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Abstract. The ICOS (Integrated Carbon Observation System) network of atmospheric measurement stations produces 

standardized data on greenhouse gas concentrations at 3646 stations in 1416 different European countries (November 2022). 10 

The network targets a strongly heterogeneous landscape and theMarch 2023). The placement of instruments on tall towers and 

mountains makemakes for large influence regions ((“concentration footprints).”). The combined footprints for all the 

individual stations create thea “lens” through which the observing network sees the European CO2 flux landscape. In this study, 

we summarize this view using quantitative metrics of the fluxes seen by individual stations, and by the current and 

futureextended ICOS network. Results are presented both from a country-level and pan-European perspective, using open-15 

source tools that we make available through the ICOS Carbon Portal. We target anthropogenic emissions from various sectors 

(e.g., energy production, industrial emissions),, as well as the land- cover types found overacross Europe (e.g., broadleaf 

forests, croplands) and their spatiotemporally varying fluxes. This recognizes different interests of different ICOS stakeholders. 

We specifically introduce “monitoring potential maps”, which quantify the sensitivity of the network with regards” to specific 

properties of each pixel compared to the averages across all pixels, to seeidentify which regions have a relative 20 

underrepresentation of land-cover, or biospheric fluxes. This potential changes with the introduction of new stations, which 

we investigate for the planned ICOS expansion with 2019 stations over the next few years. The monitoring potential concept 

is novel and a useful addition to traditional quantitative network design methods. 

 

WeIn our study focused on the summer of 2020, we find that the ICOSICOS atmospheric station network network has limited 25 

sensitivity to anthropogenic fluxes, as was intended in the current design. Its representation of biospheric fluxes follows the 

fractional representation of land-cover and is generally well balanced, with exceptions for a country like Norway where the 

southerly station Birkenes predominantly senses coniferous forest fluxes instead of the more abundant northerly grass & 

shrublands. Grass & shrubland fluxes are relatively underrepresented in ICOS, with the largest monitoring potential in 

Scandinavia, Croatia, and Serbia. These easterly countries similarly show a relative underrepresentation of broadleaf forest 30 

fluxes, partly due to a lack of monitoring stations, and partly due to the abundant sensitivity to broadleaf forests in the most 

densely monitored countries such as France and Germany. We stress that this does not imply these latter countries to be fully 
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monitored and of lesser interest for network expansion: for example, inclusion of Schauinsland in the future network expands 

the network lens to mostly unmonitored mixed- and broadleaf forests which are relatively underrepresented at the national 

level. Such considerations demonstrate cover and is generally well-balanced considering the pan-European view. Exceptions 35 

include representation of grass & shrubland and broadleaf forest which are abundant in south-eastern European countries, 

particularly Croatia and Serbia. On country scale the representation shows larger imbalances, even within relatively densely 

monitored countries. The flexibility to consider both individual ecosystems, countries, or their integrals across Europe 

demonstrates the usefulness of our analyses and can readily be re-produced for any network configuration within Europe with 

tools offered through the Carbon Portal. .  40 
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Figure 1: Current (November 2022)rrent and prospective ICOS atmospheric stations within the STILT model domain (see Sect. 2.1). 

Main land cover classes are showntypes (HILDA; Winkler et al., 2020) and their total shares given countries contained within the model domain are 

shown in the legend. 45 

1 Introduction 

Rising levels of carbon dioxide (CO2) and its forcing towards a warmer climate have led 195 countries to sign the Paris 

Agreement, which was adopted in 2015. Countries committed to reduce their emissions and to review their commitments every 

five years in response to oura common CO2 trajectory. Up until now, about half of the CO2 humans have emitted has been 

taken up by land (29% of total CO2 emissions 2011-2020, Friedlingstein et al., 2022) or stored in the deep ocean (26% of total 50 

CO2 emissions 2011-2020, Friedlingstein et al., 2022). On global scale, ourThe other half of the anthropogenic CO2 remains 

in the atmosphere and contributes to the atmospheric growth rate which is 2.5 ppm for 2022 according to a preliminary estimate 
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by Friedlingstein et al. (2022). On a global scale, the common CO2 trajectory will greatly depend on the capacity for storage 

in these carbon reservoirs and isit will be important to plan our efforts under the Paris agreement. Furthermore, understanding 

the natural carbon exchanges between carbon reservoirs is important for our ability to track and verify changes in emissions 55 

(Balsamo et al., 2021).   

 

Our understanding of the carbon cycle has evolved over the last few decades, and atmospheric observations have been 

indispensable to gain deeper insights (Tans et al., 1990; Keeling et al., 2001; Francey et al., 1999; Bacastow et al., 1985). 

Long-standing records of direct CO2 measurements, e.g. the canonical one from Mauna Loa, Hawaii, famously show the 60 

increasing trend in global CO2 levels (Sundquist and Keeling, 2009), and continue to form the basis of long-term analyses 

(Ballantyne et al., 2012; Graven et al., 2013; Liu et al., 2020). Additionally, inverse modelling systems have been employed 

at various scales to balance the atmospheric carbon budget, ensuring its consistency with observations from worldwide 

monitoring networks (Peylin et al., 2013; Thompson et al., 2016; Gaubert et al., 2019). Because of the relativerelatively high 

uncertainty of biosphere fluxes compared to anthropogenic emissions, such studies have generally focused on exchange of 65 

CO2 with the biosphere and oceans.  

 

Measurements of atmospheric mole fractions have traditionally been collected at remote islands, mountain tops, or other 

locations at large distance from direct emissions or uptake, to find well-mixed conditions that represent background 

atmospheric levels (Conway et al., 1994). Regional networks were added to this in the last two decades, with tall towers and 70 

aircraft data to inform on continental gradients in emissions and uptake (Sweeney et al., 2015; Turnbull et al., 2018)). The 

European monitoring capacity is currently organized through the Integrated Carbon Observation System (ICOS; Heiskanen et 

al., 2021), a European infrastructure that provides standardized data on greenhouse gas concentrations in the atmosphere and 

fluxes between the atmosphere, land, and oceans. The ICOS network of atmospheric stations currently include 36includes 46 

stations in 14 countries. (status of March 2023).  75 

 

The measurements from the 36 ICOS atmospheric stations target a strongly heterogeneous flux landscape; Europe has multiple 

climate zones ranging from temperateMediterranean in the South with, according to the Köppen-Geiger classification, dry and 

hot summers in the South, through temperate, to cold Northern sub-Arctic climate without a dry season (Beck et al., 2018). 

The main land cover types are cropland, coniferous forest, pasture, mixed forest, grass & shrubland and broadleaf forest (see 80 

Fig. 1). Coniferous forests and grass & shrubland are prominent in the north, whereas the rest of Europe is more heterogeneous 

and generally has moredominated by cropland. Ecosystem management is strong across Europe, with land-use history, forest 

management, and cultivation of grasslands, croplands, and wetlands showing large differences from country to country. As a 

result of this heterogeneity, different ecosystems have different responses to climate anomalies, such as drought.  

