent
251	generation mec	hanisms. Our previous	work ha	s shown that 2,4-	DNP were p	rimarily
252	produced by se	condary formation with	aqueous	-phase oxidation a	as the major	route of
253	production (Re	n et al., 2022), consist	ing with	other researches (Cheng et al.	<mark>, 2021).</mark>
254	However, on th	e contrary, there were r	no obviou	is seasonal trends f	for NGAs (in	cluding
255	4NAG and 5N	NGA) (Fig. 2b). Aver	agely, 4	NC was the mos	st abundant	species
256	throughout the	year (25.8%), followe	d by 5N	GA (17.6%) (Fig.	S1), with a	lifferent
257	proportions of 1	nolecular composition	in differe	ent seasons (Fig. 3). 4NC was 1	the only
258	NACs species the	hat accounted for more	than 20%	6 in spring (23.7%)	, autumn (27	%), and
259	winter (39.7%).	. The most prevalent co	ompound	over the summer	was 5NGA (28.7%),
260	followed by 4M	15NC (20.9%). These 1	findings o	contrasted with the	ose of earlier	• studies
261	on urban areas,	which often revealed th	at 4NP h	ad the greatest leve	els, followed	by 4NC
262	(Li et al., 2020c	; Wang et al., 2018; Wa	ang et al.,	2019).		
263	As mentio	oned above, obvious	seasona	l variations were	e observed	in the

264 concentrations and compositions of NACs in Mt. Wuyi. The following sections

265 comprise the implied differences in the primary sources and the secondary formation

266 pathways.



267

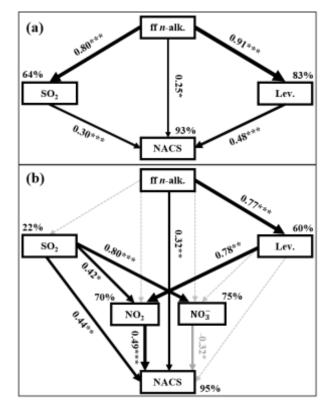
Fig.2 Temporal variations of each NACs species (4NP: 4-nitrophenol; 3M4NP: 3methyl-4-nitrophenol; 2,4-DNP: 2,4-dinitrophenol; 4NGA: 4-nitroguaiacol; 5NGA: 5-

270 nitroguaiacol;4NC: 4-nitrocatechol; 4M5NC: 4-methyl-5-nitrocatechol; 3NSA: 3-

271

272

Fig.3 Relative contribution of each NACs species during the sampling time (4NP: 4nitrophenol; 3M4NP: 3-methyl-4-nitrophenol; 2,4-DNP: 2,4-dinitrophenol; 4NGA: 4nitroguaiacol; 5NGA: 5-nitroguaiacol;4NC: 4-nitrocatechol; 4M5NC: 4-methyl-5-


276 nitrocatechol; 3NSA: 3-nitrosalicylic acid; 5NSA: 5-nitrosalicylic acid).

277 **3.3 Source apportionment**

278 **3.3.1 Source identification**

For further clarification regarding the influencing factors and sources of NACs, 279 the relationship between total and individual NAC species and the related pollutants 280 were analyzed based on the results of Pearson correlations depicted in Table 3 (for the 281 whole campaign) and Tables S3-6 (for the four seasons), including PM_{2.5}, SO₂, NO₂, 282 283 O₃, and other chemical components. It is noteworthy that total NACs and all identified NACs species manifested strong correlations with PM_{2.5} in the whole year, indicating 284 that they are important components of PM_{2.5}. There were good relationships between 285 NACs and primary pollutants in the whole year, such as SO₂ (r=0.859, p<0.01), ff-n-286 alkanes (r=0.927, p<0.01), PAHs (r=0.927, p<0.01), levoglucosan (r=0.931, p<0.01), 287 and K^+ (i.e., a BB tracer, r=0.817, p < 0.01) (Table 3). Furthermore, the model calculation 288 289 results of SEM indicated ff-n-alkanes, SO₂, and levoglucosan would account for 93% of NACs (Fig. 4a). All of these connections indicated that burning emissions throughout 290 the year, such as the burning of coal (Lu et al., 2019b), biomass (Wang et al., 2017; Lin 291 292 et al., 2017; Chow et al., 2015), and burning of petroleum (Lu et al., 2019a), had a substantial impact on NACs. 293

Additionally, total NACs also showed strong correlations with NO₂ (r=0.862, p<0.01), SO₄²⁻ (r=0.396, p<0.01), NO₃⁻ (r=0.757, p<0.01), NH₄⁺ (r=0.524, p<0.01), probably suggesting that the secondary formation of NACs was also important in the campaign. Here, the NACs concentration was strongly associated with NO₂, especially in the winter (Fig. 2e, Fig. 4b), and correlated better than other secondary tracers (Table

299 3), suggesting that NO₂ is a relatively importance component in the creation of NACs.

300

Fig. 4 Structural equation model (SEM) demonstrating the effects of ff *n*-alk., SO₂, Lev. 301 and NO₂ on annual (a) or winter (b) mean NACs. Black solid arrows indicate 302 significant positive relationships, gray solid arrows indicate significant negative 303 relationships and black dashed arrows indicate nonsignificant path coefficients. 304 The width of arrows is proportional to the strength of path coefficients. Numbers 305 on arrows are standardized path coefficients (equivalent to correlation 306 coefficients), asterisks following the numbers imply significant relationships (*p 307 < 0.05, **p < 0.01, ***p < 0.001). Percentages (R²) close to endogenous 308 variables indicate the variance explained by the ff *n*-alk., SO₂, Lev. and NO₂. 309

	NACs	4NP	3M4NP	2,4-	4NGA	5NGA	4NC	4M5NC	3NSA	5NSA
				DNP						
PM _{2.5}	0.657**	0.649**	0.376**	0.359*	0.308^{*}	0.521**	0.501**	0.703**	0.561**	0.564**
SO_2	0.859**	0.887^{**}	0.520**	0.299*	-0.184	-0.053	0.781**	0.637**	0.748^{**}	0.889**
NO ₂	0.862**	0.834**	0.329*	0.347^{*}	-0.142	0.103	0.845**	0.543**	0.762^{**}	0.774**
O ₃	0.146	0.145	0.028	0.024	0.308^{*}	0.403**	0.029	0.348*	0.174	0.102
ff- <i>n</i> -alkanes	0.927**	0.942**	0.364*	0.475**	-0.140	0.090	0.841**	0.732**	0.834**	0.880^{**}
PAHs	0.927^{**}	0.944**	0.486**	0.347^{*}	-0.205	-0.049	0.857^{**}	0.661**	0.838**	0.942**
Levoglucosan	0.931**	0.885**	0.299*	0.392**	-0.207	0.113	0.884**	0.721**	0.881**	0.860^{**}
K^+	0.817^{**}	0.805**	0.308^{*}	0.363*	0.109	0.330*	0.707^{**}	0.736**	0.709^{**}	0.732**
SO4 ²⁻	0.396**	0.412**	0.281	0.285^{*}	0.411**	0.516**	0.250	0.502**	0.272	0.305*
NO ₃ -	0.757**	0.829**	0.448^{**}	0.322^{*}	-0.225	-0.108	0.701**	0.486**	0.618**	0.766**
$\mathrm{NH_4^+}$	0.524**	0.560**	0.314*	0.321*	0.276	0.443**	0.385**	0.547**	0.373**	0.442**

Table 3. Pearson correlations between individual NAC species and meteorological parameters, aerosol components, and gas pollutants during the whole campaign (n = 49).

**Significant correlation at the 0.01 level.

*Significant correlation at the 0.05 level.

310	To further quantitatively the effects of various pollutants emissions on NACs
311	during the campaign, this work identified five sources with applying the PMF model.
312	These sources have been shown in Fig. 5 and Fig. 6. The first source factor, biomass
313	burning, was identified that levoglucosan loading was larger in this component profile
314	than in others. Furthermore, there were also with other high loading anthropogenic
315	primary organic markers, included ff-n-alkanes, PAHs, SO ₂ , and NO ₂ (Fig. 5a). This
316	sources had obviously seasonal variation characteristics with much more intense in
317	winter and early spring than in other seasons (Fig. 6a). It contributed 18.3% of the total
318	particulate NACs at the summit of Mt. Wuyi during the whole campaign (Fig. 7a).
319	Based on the air mass backward trajectories, it was assumed to originate from the long-
320	range transport (Fig. 1). Coal combustion was identified the second source factor, with
321	high levels of SO ₂ (Fig. 5b). This source was also much more intense in winter than in
322	other seasons and affected by the transport of pollutants. (Fig. 6b). It contributed 16.5%

323	of the total particulate NACs at the summit of Mt. Wuyi during the whole campaign
324	(Fig. 7a). The third source factor namely secondary formation by nitration reaction
325	showed high concentrations of NO_3^- (Fig. 5c). This source was much more intense in
326	winter than in other seasons (Fig. 6c). It contributed 10.3% of the total particulate NACs
327	at the summit of Mt. Wuyi during the whole campaign (Fig. 7a). And this source may
328	be mainly affected by the transport of pollutants. Secondary formation by
329	photochemical reaction were recognized as the fourth source factor, with relatively high
330	levels of O ₃ and low levels of anthropogenic pollutants (e.g. SO ₂ , NO ₂ , ff- <i>n</i> -alkanes,
331	PAHs, levoglucosan), indicating it mostly a local source (Fig. 5d). It is noteworthy that
332	trehalose also showed relatively high levels because this component is a naturally
333	existing carbohydrate in vegetations, which were abundant in the sampling site.
334	Different from the mentioned above sources, contributions from this source was
335	averagely higher in summer than in other seasons (Fig. 6d). It contributed 33% of the
336	total particulate NACs at the summit of Mt. Wuyi during the whole campaign (Fig. 7a).
337	Other sources was identified as the last factor including primary emissions and
338	secondary formation (Fig. 5e), due to with the highest loading of SO ₂ , NO ₂ and K^+ as
339	well as O_3 , SO_4^{2-} and NH_4^+ . The contribution of this source was more significant in
340	spring and later autumn, with the least amount in later summer and early autumn (Fig.
341	6e). Based on these variations of markers, this source was influenced by both transport
342	and local pollutants. It contributed 21.9% of the total particulate NACs at the summit
343	of Mt. Wuyi during the whole campaign year (Fig. 7a).