 85 
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The network’s ability to inform on the carbon cycle, such as responses to the 2018 drought (Peters et al., 2020; Ramonet et al., 

2020), is directly tied to the influence areas (“concentration footprints”) of its stations. A station footprint represents where the 

air has passed on the way to the station for a specific point in time, and the carbon exchange in the footprint area is expected 

to influence the concentration at the station. Analyses of footprints to understand station and network representations have 

been exploited in previous studies. For example, Oney et al. (2015) used station footprints to analyse the suitability of a Swiss 90 

network of four stations for regional-scale carbon flux studies. A visual inspection of the average station footprints, and the 

expected signals associated with different land cover types, supported claims about where the monitoring can be expected to 

provide useful information. In Henne et al. (2010), footprints were analysed to classify stations based on expected 

representativeness of their measurements. Representative measurements have little or no influence from local emission 

sources, which make them appropriate for inclusion in regional inversion studies. For ecosystem sites, where fluxes rather than 95 

concentrations are measured, the “flux footprints” are small with influence mainly from the site’s immediate surrounding. In 

this context, the idea of representation has been applied in Pallandt et al. (2022) to assess what Arctic ecosystem types are at 

the site locations compared to what ecosystems are found in the Arctic. Malone et al. (2022) similarly identified gaps in the 

U.S. NEON network based on representation of different clusters identified based on their ecological properties. In both 

studies, the evaluation of the network representation was subsequently used to advise on future expansion and the 100 

appropriateness of upscaling of the fluxes to larger regions. 

 

Previous network design studies also employed Quantitative Network Design (QND), where the impact of a given set of 

existing or hypothetical observations in a modelingmodelling framework is assessed to find an optimal network for a selected 

area of study area (Kaminski and Rayner, 2017). The metric of how much value a potential station adds is typically the 105 

reduction in the assumed a-priori uncertainties of the carbon fluxes. QND often results in small networks targeting the largest 

signals, or on specific sources assumed least well-known. For example, in a QND study by Nickless et al. (2020) for Africa 

they found the optimal network to be focused on the productive region around the equator and that it changes with the seasons 

reflecting difference in flux activity and hence uncertainty. The chosen model set-up, the freedom to choose new station 

locations, and how the uncertainties are prescribed to the flux landscape thus has an influence on the results, and there is no 110 

fully objective quantification of optimal network design.  

 

In this study, we therefore combine footprint analyses and quantification of sensing capacity usingin a different, yet quantitative 

approach. ItSimilar to the mentioned ecosystem studies, it focuses on what is seen by a station or network relative to the 

regional or national flux landscape, or relative to other stations, networks, or countries in Europe. Any underlying spatial data 115 

layer, ranging from population density to forest age or anthropogenic carbon emission, can be part of this quantification, 

recognizing that some fluxes, such as forests with high potential for long-term storage of carbon, might be more important 

than otherothers. Our approach hence allows for a large flexibility in defining what makes for an appropriate station location, 

or an appropriate network, and allows expert judgement or formal optimization based on the outcomes.  
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We chose in this study to quantify and summarize the capacity of the ICOS atmospheric observing network to sense the 

underlying CO2 flux landscape. We include anthropogenic fluxesOther mole fractions observed by the network including CH4 

and N2O exhibit different flux distributions and would therefore need separate analyses to characterise their gaps and 

monitoring potentials. We include anthropogenic emissions as well as biospheric fluxes, and we discuss scales from individual 

stations, to countries, and to pan-European fluxes. Our main research goal is to identify areas with unexploited “monitoring 125 

potential”, a novel concept that we introduce in this work. Areas with relatively high monitoring potential with respect to a 

specific ecosystem type would likely return useful information if targeted by an expansion of the ICOS network. A secondary 

goal is to demonstrate the open-source tools we developed, to be used by a multitude of stakeholders, each with their own 

interest in the ICOS network, as available in the ICOS Carbon Portal. (see Sect. 6). We describe our methods including how 

station and network footprints are created and combined with relevant data in Sect. 2. The first part of the results (Sect. 3.1) 130 

focuses on the individual stations that make up the current and futureextended ICOS network, followed by sections for the 

current (Sect. 3.3) and the extended (Sect. 3.3) ICOS network. There are separate sub-sections focused on whatdescribing what 

land-use cover types (Sect 3.2), and.1) and  which fluxes (3.3) the network represents currently, and where important 

“monitoring potential” of these lies. (Sect. 3.2.2). The discussion (Sect. 4) highlights limitations of the study and 

explainexplains decisions that have influenced the results. The paper is concluded (Sect. 5) with a summary. 135 

2 Methods  

2.1 Station footprints 

FootprintsFootprints and modelled signals from anthropogenic emissions and the biosphere at the stations (Sect. 2.2) are 

computed using the ICOS Carbon Portal STILT Footprint Tool. The model set-up is described in Karstens, U., 2022 and has 

been used in previous studies including Levin et al., 2020, Munassar et al., 2022, and Pieber et al., 2022. The footprints are 140 

generated by STILT (Stochastic Time Inverted Lagrangian Transport; Lin et al., 2003), a Lagrangian atmospheric transport 

model. The extent of the footprints is limited to, for the model domain, i.e., 15°W-35°E and 33°N-73°N (the extent of Fig. 1). 

OutputThe footprints are presented on a grid (1/12×1/8 degrees) grid with calculated surface influence (“sensitivity”) in ppm 

/ (μmol/ (/(m²s)). The sensitivities of the cells represent the station-specific atmospheric tracer dry mole fraction dependence 

on fluxes and are based on the dispersion of particles transported for ten days backward from the sampling time and location 145 

(x,y,z). Meteorological conditions drive the transport and are represented by three-hourly operational ECMWF-IFS 

analysis/forecasts. 10-day aggregated footprints at 0.25 degrees resolution. Footprints are calculated for sampling times of 

every three hours (0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, 21:00) and backward timestep-aggregated footprints are 

available for download at the Carbon Portal (https://data.icos-cp.eu/)/portal) and viewingmay be visualized in the STILT 

viewer (https://stilt.icos-cp.eu/). The influence of using time-step aggregated footprints, alsoFootprints for summer (JJA) were 150 

used for the combinationsubsequent analyses. Additionally, footprints for winter (DJF) year 2020 were used only in the 
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analysis of individual stations exemplified with biogenic fluxes,Hyltemossa (Sect. 3.1). In case of multiple inlet heights at a 

station, the highest level is deemed negligible for the purpose of our studyselected because the top-level measurements have 

the largest footprints and are generally chosen to provide measurements for regional and global inverse modelling systems.  