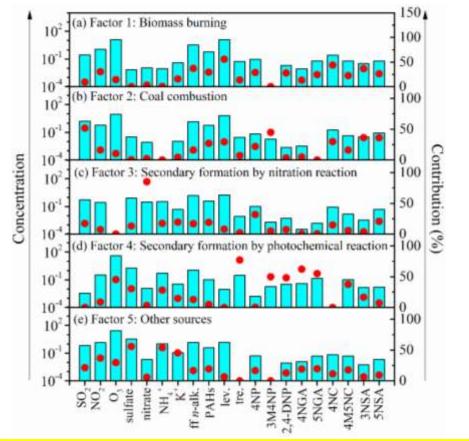
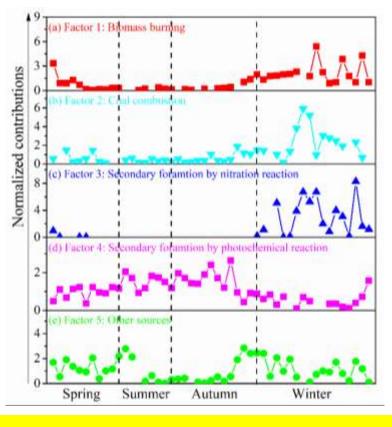



Fig.5 Source profiles of NACs obtained from PMF analysis (ff *n*-alk.: ff *n*-alkane. lev.: levoglucosan. tre.: trehalose).

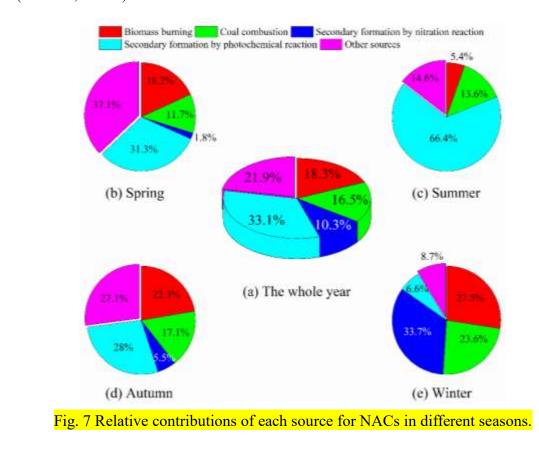
347

348

349 **3.3.2 Contributions of each source in different seasons**

350

351	characteristics. Fig.7 compared the average contributions of the five source factors to
352	the concentrations of total particulate NACs at the summit of Mt. Wuyi. This clarifies
353	the difference in the sources of them in the four seasons at mountain background station
354	of Southeast China.
355	During springtime, other sources had the biggest influence on NACs, followed by
356	secondary formation by photochemical reaction, which accounted respectively for 37.1%
357	and 31.3% of the total (Fig. 7b). For total NACs, the correlation coefficient (Pearson r)
358	was strong with SO ₂ , ff- <i>n</i> -alkanes, PAHs, levoglucosan, and K ⁺ (r>0.73, p <0.01), and
359	the total NACs correlated well with NO ₂ , O ₃ , NO ₃ ⁻ , and NH ₄ ⁺ (r>0.70, p <0.01) (Table
360	S3). The outcome indicated that NACs originate not only from primary emissions but
361	also from the secondary formation. Furthermore, The Pearson r for levoglucosan
362	(r=0.933, p <0.01) and NO ₂ (r=0.945, p <0.01) were higher in comparison to other
363	parameters, suggesting that the biomass burning and NO ₂ had significant effects on
364	NACs at the summit of Mt. Wuyi in spring.
365	During summertime, secondary formation by photochemical reaction were the
366	largest contributors to NACs, with the relative contributions accounting for more than
367	65% of the total (Fig. 7c). The photochemical production of NACs is related to the
368	oxidation of aromatics in the presence of NO ₂ , including the •OH oxidation and the
369	NO ₃ • oxidation (Cai et al., 2022; Ren et al., 2022; Yi Chen et al., 2022; Finewax et al.,


As mentioned above, those five sources had obviously different seasonal variation

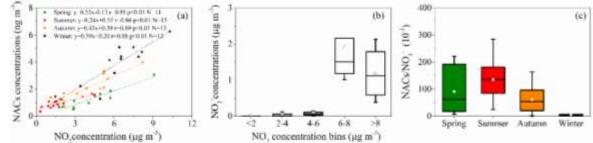
 $\frac{2018}{1000}$. The correlation coefficient (Pearson r) of total NACs was strong with NO₂

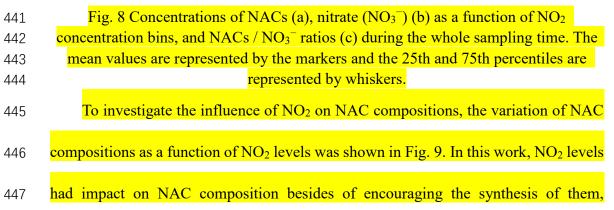
371	(r=0.869, $p<0.01$), O ₃ (r=0.786, $p<0.01$), SO ₄ ²⁻ (r=0.884, $p<0.01$), NO ₃ ⁻ (r=0.678,
372	p < 0.05), and NH ₄ ⁺ (r=0.881, $p < 0.01$) (Table S4), suggesting that the secondary
373	formation contributes significantly to the summertime NACs at the summit of Mt. Wuyi.
374	And the strong associations between O ₃ and NACs further support the significance of
375	photochemical oxidation for NACs. The secondary formation has been identified as a
376	major cause of the origin of atmospheric nitrated phenols, particularly in the summer,
377	during the various field and modeling investigations conducted recently (Yuan et al.,
378	2016; Mayorga et al., 2021; Xie et al., 2017; Cai et al., 2022; Wang et al., 2019).
379	During autumn, the relative contributions of each source of NACs were similar to
380	those observed in spring. Secondary formation by photochemical reaction and other
381	sources made almost equal contributions to NACs, which accounted for 28% and 27.1%,
382	respectively (Fig. 7d). Biomass burning also made a relatively large contribution to
383	NACs (22.3%). There was still a strong correlation between NACs and NO ₂ (r=0.886,
384	p<0.01). It is noteworthy that the correlation coefficient (Pearson r) of total NACs was
385	stronger with SO ₂ (r=0.805, $p < 0.01$) and SO ₄ ²⁻ (r=0.615, $p < 0.05$), and weaker with O ₃
386	(r=0.165) in autumn than with the same in spring (Table S5). The findings revealed that
387	at the summit of Mt. Wuyi in autumn, the proportional contribution of coal combustion
388	was rising and the impact of photochemical reaction was declining.
389	During wintertime, secondary formation by nitration reaction was the largest
390	contributor for NACs (33.7%), followed by biomass burning (27.5%) and coal
391	combustion (23.6%) (Fig. 7e). The total NACs correlated better with NO ₂ (r=0.879,

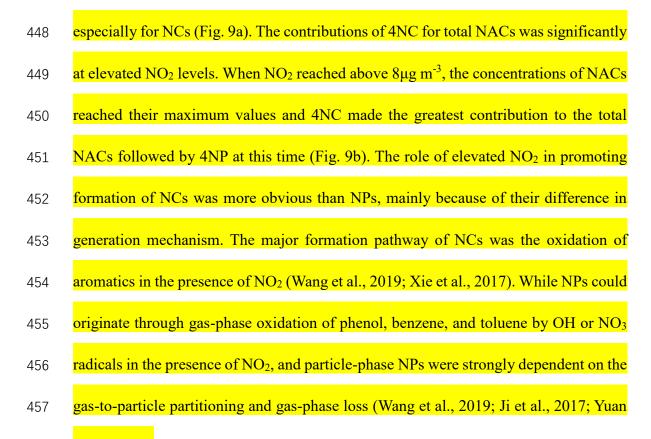
p < 0.01) than any other parameters (Table S6), thereby pointing towards significant

involvement of NO2 in NACs formation. According to earlier research, coal combustion 393 and biomass burning had a greater contribution to NACs in the winter (Cai et al., 2022), 394 with direct emissions from biomass burning in the range of 0.4 to 11.1 mg kg⁻¹ (Iinuma 395 et al., 2007; Wang et al., 2017). Furthermore, earlier research suggested that the 396 detection of increased amounts of particulate phenols could be significantly attributed 397 to coal combustion activities. The emission factors ranged from 0.2 to 10.1 mg kg⁻¹ for 398 bituminite, anthracite, lignite chunks, and briquettes. The residential coal combustion 399 resulted in a net emission of 178 ± 42 Mg of fine particles of nitrated phenols, according 400 to statistics of domestic coal consumption in a total of 30 provinces in Chinese in 2016 401 (Lu et al., 2019b). 402