2.2 SignalsCO2 fluxes and simulated signals at the stations  155 

Time-series of modelled CO2 dry mole fraction and its components (i.e. individual anthropogenic- and biosphere-flux derived 

signals) are computed during the footprint calculation in the ICOS Carbon Portal tool.previously mentioned STILT Footprint 

Tool. Footprints for hourly backward time-steps are combined with temporally resolved emissions and biogenic fluxes 

estimated in μmol/ (/(m²s). ) as described in Lin et al., 2003 (see equation 7 there).  

 160 

The EDGAREDGARv4.3.2 inventory (EDGARv4.3.2; Janssens-Maenhout et al., 2019; Gerbig and Koch, 2021b) is usedthe 

basis for the anthropogenic CO2 emissions and the. The VPRM biosphere model (Mahadevan et al., 2008; Gerbig, 2021a) is 

used for the biogenic fluxes. The biosphere-flux derived signals computed during the footprint calculation are attributed to 

groups of aggregated SYNMAP (Jung et al., 2006) land cover categories, which is also the map used to parameterize the 

VPRM model. The aggregation used within the STILT Footprint Tool result in broad categories such as “crop and tree”, which 165 

cover over half of the land area in the model domain. To again disaggregate the land cover, we alternatively re-create the 

timeseries of biogenic signals by combining the footprints for hourly backward time-steps with the temporally resolved flux 

maps but attribute the resulting biogenic signals to the different land cover categories in HILDA (Winkler et al., 2020). The 

HILDA land cover is a synthesis product built on multiple heterogenous datasets including several satellite data products which 

were published after SYNMAP was created (Winkler et al., 2021). Another advantage is that the HILDA map used in this 170 

study represents year 2018 as opposed to the year 2000.  

 

Ocean fluxes are currently not part of the STILT model Backgroundimplementation at the Carbon Portal. For this exchange, 

fluxes from Carbon Tracker Europe-High Resolution (van der Woude et al., 2022a; van der Woude, 2022b) were combined 

with the footprints for hourly backward time-steps to create timeseries of estimated ocean signals at the stations.  175 

 

Whereas we focus on the surface fluxes and derived signals at the stations, total modelled mole fractions can be estimated by 

including “background” mole fractions to account for the contributions from global fluxes. In the Carbon Portal STILT model 

implementation these are taken from the Jena CarboScope globally analysed atmospheric CO2 fields (Rödenbeck and Heimann, 

2021). The total modelled concentrations can in turn be compared to measured concentrations to assess the performance of the 180 

modelling system; with an average correlation coefficient of 0.82 for all stations in the current (November 2022) network year 

2020 there is generally a good agreement. The statistics of model vs. observation comparison for the individual stations can 

be found in Table A1 (Appendix A). 
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To relate the station derived biogenic signals to the latest high resolution land cover classification for Europe, alternative time-185 

series for biosphere-flux derived signals have been created. The fluxes are combined with three-hourly time-step aggregated 

footprints (see Sect. 2.1) and attributed to different land cover types according to the HILDA (Winkler et al., 2020) land cover 

map. We specifically note that in the VPRM simulations the coarser SYNMAP (Jung et al., 2006) land cover map is used. The 

two maps represent land cover year 2018 and 2000 respectively.  

 190 

Ocean fluxes are currently not part of the STILT model set-up at the Carbon Portal. Rather, ocean fluxes from Carbon Tracker 

Europe-High Resolution (van der Woude et al., 2022b; van der Woude, 2022a) are combined with the three-hourly time-step 

aggregated footprints to create time-series of estimated ocean signals at the stations.  

 

In case of multiple inlet heights at a station, the highest level is selected because the top-level measurements would have the 195 

largest footprints and are generally chosen to provide measurements for regional and global inverse modelling systems. 

2.3 Station view of land cover  

Summertime (JJA) and wintertime (JFD) average station footprints are combined with the HILDA land cover map to provide 

information of what land cover types are found within the footprint in different directions of the stations (see Fig. 2b).  

Attribution to land cover shares within individual countries is also possible by aggregating the footprints after masking 200 

withusing fractional country masks. 

2.4 Network footprints 

Two networks of stations are considered in this study, the current2022 ICOS atmospheric station network (see Fig. 4) and 

futurean extended ICOS atmospheric station network (see Fig. 89) which includes 2019 stations that are expected to join the 

network in the next few years (see Fig.1). Three-The hourly backward time-steps footprints for the individual stations in the 205 

network are reduced to grid cells with the highest sensitivity values that in combination add up to 50% of the sum of all cells.the 

hourly backward time-step footprints sensitivities. This follows the approachapproaches of Henne et al. (2010) and Oney et al. 

(2015) and is intended to emphasize areas with significant local influence. The hourly 50% footprints of the individual stations 

are combined in final three-hourly backward network footprints. Network footprints for the individual time-steps are needed 

as the biogenic flux maps have an hourly temporal resolution (see Sect. 2.5). In where in the case of multiple stations with 210 

sensitivity to the same footprint grid cell, the maximum cell value is used. The hourly backward time-step network footprints 

associated with receptor measurements every three hours can in turn be combined with underlying land cover as fluxes for 

subsequent analyses (see Sect. 2.5).  

 

To estimate the overlap in sensitivities between a current network footprint and athe 50% footprint of a station that is included 215 

in the extended network, the effect of its inclusion in an updated network footprint is analysed; the difference between the 
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spatial sums of the two network footprints are quantified and footprint sensitivities is compared to the spatial sum of the 50% 

station footprint. If there is no overlap between the current network and the footprint of the station joining, the difference 

between the two network footprints is the same as the sum of the (50%) station footprint. 

2.5 Network views of land cover and associated fluxes 220 

Average summertime network footprints are combined with the HILDA land cover map to analyse what land cover types are 

sensed in individual countries and in Europe as a whole (referred to as “LC-view”). Fluxes associated with the different land 

cover classestypes are established from the combination of three-hourly backward time-steps network footprints with 

temporally corresponding flux mapmaps (referred to as “GEE-view”) and averaged for the summer. We use GEE (Gross 

Ecosystem Exchange) rather than NEE (Net Ecosystem Exchange = GEE + Respiration) as footprint-weight to prevent nearly 225 

cancelling  photosynthesis and respiration signals to influence the network view. The GEE-view thus highlights areas with 

high biogenic activity. Areas of high biogenic activity which are especially important to monitor because; high activity 

generally means greater uncertainties in the current estimates and higher potential for long-term carbon storage. The network 

views are evaluated here exclusively for the summer when GEE is highest. but using other time periods have proven to give 

similar results (see Sect. 4).  230 

 

The LC- and GEE-views of the network are compared to what “equal views” would yield. An equal view lens is created by 

evenly distributingestablished from corresponding hourly backward network footprints where the mean sensitivity of network 

given a chosen region is distributed to all footprint cells within a region of interest and is (see Eq. 2). These are used to establish 

alternative LC- and GEE- views which are used as a baseline to establish relative over- or underrepresentations of the LC-235 

views and GEE-views. It should be noted that to have an “equal view” of the studied region is not always desirable as some 

fluxes might be more relevant to monitor than otherothers. Consequently, over- and underrepresentations are not inherently 

negative for the network. (see Eq. 3). Note that an equal LC-view reflects the relative distribution of area associated with 

different land cover types. In terms of the GEE-view, variations in the underlying biogenic fluxes of each land- cover mean 

that there can be over- and underrepresentation even if the relative shares are the same (see Fig. 5 and Fig. 78). 240 

 

The following definitions are given to help the reader: 

 

 

a: true network footprint (see Sect. 2.4) 245 

 

b: equal view footprint  

The total monitoring capacity of a network within a We consider the model domain 15°W to 35°E and 33°N-73°N: 
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For a given country or region, C, we can look at Ci,j which is calculated by summarising the footprint cell values 

within its borders using masks. An equal share of the total is fraction of the country/region in turn assigned to all 250 

footprint cells to create an “equal view” footprint. 

 

c: GEE flux map from VPRM 

 

d:a given grid cell (i, j). We consider specific land- cover fractional masktypes, LC, and use LCi,j which is the fraction of land 255 

cover within a given grid cell. 

 

 

e: GEE-view 

We establish the network view (Ni,j(T)) and equal view (NEQi,j(T)) of the flux land scape (GEEi,j(tk)): For each grid cell i, j and 260 

hour tk leading up to when the air arrives at the receptor (T) where hour tk = t1, t2, t3, . . . , t240 (here t240  is T, the time the air 

arrives at the receptors of the stations in the network). 

 

𝑒 = 𝑎 ∗ 𝑐 ∗ 𝑑

 

 

(1) 

 

f: equal GEE-view 265 

 

𝑓 = 𝑏 ∗ 𝑐 ∗ 𝑑

 

 

(2) 

 

g:Where C and LC are the fractional country grid of selected country or region. NFP is the network footprint (see Sect. 2.4) 

and GEE is the flux map and these change with time (tk). m,n are sum indices that run over all cell coordinates in the model 

grid.  270 

 

The relative flux representation (REP(T), used in Fig. 5b and Fig. 7b) 8b is the ratio between the total sensing within the grid 

cells of the network view (Ni,,j(T) and the equal view NEQi,,j(T)). 
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𝑔 =
𝑠𝑢𝑚(𝑒)

𝑠𝑢𝑚(𝑓)
 

 

(3) 

 275 

The spatial difference in e and f signifies the over- or underrepresentation of a certain flux. 

 

h: relative monitoring potential map (maps, MP(T),used in Sect. 3.2 and Sect. 3.3) show the difference in the sensing between 

the network view and the equal view within the individual grid cells of the model. 

 280 

ℎ = 𝑒 − 𝑓  (4) 

 

 

Cells where the equal view (fNEQi.j) is greater (more uptake), than the network view (Ni.j) will have positive values in (hthe 

relative monitoring potential map (MP) and all other cells have the value zero, and only these are displayed in the monitoring 

potential maps. Monitoring potential becomes especially high in areas where the current network is relatively blind, and the 285 

activity of the specific flux is relatively high. For the monitoring potential maps for the extended network, fthe equal view 

(NEQi.j) is kept the same as for the current network. For monitoring potential within an individual country, a fractional country 

mask (0.0 is fully outside the border, 1.0 is fully within) is applied to (d) beforefacilitate effective comparison between the 

calculation of (e), (f), and (h).maps.  

3 Results 290 

We focus the first part of the results (Sect. 3.1) on characteristics of stations in the ICOS current and futureextended networks 

and demonstrate our capacity for a deeper station analysis for the Swedish station Hyltemossa. (HTM150). We then quantify 

how the monitoring network views  the current European landscape in its current (Sect. 3.2) and extended (Sect. 3.3) ICOS 

configuration, with a focus on the new concept of “relative monitoring potential”. 

3.1 The view from individual stations 295 

Station Crop Coniferous 

forest 

Mixed 

forest 

Pasture Broadleaf 

forest 

Urban Grass & 

shrub 

Other 

land 

cover 

Ocean Energy Transport Industry Residential 

ARN100* -0.73 -0.27 -0.89 -0.46 -0.42 -0.24 -0.23 -0.03 -0.01 0.35 0.36 0.23 0.05 

BIK300* -4.41 -2.22 -1.59 -1.71 -1.13 -0.68 -1.19 -0.11 -0.03 0.46 0.31 0.20 0.09 

BIR075 -1.20 -4.15 -0.73 -0.50 -0.29 -0.25 -0.50 -0.15 -0.12 0.56 0.29 0.19 0.06 

CMN760 -2.28 -1.12 -1.56 -1.36 -3.78 -0.84 -0.73 -0.10 -0.01 0.39 0.43 0.28 0.11 
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EST110* -2.58 -2.73 -3.21 -0.78 -1.56 -0.32 -1.47 -0.28 -0.07 0.43 0.17 0.15 0.05 