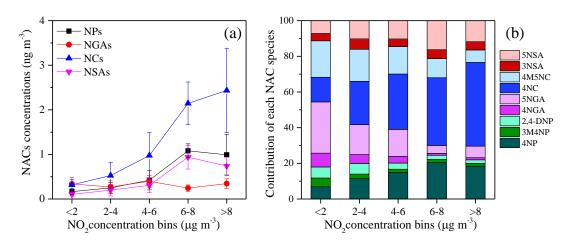


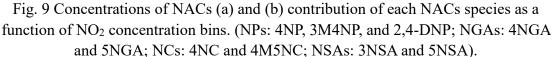

403


404


3.4 Impact of NO₂ on NACs

406	The total measured NACs and NO ₂ in our study displayed comparable temporal
407	fluctuations (Fig. 2e), and they revealed strong correlations in the course of the entire
408	campaign (r=0.879, $p < 0.01$). To examine the impact of NO ₂ abundance further on the
409	second generation of NACs and the current form, concentrations of total NACs and
410	nitrate (NO ₃ ⁻) as a function of NO ₂ abundance, and the fluctuations of [NACs] / [NO ₃ ⁻]
411	mass ratios were plotted in Fig. 8. Generally, with increasing NO_2 abundance, the
412	concentrations of NACs and NO3 ⁻ showed higher (Fig. 8a, b), consisting with earlier
413	investigations (Cai et al., 2022; Wang et al., 2018; Ren et al., 2022). It was worth noting
414	that the encouraging effect of NO_2 was more pronounced in winter than in other seasons
415	(Fig. 8a). This perhaps because winter had much higher NO_x abundance with higher
416	VOC precursor oxidation capacity (Cai et al., 2022). Moreover, the results of SEM also
417	had proved this point. The influence of the weight of NO ₂ on NACs was significantly
418	greater than that of other factors in winter, such as ff n -alkane and SO ₂ , although they
419	all had significant effects on NACs (Fig. 4b). Fig. 8c showed the variations of [NACs]
420	/ [NO ₃ ⁻] mass ratios in different seasons. In general, the mass ratios ranged from 1 to
421	285 (ng/ μ g) with average of 73 (ng/ μ g) during the whole campaign. In previous studies,
422	this ratio was generally between 1 (ng/ μ g) and 14 (ng/ μ g) at urban stations. For example,
423	it was averaged 13.5 (ng/ μ g) in Beijing during spring and summer (Ren et al., 2022),
424	1.4 (ng/ μ g) and 2.1 (ng/ μ g) in Jinan during summer and winter, respectively (Wang et
425	al., 2018), and from 1 to 9 (ng/µg) in Shanghai (Cai et al., 2022). This mass ratio was
426	obviously much higher in comparison to that observed in urban sites, and this





458 et al., 2016).

4 Conclusion and implications

464 NACs in fine particle were examined at the peak of Mt. Wuyi in 2014 and 2015.
465 Nine quantified NACs manifested a significant rise in overall abundance in the winter

466	and autumn, partly as a result of air masses traveling primarily through northern heating
467	regions, and indicating strong influences of anthropogenic activities. To identify the
468	sources of NACs, the PMF receptor model was applied. There were five source factors
469	identified including biomass burning, coal combustion, secondary formation by
470	nitration reaction, secondary formation by photochemical reaction, and other sources.
471	Due to the impact of long-range transport of air pollutants, biomass burning and coal
472	combustion were important primary sources. It is important to note that secondary
473	generation was an important source of NAC in this remote areas during the sampling
474	time, and the production of organic nitrated aerosols was relatively responsive to NO_2
475	under low-NO _x conditions. This work clearly demonstrated that anthropogenic
476	emissions could impact the pollution levels and variation characteristics of NACs in the
477	atmosphere, and the crucial roles of secondary formation in the distant mountain
478	regions.
479	Previous studies had come to a consensus that organic nitrated aerosols were
480	relatively sensitive to NO_2 under low levels. However, in different atmospheric
481	conditions, different levels of NO_2 may have different effects on nitrate aerosols
482	especially at high NO _x levels. In Beijing, our prior research had shown that at NO ₂
483	concentrations above 30ppb, inorganic nitrates were converted more quickly during the
484	day, while at the night, there was a shift in the corresponding products of oxidation to
485	predominantly organic ones (Ren et al., 2022). The transition from organic- to
486	inorganic-dominated products takes place in line with the switch from low- to high-

487 NO_x regimes according to Wang et al., (2019), with low-NO_x conditions being

488	predominated by organic-dominated products and a switch from majorly organic-
489	entities to inorganic ones at high-NO _x conditions (NO ₂ \sim 25 ppb for the night and NO ₂
490	\sim 20 ppb for the day). Cai et al., (2022) also indicated that inorganic nitrate
491	predominated among the NO_x oxidation products in high- NO_x concentrations
492	(NO ₂ >30ppb). These variations could be caused by different precursor kinds and
493	concentrations, as well as other variables. Therefore, additional and more thorough
494	research is required to fully understand the quantitative impact of NO_2 on nitrate
495	aerosols under various atmospheric conditions using laboratory simulation and field
496	measurements.

497 Data availability

The field observational and the lab experimental data used in this study are available from the corresponding author upon request (Gehui Wang via ghwang@geo.ecnu.edu.cn).

501 Author contributions

502 GW designed the research; JT and ZZ collected the samples; YR conducted the 503 experiments; YR and JW analyzed the data and wrote the paper; GW, JW and HL 504 contributed to the paper with useful scientific discussions and comments.

505 **Competing interests**

506 The authors declare that they have no conflict of interest.

507 Acknowledgements

- 508 This work is financially supported by the program from National Natural Science
- 509 Foundation of China (No. 41907197), the Fundamental Research Funds for Central
- 510 Public Welfare Scientific Research Institutes of China, Chinese Research Academy of
- 511 Environmental Sciences (No. 2019YSKY-018).

512

513

514 **References**

- Bandowe, B. A. M., Meusel, H., Huang, R.-j., Ho, K., Cao, J., Hoffmann, T., and Wilcke, W.:
 PM _{2.5}-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a
 Chinese megacity: seasonal variation, sources and cancer risk assessment, Sci. Total.
- 518 Environ., 473, 77-87, 2014.
- Berndt, T. and Bge, O.: Gas-phase reaction of OH radicals with phenol, PCCP, 5, 342-350,
 <u>https://doi.org/10.1039/B208187C</u>, 2003.
- 521 Cai, D., Wang, X., George, C., Cheng, T., Herrmann, H., Li, X., and Chen, J.: Formation of
 522 Secondary Nitroaromatic Compounds in Polluted Urban Environments, J. Geophys. Res.523 Atmos., https://doi.org/10.1029/2021JD036167, 2022.
- Cheng, X., Chen, Q., Li, Y., Huang, G., Liu, Y., Lu, S., Zheng, Y., Qiu, W., Lu, K., Qiu, X.,
 Bianchi, F., Yan, C., Yuan, B., Shao, M., Wang, Z., Canagaratna, M. R., Zhu, T., Wu, Y., and
 Zeng, L.: Secondary Production of Gaseous Nitrated Phenols in Polluted Urban
 Environments, Environ. Sci. Technol., 55, 4410-4419, 10.1021/acs.est.0c07988, 2021.
- Chiapello, I., Bergametti, G., and Chaten, B.: Origins of African dustransported over the
 northeastern tropical Atlantic, Journal of Geophysical Research Atmospheres, 102, 13701 13709, https://doi.org/10.1029/97JD00259, 1997.
- Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in
 atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence

- for secondary formation derived from biomass burning emissions, Environmental Chemistry,
 13, 665, https://doi.org/10.1071/EN15174, 2015.
- Comero, S., Capitani, L., and Gawlik, B.: Positive Matrix Factorisation (PMF)–An introduction
 to the chemometric evaluation of environmental monitoring data using PMF, Office for
 Official Publications of the European Communities, Luxembourg, 59, 2009.
- Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Tao, W., and Collett, J. L.: Speciation of
 "brown" carbon in cloud water impacted by agricultural biomass burning in eastern China,
 Journal of Geophysical Research Atmospheres, 118, 7389-7399,
 https://doi.org/10.1002/jgrd.50561, 2013.
- 542 Finewax, Zachary, de, Gouw, Joost, A., Ziemann, Paul, and J.: Identification and Quantification 543 of 4-Nitrocatechol Formed from OH and NO3 Radical-Initiated Reactions of Catechol in 544 Air in the Presence of NOx: Implications for Secondary Organic Aerosol Formation from Technol., 545 **Biomass** Burning, Environ. Sci. 52, 1981-1989, https://doi.org/10.1021/acs.est.7b05864, 2018. 546
- Fu, X., Wang, T., Gao, J., Wang, P., and Xue, L.: Persistent Heavy Winter Nitrate Pollution
 Driven by Increased Photochemical Oxidants in Northern China, Environ. Sci. Technol.,
 XXXX, 2020.
- Gaston, C. J., Lopez-Hilfiker, F. D., Whybrew, L. E., Hadley, O., Mcnair, F., Gao, H., Jaffe, D.
 A., and Thornton, J. A.: Online molecular characterization of fine particulate matter in Port
 Angeles, WA: Evidence for a major impact from residential wood smoke, Atmos. Environ.,
 138, 99-107, 2016.
- Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Olariu, R. I.: Nitrated
 phenols in the atmosphere: a review, Atmos. Environ., 39, 231-248,
 https://doi.org/10.1016/j.atmosenv.2004.09.044, 2005.
- Iinuma, Y., Boge, O., Graefe, R., and Herrmann, H.: Methyl-Nitrocatechols: Atmospheric
 Tracer Compounds for Biomass Burning Secondary Organic Aerosols, Environ. Sci.
 Technol., 44, 8453-8459, https://doi.org/10.1021/es102938a, 2010.
- Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O., Helas, G., Parmar, R., and
 Herrmann, H.: Source characterization of biomass burning particles: The combustion of
 selected European conifers, African hardwood, savanna grass, and German and Indonesian
 peat, J. Geophys. Res.-Atmos., 112, D08209, <u>https://doi.org/10.1029/2006JD007120</u>, 2007.
- Ji, Y., Zhao, J., Terazono, H., Misawa, K., and Zhang, R.: Reassessing the atmospheric
 oxidation mechanism of toluene, Proc Natl Acad Sci, 114, 8169-8174, 2017.
- Kahnt, A., Behrouzi, S., Vermeylen, R., Shalamzari, M. S., Vercauteren, J., Roekens, E., Claeys,
 M., and Maenhaut, W.: One-year study of nitro-organic compounds and their relation to
 wood burning in PM10 aerosol from a rural site in Belgium, Atmos. Environ., 81, 561-568,
 <u>https://doi.org/10.1016/j.atmosenv.2013.09.041</u>, 2013.
- Kitanovski, Z., Grgic, I., Vermeylen, R., Claeys, M., and Maenhaut, W.: Liquid chromatography
 tandem mass spectrometry method for characterization of monoaromatic nitro-compounds
 in atmospheric particulate matter, J. Chromatogr., 1268, 35-43,
 <u>https://doi.org/10.1016/j.chroma.2012.10.021</u>, 2012.
- Kitanovski, Z., Hovorka, J., Kuta, J., Leoni, C., Proke, R., Sáňka, O., Shahpoury, P., and
 Lammel, G.: Nitrated monoaromatic hydrocarbons (nitrophenols, nitrocatechols,
 nitrosalicylic acids) in ambient air: levels, mass size distributions and inhalation