FKL015* -2.72 -0.70 -0.90 -1.11 -1.53 -0.44 -0.63 -0.07 0.13 0.52 0.38 0.30 0.10 

GAT344 -3.63 -1.73 -1.02 -1.28 -0.49 -0.76 -0.47 -0.11 -0.07 0.69 0.45 0.39 0.16 

HAC* -3.01 -0.97 -1.31 -1.82 -2.22 -0.54 -0.87 -0.08 0.01 0.37 0.28 0.22 0.07 

HEL110 -2.27 -0.99 -0.77 -1.14 -0.34 -0.48 -0.36 -0.11 -0.09 0.65 0.39 0.27 0.12 

HPB131 -2.80 -1.66 -2.79 -4.27 -0.93 -1.58 -0.45 -0.19 -0.03 0.50 0.69 0.41 0.23 

HTM150 -2.71 -2.53 -1.46 -0.67 -0.77 -0.44 -0.49 -0.14 -0.10 0.46 0.32 0.23 0.07 

HUN115* -6.02 -1.95 -3.11 -1.59 -2.30 -1.58 -1.07 -0.10 -0.03 0.67 0.68 0.47 0.18 

IPR100 -3.74 -1.39 -2.02 -1.95 -4.15 -2.43 -0.71 -0.92 -0.01 0.85 1.61 1.74 0.55 

JFJ -1.81 -1.10 -1.95 -1.86 -0.91 -0.88 -0.47 -0.21 -0.02 0.26 0.38 0.23 0.12 

JUE120 -2.97 -0.84 -1.12 -1.33 -0.53 -1.45 -0.24 -0.09 -0.07 5.60 1.15 1.33 0.46 

KAS* -4.05 -2.25 -1.83 -2.04 -1.61 -1.18 -0.93 -0.10 -0.02 0.61 0.37 0.32 0.12 

KIT200 -3.43 -1.06 -1.77 -1.25 -1.24 -1.31 -0.32 -0.05 -0.05 1.63 0.83 0.67 0.33 

KRE250 -4.94 -2.25 -1.57 -1.56 -0.82 -1.10 -0.51 -0.08 -0.04 0.74 0.53 0.41 0.16 

LAH032* -1.90 -4.55 -2.75 -0.66 -0.92 -0.34 -1.13 -0.25 -0.11 0.71 0.23 0.38 0.06 

LIN099 -3.71 -2.50 -1.22 -1.21 -0.62 -0.87 -0.62 -0.14 -0.06 1.53 0.62 0.71 0.24 

LMP -1.63 -0.60 -0.93 -0.85 -1.03 -0.44 -0.46 -0.05 0.26 0.33 0.40 0.20 0.07 

LMU080* -1.40 -0.51 -1.20 -0.68 -1.07 -0.29 -0.28 -0.03 -0.03 0.30 0.36 0.25 0.07 

LUT -3.11 -0.95 -0.78 -1.58 -0.35 -0.66 -0.37 -0.22 -0.09 1.35 0.58 0.42 0.20 

MAH* -0.87 -0.62 -0.50 -1.39 -0.16 -0.22 -0.28 -0.08 -0.23 0.25 0.25 0.12 0.06 

MAJ100* -0.70 -0.37 -1.15 -0.72 -0.43 -0.24 -0.29 -0.02 -0.02 0.12 0.23 0.14 0.04 

MHD* -0.70 -0.41 -0.32 -1.08 -0.09 -0.16 -0.43 -0.15 -0.16 0.17 0.19 0.09 0.05 

NOR100 -1.72 -5.09 -1.53 -0.35 -0.25 -0.23 -0.48 -0.31 -0.12 0.39 0.21 0.24 0.04 

OPE120 -3.20 -0.67 -0.96 -0.99 -1.18 -0.70 -0.23 -0.05 -0.05 0.45 0.48 0.36 0.14 

OXK163 -3.55 -2.05 -1.49 -1.52 -0.78 -1.18 -0.39 -0.06 -0.05 0.78 0.61 0.41 0.20 

PAL -0.37 -4.49 -0.58 -0.14 -0.12 -0.07 -1.43 -0.22 -0.10 0.09 0.06 0.05 0.01 

PCW150* -5.02 -2.05 -1.36 -1.55 -0.81 -0.85 -0.91 -0.12 -0.04 0.96 0.43 0.30 0.15 

PRS -1.54 -1.10 -1.57 -1.77 -0.96 -0.75 -0.36 -0.27 -0.02 0.24 0.34 0.20 0.10 

PSE150* -5.10 -2.47 -1.84 -1.91 -1.38 -1.38 -1.19 -0.09 -0.03 0.88 0.47 0.59 0.16 

PUI084 -0.86 -5.06 -1.98 -0.21 -0.26 -0.15 -0.53 -0.56 -0.07 0.53 0.12 0.11 0.04 

PUY -1.55 -0.65 -1.53 -1.74 -1.09 -0.41 -0.29 -0.04 -0.03 0.20 0.27 0.17 0.07 

RGL090* -2.13 -0.56 -0.74 -1.85 -0.17 -0.55 -0.27 -0.07 -0.12 0.60 0.60 0.31 0.18 

SAC100 -2.49 -0.50 -0.64 -0.95 -0.66 -0.68 -0.21 -0.05 -0.07 0.48 1.07 1.04 0.45 

SMR125 -1.23 -5.57 -1.62 -0.25 -0.31 -0.19 -0.52 -0.42 -0.09 0.34 0.16 0.17 0.05 

SNZ* -3.92 -2.10 -1.44 -1.43 -0.77 -0.91 -0.60 -0.09 -0.04 0.73 0.43 0.33 0.14 

SSL* -3.10 -1.33 -2.04 -1.51 -1.35 -1.34 -0.31 -0.06 -0.04 0.46 0.58 0.40 0.19 

STE252 -3.56 -1.08 -0.90 -1.71 -0.42 -0.97 -0.39 -0.11 -0.07 0.98 0.56 0.52 0.22 

SVB150 -0.64 -5.92 -0.94 -0.22 -0.18 -0.12 -0.75 -0.24 -0.10 0.16 0.10 0.08 0.02 
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TOH147 -3.57 -1.90 -1.13 -1.24 -0.80 -1.03 -0.37 -0.07 -0.06 0.87 0.63 0.63 0.21 

TRN180 -2.66 -0.48 -0.72 -0.90 -0.77 -0.62 -0.22 -0.04 -0.06 0.28 0.49 0.32 0.16 

UTO -1.31 -2.96 -1.32 -0.39 -0.43 -0.21 -0.55 -0.19 -0.24 0.50 0.19 0.24 0.04 

VSD006* -1.68 -2.76 -1.84 -0.57 -0.69 -0.27 -0.81 -0.18 -0.29 0.39 0.24 0.19 0.05 

VTO014* -0.60 -0.34 -0.32 -1.01 -0.09 -0.17 -0.26 -0.06 -0.17 0.19 0.20 0.09 0.05 

WAO -4.08 -0.75 -0.75 -1.18 -0.23 -0.64 -0.35 -0.17 -0.09 0.82 0.82 0.40 0.18 

WES -2.30 -1.04 -0.78 -0.99 -0.31 -0.44 -0.40 -0.12 -0.09 0.97 0.47 0.22 0.12 

ZSF -2.19 -1.75 -2.07 -2.37 -0.92 -1.10 -0.52 -0.18 -0.03 0.34 0.47 0.30 0.15 

Average -2.55 -1.86 -1.37 -1.23 -0.89 -0.69 -0.56 -0.15 -0.06 0.66 0.45 0.36 0.14 

Std 1.34 1.47 0.66 0.70 0.81 0.49 0.32 0.15 0.08 0.78 0.28 0.30 0.11 

 

Table 1: Summertime (JJA) average land cover (GEE),, anthropogenic, and ocean signals (in ppm) at the stations in the current 

(November 2022) and extended (*) ICOS atmospheric networks. The GEE and oceannetwork, limited to stations within the model 

domain. For each category, the values of the five stations with highest signals have been created using time-step aggregated 

footprintsare in bold. See Table B1 (Appendix B) for more information about the stations and the table provided as supplemental 300 
material for respiration and should be used for qualitative analyses only (see Sect. 2.2.).total CO2 signals.   

The individual stations of our studied networks show large variations in expected signals, with most with stronger signals from  

stations larger in sensing capacity for biogenic fluxes than for anthropogenic emissions in the summer of year 2020 (Table 1). 