- bioaccessibility, Environmental Science and Pollution Research, 28, 59131–59140,
 https://doi.org/10.1007/S11356-020-09540-3, 2021.
- Li, J., Wang, G., Ren, Y., Wang, J., Wu, C., Han, Y., Zhang, L., Cheng, C., and Meng, J.:
 Identification of chemical compositions and sources of atmospheric aerosols in Xi'an, inland
 China during two types of haze events, Sci. Total. Environ., 566, 230-237, 2016.
- Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and
 Cao, J.: Optical properties and molecular compositions of water-soluble and water-insoluble
 brown carbon (BrC) aerosols in Northwest China, Atmos. Chem. Phys., 20, 4889–4904,
 https://doi.org/10.5194/acp-20-4889-2020, 2020a.
- Li, M., Wang, X., Lu, C., Li, R., Zhang, J., Dong, S., Yang, L., Xue, L., Chen, J., and Wang, W.:
 Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China, Sci.
 Total. Environ., 714, <u>https://doi.org/10.1016/j.scitotenv.2020.136760</u>, 2020b.
- Li, X., Yang, Y., Liu, S., Zhao, Q., Wang, G., and Wang, Y.: Light absorption properties of
 brown carbon (BrC) in autumn and winter in Beijing: Composition, formation and
 contribution of nitrated aromatic compounds, Atmos. Environ., 223, 117289,
 <u>https://doi.org/10.1016/j.atmosenv.2020.117289</u>, 2020c.
- Liang, Y., Wang, X., Dong, S., Liu, Z., Mu, J., Lu, C., Zhang, J., Li, M., Xue, L., and Wang, W.:
 Size distributions of nitrated phenols in winter at a coastal site in north China and the impacts
 from primary sources and secondary formation, Chemosphere, 250,
 https://doi.org/10.1016/j.chemosphere.2020.126256, 2020.
- Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular
 Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning
 Event, Environ. Sci. Technol., 51, 11561-11570, <u>https://doi.org/10.1021/acs.est.7b02276</u>,
 2017.
- Lu, C., Wang, X., Dong, S., Zhang, J., and Wang, W.: Emissions of fine particulate nitrated
 phenols from various on-road vehicles in China, Environ. Res., 179, 108709,
 <u>https://doi.org/10.1016/j.envres.2019.108709</u>, 2019a.
- Lu, C., Wang, X., Li, R., Gu, R., Zhang, Y., Li, W., Gao, R., Chen, B., Xue, L., and Wang, W.:
 Emissions of fine particulate nitrated phenols from residential coal combustion in China,
 Atmos. Environ., 203, 10-17, <u>https://doi.org/10.1016/j.atmosenv.2019.01.047</u>, 2019b.
- 607 Lv, S., Wang, F., Wu, C., Chen, Y., Liu, S., Zhang, S., Li, D., Du, W., Zhang, F., Wang, H., Huang, C., Fu, Q., Duan, Y., and Wang, G.: Gas-to-aerosol phase partitioning of atmospheric 608 609 water-soluble organic compounds at a rural site of China: An enhancing effect of NH3 on 610 SOA formation, Environ. Sci. Technol., 56, 3915-3924, 611 https://doi.org/10.1021/acs.est.1c06855, 2022.
- Mayorga, R. J., Zhao, Z., and Zhang, H.: Formation of secondary organic aerosol from nitrate
 radical oxidation of phenolic VOCs: Implications for nitration mechanisms and brown
 carbon formation, Atmos. Environ., 244, <u>https://doi.org/10.1016/j.atmosenv.2020.117910</u>,
 2021.
- Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., t, A. S. H. P., Xu, L., Ng, N. L., Herndon, S. C., 616 617 Williams, L. R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of 618 Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United 619 620 Time, Technol., Kingdom during Winter Environ. Sci. 47. 6316-6324,

621 <u>https://doi.org/10.1021/es400683v</u>, 2013.

- Ren, Y., Wei, J., Wang, G., Wu, Z., Ji, Y., and Li, H.: Evolution of aerosol chemistry in Beijing
 under strong influence of anthropogenic pollutants: Composition, sources, and secondary
 formation of fine particulate nitrated aromatic compounds, Environ. Res., 204, 111982,
 <u>https://doi.org/10.1016/j.envres.2021.111982</u>, 2022.
- Ren, Y., Wang, G., Tao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Wei, J., Li, H., and Meng, F.:
 Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern
 China: Influence of anthropogenic pollutants, Environ. Pollut., 252, 493-500,
 <u>https://doi.org/10.1016/j.envpol.2019.05.077</u>, 2019.
- Salvador, C. M. G., Tang, R., Priestley, M., and Hallquist, M.: Ambient nitro-aromatic
 compounds -biomass burning versus secondary formation in rural China, Atmos. Chem.
 Phys., 21, 1389-1406, doi.org/10.5194/acp-21-1389-2021, 2021.
- Teich, M., Van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G., and
 Herrmann, H.: Contributions of nitrated aromatic compounds to the light absorption of
 water-soluble and particulate brown carbon in different atmospheric environments in
 Germany and China, Atmos. Chem. Phys., 17, 1653-1672, https://doi.org/10.5194/acp-17-1653-2017, 2017.
- Wang, G., Zhou, B., Cheng, C., Cao, J., Li, J., Meng, J., Tao, J., Zhang, R., and Fu, P.: Impact
 of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009:
 differences in composition and size distribution between the urban ground surface and the
 mountain atmosphere, Atmos. Chem. Phys., 13, 819-835, https://doi.org/10.5194/acp-13-819-2013, 2013.
- Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy, Z. M., Hu, M., Lin, Y., Peng, J., Guo, S.,
 and Meng, J.: Persistent sulfate formation from London Fog to Chinese haze, Proc Natl Acad
 Sci U S A, 113, 13630-13635, <u>https://doi.org/10.1073/pnas.1616540113/-/DCSupplemental</u>
 2016.
- Wang, G., Cheng, C., Huang, Y., Tao, J., Ren, Y., Wu, F., Meng, J., Li, J., Cheng, Y., Cao, J.,
 Liu, S., Zhang, T., Zhang, R., and Chen, Y.: Evolution of aerosol chemistry in Xi'an, inland
 China, during the dust storm period of 2013 Part 1: Sources, chemical forms and formation
 mechanisms of nitrate and sulfate, Atmos. Chem. Phys., 14, 11571-11585,
 https://doi.org/10.5194/acp-14-11571-2014, 2014.
- Wang, H., Lu, K., Tan, Z., Chen, X., Liu, Y., and Zhang, Y.: Formation mechanism and control
 strategy for particulate nitrate in China, Journal of Environmental Sciences-China, 123, 476486, 2023.
- Wang, L., Wang, X., Gu, R., Wang, H., Yao, L., Wen, L., Zhu, F., Wang, W., Xue, L., Yang, L.,
 Lu, K., Chen, J., Wang, T., Zhang, Y., and Wang, W.: Observations of fine particulate nitrated
 phenols in four sites in northern China: concentrations, source apportionment, and
 secondary formation, Atmos. Chem. Phys., 18, 4349-4359, <u>https://doi.org/10.5194/acp-18-4349-2018</u>, 2018.
- Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., and Wang,
 W.: Emissions of fine particulate nitrated phenols from the burning of five common types
 of biomass, Environ. Pollut., 230, 405-412, <u>http://dx.doi.org/10.1016/j.envpol.2017.06.072</u>,
 2017.
- 664 Wang, Y., Hu, M., Wang, Y., Zheng, J., and Yu, J. Z.: The formation of nitro-aromatic

- 665 compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China,
 666 Atmos. Chem. Phys., 19, 7649-7665, <u>https://doi.org/10.5194/acp-19-7649-2019</u>, 2019.
- Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X.,
 Zhao, Z., and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland
 China: sources, size distributions and optical properties, Atmos. Chem. Phys., 20, 20172030, https://doi.org/10.5194/acp-20-2017-2020, 2020.
- Kie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., and
 Holder, A. L.: Light Absorption of Secondary Organic Aerosol: Composition and
 Contribution of Nitroaromatic Compounds, Environ. Sci. Technol., 51, 11607-11616,
 https://doi.org/10.1021/acs.est.7b03263, 2017.
- Yi Chen, Penggang Zheng, Zhe Wang, Wei Pu, Yan Tan, Chuan Yu, Men Xia, Weihao Wang,
 Jia Guo, Dandan Huang, Chao Yan, Wei Nie, Zhenhao Ling, Qi Chen, Shuncheng Lee, and
 Wang, T.: Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the
 Continental Outflow Observed at a Background Site in South China, Environ. Sci. Technol.,
 56, 6933-6943, https://doi.org/10.1021/acs.est.1c04596, 2022.
- Yuan, B., Liggio, J., Wentzell, J., Li, S. M., and Stark, H.: Secondary formation of nitrated
 phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS)
 2014, Atmos. Chem. Phys., <u>https://doi.org/10.5194/acp-16-2139-2016</u>, 2016.
- Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources, Composition and Absorption
 ngstrm Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los
 Angeles Basin, Environ. Sci. Technol., 47, 3685-3693, <u>https://doi.org/10.1021/es305047b</u>,
 2013.
- Zhang, Y. Y., Müller, L., Winterhalter, R., Moortgat, G. K., Hoffmann, T., and Poschl, U.:
 Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic
 acids and nitrophenols in fine and coarse air particulate matter, Atmos. Chem. Phys., 10,
 7859–7873, https://doi.org/10.5194/acp-10-7859-2010, 2010.
- 691