Considering the sensitivity to biogenic activity, the highest average (negative) signal is associated with coniferous 

forestscropland, followed by cropland. Coniferous forests are found in abundance in northern Europe and is associated with 305 

about 60% of the land area in some countries (see Fig. 1). This means large signals at Swedish Norunda (NOR100) and 

Svartberget (SVB150), and Finish SMEAR (SMR125) and Puijo (PUI084). Similarly, stationsconiferous forest. Stations in 

countries with large areas associated with cropland, such as Czech Krésin (KRE250) and Dutch Lutjewad (LUT), show some 

of the largest signals associated with cropland. Similarly, coniferous forest is found in abundance in northern Europe which 

means large signals at Swedish Norunda (NOR100) and Svartberget (SVB150), and Finish SMEAR (SMR125) and Puijo 310 

(PUI084). Although mole fraction contributions typically reflect land- cover fractions within the footprints, their ratios can 

vary over space and time due to variations in the underlying vegetation fluxes of each land- cover type. For example, forests 

have normally higher photosynthetic activity than cropland which calls for the distinction between LC-view and GEE-view.   

 

Signals from anthropogenic emissions are generally expected to be small because ICOS targets natural fluxes. For several 315 

stations, this targeting is proving successful and about one third of the stations have average anthropogenic signals below one 

ppm. for the summer in year 2020. These include several “background stations” with limited influence from local surface 

fluxes thanks to strategic placement by the ocean, including Lampedusa (LMP), Mace Head (MHD) and Malin Head (MAH), 

or on remote mountain tops, such as Jungfraujoch (JFJ), Plateau Rosa (PRS) and Puy de Dôme (PUY). However, high emission 

intensity in central European countries makes it hard to avoid significant emission sources within the large footprints of 320 

atmospheric stations. GenerallyOn average, emissions related to energy production cause the largest signals, especially at 
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German and Polish stations. However, it is important to remember that the signal averages include peaks in anthropogenic 

signals during particular hours especially when the wind transports air from large point source emitters. For example, the 

German station JuelichJülich (JUE) is located only 10 km from a coal-fired power plant that accounts for about 4% of 

Germany’s total emissions (E-PRTR) and whereas the, 2020). The average signal is 5.6 ppm, it is but below 1.0 ppm about 325 

20% of the time. Careful sub-sampling of time series, as suggested also by Oney et al. (2015), could allow for either avoiding 

anthropogenic influence or concentrating on its analysis. A deeper analysis per station is facilitated by our tools, as exemplified 

next for the station Hyltemossa. 

 

 330 

(a)                                                        (b) 
 

Figure 2: (a) Hyltemossa’s 50 % footprint area for summer and winter year 2020 (b) summer (JJA) and winter (JFD) year 2020 and 

(b) land cover shares withinweighed by the seasonal footprints split by direction. 
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 335 

 

Figure 3: (a) Biogenic and anthropogenic signals at Hyltemossa, summer (JJA) and winter (JFD) year 2020. The biogenic signals 

are attributed to different land cover types and the anthropogenic signals by source categories. 

Hyltemossa is located in southern Sweden in an area of managed coniferous forests. Footprints calculated for the 150 meter 

inlet height are analysed, with major cities such as Malmo and Copenhagen well-within the large general footprint region (see 340 

Fig. 2a). The anthropogenic signals are nevertheless small, and it is an appropriate station for large-scale monitoring of oceanic 

and biospheric fluxes. Seasonal differences in footprints are substantial with larger footprints in the winter, extending south-

west to an area characterized by more cropland and into densely populated regions such as the Oresund, Northern Germany, 

and the Netherlands. The size and extent of the average footprints for summer and winter can be further examined in Fig. 2a 

complemented by division of footprint sensitivity by land- cover in Fig. 2b. The summer footprint extends far east and west of 345 

the station, which explains the large share of sensitivity to ocean/sea. Cropland has the second largest share within both the 

summer and winter footprints. Coniferous forest is the third most sensed land cover with a higher relative share in the summer 

because of favourable conditions for conifers mainly in the northern latitudes. Without analysis of the footprints, even higher 

sensing of coniferous forests would be expected with abundance in the vicinity of the station and in Sweden as a whole (60%). 

 350 
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The summertime atmospheric CO2 signal at Hyltemossa strongly reflects the biospheric fluxes from the land- cover types 

under its footprint, but has the largest share of the signal associated with coniferous forest is almost as large as cropland despite 

significantly more cropland within the footprint (see Fig. 2b and Fig. 3). The coniferous forest flux signals mostly come from 

within Sweden’s border (4463% of GEEsignal) while cropland signals at Hyltemossa originate mainly from outside Sweden 

(35% of signal) including Poland, (13%), Denmark, (10%), and Germany. (9%). During the winter, biosphere respiration of 355 

CO2 is almost as large signal as the anthropogenic contribution, which is dominated by energy production, followed by 

residential. Interestingly, emission sources within Sweden only contribute about 1023% of the anthropogenic signal at the 

station, and the previously mentioned Oresund region slightly more. The remainder is transported from emission sources 

further away, emphasizing the importance of long-range transport. 

3.2 The view from the current ICOS network  360 

We will start our analysis of the view from the current ICOS network by quantifying what land cover types are sensed by ICOS 

(Sect. 3.2.1). The pan-European scale view of the network is complemented with the view within individual countries to 

account for the uneven representation within Europe. A view of the fluxes associated with the different land cover types follows 

which is also used to produce monitoring potential maps (Sect. 3.2.2). 

 365 
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(a)                             (b) 
 

Figure 4: (a) Summer (JJA) year 2020 average network footprint. (b) sensitivitySensitivity of network land cover (left bars) 

compared to country shares of land cover (right bars) in ICOS membershipmembers countries. The graph is sorted from highest to 370 
lowest sensitivity per km2 (values found in parentheses). 

3.2.1 Land- cover types sensed by ICOS 

The share of different land cover types within Europe is in general agreement with the shares of different land cover types 

sensed by the ICOS network, with mainthe exceptions forof an overrepresentation of coniferous forests and 

underrepresentation of grass & shrubland (see Fig. 4b, “Europe”). Results for the same type of analysis on the scale ofwithin 375 

the individual ICOS membershipmember countries generally show larger differences for countries only partially within the 

average network footprint (see Fig. 4a). Coniferous forest is predominately sensed within the ScandinavianNordic countries 

with network shares in Finland and Sweden matching their national shares, whereas Norway’s only ICOS station is in an area 

abundant with coniferous forests which skews the network’s sensing capacity. What is mainly missedmissing is grass & 

shrubland which cover more than 40%almost half of Norway’s areaNorway. Other countries with high shares of grass & 380 

shrubland including Croatia, Serbia, and Albania are barely covered by footprints inwithin the network view and contribute to 

the relative underrepresentation on European scale. Broadleaf forests are fairly well represented on European scale but are 

relatively overrepresented in many of the ICOS membershipmember countries including Italy, France, and Switzerland. 

Countries outside the network view with extensive areas of broadleaf forests, such as Slovakia and Slovenia, balance the local 

overrepresentation. in the European scale consideration. This stresses the need for network-assessment on multiple scales, and 385 

for formal quantification to be complemented by a visual inspection of the network. 
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3.2.2 Fluxes sensed by ICOS 
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                           (a)                          (b) 
 

Figure 5: (a) Share of flux (GEE) per land cover within Europe compared to the network GEE-view. for the current and extended 

ICOS network within Europe. (b) The over- (+) or under (-) representation of the current ICOS network (upper bars) compared to 

an “equal view” ofthe extended (lower bars) ICOS network within Europe (see Sect. 2.5). 395 

 

When the GEE-view of the network within Europe is considered, network relative underrepresentation of broadleaf forest 

fluxes, in addition to grass & shrubland fluxes on European scale, is revealed. (see Fig. 5a). The underrepresentation of 

broadleaf forest fluxes, (see Fig. 5b), despite a fair LC-view, (see Fig. 4b), means that broadleaf forests outside the focus of 

the network are relatively more active than those currently sensed. These active, relatively unmonitored forests are highlighted 400 

in aour monitoring potential map (Fig. 6a) andthat indicates countriesareas outside the reach of the current network as high in 

potential, especially southeasternin south-eastern Europe. Within the current ICOS membershipmember countries, Italy shows 

greathigh potential for broadleaf forest flux monitoring south of Monte Cimone (CMN) and, to lesser degrees, areas in southern 

France and eastern Czech Republic. Grass & shrubland is the most underrepresented flux (see Fig. 5b) and showshas the 

greatest potential for monitoring in Serbia and Croatia. (see Fig. 6b). Within the ICOS membershipmember countries, 405 

Scandinavia has the highest potential. (see Fig. 6b).  
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(a) (c) 

 

(b) (d) 
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(a) (c) 

 

Figure 6: European scale relative monitoring potential of (a) broadleaf forest fluxes (GEE) for the current and (b) extended ICOS 410 
networks and (c) grass & shrubland fluxes (GEE) for the current and (d) extended ICOS network. 
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(a) (c) 

 

(b) (d) 
 

Figure 7: Same as Fig. 6: Monitoring, but relative monitoring potential of (a) broadleaf forest fluxes (GEE) for Europe and within 

Germany (insert map) foras opposed to Europe. In the current and (b) extended ICOS networks (c) grass & shrubland fluxes (GEE) 

for Europe andEuropean context, Germany (insert map) for the current (d) extended ICOS networkis well-monitored and appears 415 
to have no relative monitoring potential (white). 

The overrepresentation of sensing of fluxes associated with the land cover type “urban,” (see Fig. 5b), despite the ICOS 

network targeting natural fluxes, is explained by the relatively high density of stations in western and central Europe; countries 
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with highest sensitivity per area unit (Switzerland, the Netherlands, and Germany; see Fig. 4b) are also counties with some of 

the highest population densities. The relatively high sensing per unit area in centralsensitivity of the network within these 420 

countries compared to the rest of Europe also means that these countries show little or no their fluxes are relatively well-

monitored and appear low in monitoring potential on European scale.when all of Europe is considered (see Eq. 1-Eq. 4). This 

should not be interpreted as if their monitoring is “complete”; it only means they are well-monitored relative to other areas in 

Europe. For expansion” and for expansions of national networks, the same approach can be employed on country scale to 

analyse flux representation and highlight relative monitoring potential it is advisable to consider the relative sensing within the 425 

individual countries which we will illustrate for Germany. 
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                                         (a)                                              (b) 
 430 

Figure 78: (a) Share of flux (GEE) per land cover type within Germany compared to the network GEE-view of Germany.  for the 

current and extended ICOS network (b) The over- or under- representation of the current ICOS network (upper bars) compared 

to an “equal view” ofthe extended (lower bars) network within Germany (see Sect. 2.5). 

Germany is the ICOS member country with the largest number of atmospheric stations (ten) and has the third highest sensing 

capacity per area unit in Europe. (see Fig. 4b). Although the stations are spread throughout the country, the network represents 435 

some land cover fluxes better than other; broadleaf forest fluxes are relatively underrepresented also within Germany, (Fig. 

8b), with high monitoring potential in the central part of the country extending south to Karlsruhe (KIT) and west to 

JulichJülich (JUE) (see Fig. 6a7a). However, broadleaf forests are only associated with 5.5% of the biogenic flux in Germany 

compared to 14% for mixed forests (see Fig. 4b) which is also underrepresented but to a lesser degree (see Table 3Fig. 8b). 

Areas of high monitoring potential of the two forest types show a great deal of overlap but with mixed forests additionally 440 

having high potential in the south-eastern part of the country (not shown). The use of monitoring potential maps is not limited 

to underrepresented fluxes as demonstrated for relatively well-monitored grass & shrubland within Germany (see Fig. 6b7c). 

This is important because a certain flux type might be targeted, and overrepresentation is in those cases desirable. 
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3.3 The view from the extended ICOS network 445 

 

 

                               (a)                      (b) 
 

Figure 89: (a) Summer (JJA) 2020 extended network footprint. overlaid on the current network footprint. The same level of color 

saturation of green and blue have the same meaning (b) Sensing of network to land cover (left bars) compared to country shares of 450 
land cover (right bars) in countries with stations added. 

 

The ICOS network is continuously expanding, and an additional 2019 stations are expected to join in the next few years. This 

will greatly extend the reach of the network, especially as the planned stations are mainly sensitive to areas outside the focus 

of the current network (see Fig. 8a9a). Overlap (see Sect. 2.4) with the sensing capacity of the current network is close to zero 455 

for Spanish and Irish stations with respect to their 50% summertime footprints, and well-below 10% for all other added stations 

with exceptions for German Schauinsland (SSL) and the Polish mountain-station Sněžka (SNZ). However, Schauinsland is 

added to a national network of ten other stations and the overlap is only 21%. This demonstrates the potential to fill network 

monitoring gaps also in relatively well-monitored countries. Whether the added stations make for a network with more equal 
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representation of different land cover, and land cover associated fluxes depends on the scale of the analysis. A; a fairer 460 

representation of land cover is evident at country level especially within countries previously without stations, whereas the 

representation on European scale showshows only small changes (see Fig. 8b9b). The differencedifferences in shares for 

Europe indicate that stations are added in areas of more cropland (particularly the added Hungarian station and Polish stations, 

see Table 1) and pastures (particularly Irish, UK and Greek stations, see Table 1) than in coniferous forests. However, stations 

have yet to be added to areas with high monitoring potential of grass & shrubland (see fig. 5bFig. 6c) which is evident also by 465 

its continued relative underrepresentation. (see Fig 8b).     

 

The flux-view similarly indicates a better representation within especially the previously unmonitored countries. On European 

scale, the extension will give a fairer network view if underrepresented fluxes are sensed more than the relative overrepresented 

fluxes. This is the case with mixed forest fluxes and to a lesser degree with grass & shrubland fluxes, whereas broadleaf forest 470 

fluxes are more underrepresented in the extended network. Figure 8 showsFigures 6a and 6b show how the extended network 

improves the monitoring of broadleaf forestsforest especially by the inclusion of the Hungarian station (HUN), but also that 

great monitoring potential in especially southeasternsouth-eastern Europe remains. The extension of the German network with 

Schauinsland (SSL) in the south-western corner of the country especiallymainly improves the representation of mixed and 

broadleaf forest fluxes. (see Fig. 7b). 475 

4 Discussion 

This study offers an overview of the ICOS network’s capacity to monitor the European carbon flux landscape by creating a 

lens with ICOS station footprints. from the summer of 2020. Although the network includes stations in 14 European countries 

with extensive footprints that transect borders, there are several countries (e.g., Greece, Serbia, and Slovakia) to which the 

current network is virtually blind. By contrasting the network view with an equal view of Europe and individual European 480 

countries, skewed representation of certain land cover types and land cover fluxes are exposed. Concentration of stations in 

central and northern Europe is favourable for monitoring especially cropland and coniferous forests, whereas the network is 

relatively blind to grass & shrubland fluxes. The footprint analysis is bridged with network design by providing a quantification 

through maps that highlight the greatest monitoring potential of individual flux types. On European scale, extensive areas in 

eastern and southeastern Europe are generally highlighted, whereas specific flux types still show great monitoring potential 485 

also within ICOS membership countries including broadleaf forests in southern Italy and grass & shrubland in Scandinavia.  

 

The inclusion of prospective stations, partly in new member countries, greatly extends the spatial coverage of the network. 

This is a network that can better inform on the European carbon flux landscape, although the improved capacity does not 

necessarily mean increased representation by our definition where sensing everything equally is the baseline. For instance, the 490 

extended network still lacks stations in southeastern Europe which means a higher underrepresentation than in the current 
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network. To plan for network expansion in relatively well-monitored countries, the scaleanalyses should target a specific 

country, or even a specific region within a large country within large countries. As exemplified with Germany, there are still 

monitoring gaps and unbalanced sensitivity across ecosystems even in member countries with many stations. 

 495 

Our results are subject to uncertainties associated with the models we use for footprint calculation (STILT) and the creation of 

biogenic flux maps (VPRM), as well as study-specific decisions. FLEXPART (Pisso et al., 2019) is a different footprint model 

that will be implemented at the Carbon Portal and will allow for comparisons and a choice for users of our tools that are 

published along with this study. A study-specific decision is to create network footprints with station footprints that have been 

limited to the cells with highest influence that add up to 50% of the total sensitivity. This follows the approachapproaches of 500 

Henne et al. (2010) and Oney et al. (2015) and is intended to focus our work towardson the strongestsignificant influence. In 

a sensitivity test, we also used the full station footprints (100%) and found our results robust for Europe, and for countries that 

have high shares of the network’s monitoring capacity. Another choice was to use three-hourly footprints for the summer (JJA) 

of the year 2020, with the assumption that they are generally applicablerepresentative across our different years, stations, and 

networks. However, anomalous meteorology flow or extreme weather causing especially high or low photosynthetic activity 505 

could violate that assumption. Our focus on annual, or seasonal integrals mitigates this impact of anomalous footprints, but we 

did not test robustness against the choice of year at this stage. For the years 2018-2021 we found a similar representation of 

the different land cover types as in summer 2020. Exceptions include less pronounced underrepresentation of broadleaf forest 

fluxes and larger overrepresentation of coniferous forest fluxes on European scale. For Germany, the results are even closer 

with the most notable difference in the underrepresentation of mixed forests. In the Carbon Portal online tool an analysis with 510 

more computationally efficient time-step aggregated footprints is offered and this approach was used for the other years (see 

Sect. 6). The differences to the approach used in this study are also discussed in more detail there. 

 

The inlet heightheights chosen for the footprint model is another aspect that impactsmight impact the final results. In case of 

multiple inlet heights at a station, the highest level was selected because the top-level measurements have the largest influence 515 

areas (footprints) and are generally chosen to provide measurements for regional and global inverse modelling systems. By 

choosing a lower 

inlet height one could potentially focus the view on specific land types. For stations with an air inlet close to the ground the 

sensitivity can be tenfold that of a mountain station. These large differences in sensitivities between stations are evident in the 

network maps; the southernmost station Lampedusa with an inlet height of 8 meters (see Table B1) has strong local influences 520 

represented by saturated colors close to the station (Fig. 4a; Fig. 9a). Signals at such low-inlet stations are generallypotentially 

larger and havewould in turn have greater influence on resulting monitoring potential maps. This is an important aspect to 

keep in mind when new station footprints are created and tested in networks. In our tools, users can make their own decisions 

with regardsin respect to sensitivity threshold, study-period, and inlet height of stations.  

 525 
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In contrast to formal quantitative network design (QND) techniques, our approach does not suggest station locations for an 

optimal network. However, normally the metric for considering potential station location in QND studies, such as the 

previously mentioned Nickless et al. (2020), is normally reduction ofin uncertainty of underlying carbon fluxes and tend to 

cluster around the station like footprints. In our approach, the footprints are not analysed in terms how uncertain the underlying 

fluxes are, but the derived monitoring potential maps will highlight areas where the highest under-monitored flux activity is. 530 

This normally coincides with where the prescribed uncertainties are highest in QND studies.. Furthermore, the simplicity of 

our approach makes it possible to present Carbon Portal users with tools to consider any network configuration within Europe. 

The tools will be open for future development, and it will be possible to introduce new and updated data layers to overlay with 

the footprints as they become available or are found to be relevant by the community. 

5 Conclusion  535 

We evaluated the ICOS network to gain insight of what land cover types and land cover associated fluxes it represents to reveal 

strengths, weaknesses, and potential gaps. The network is formed by the combined views of the individual ICOS atmospheric 

stations and has highesta high monitoring capacity in central and northern Europe where stations are relatively concentrated. 

The stations pick up signals throughout the heterogeneous European flux landscape and show a large variation of sensitivities, 

with generallya larger sensing capacity for biogenic fluxes than for anthropogenic emissions during the study period of summer 540 

year 2020. The summer is most interesting from a biosphere monitoring perspective and 2020 has also proven representative 

for longer time-periods in terms of our conclusions about the network. As a network, the land cover view relatively 

overrepresents coniferous forests and cropland as opposed to broadleaf forests and grass & shrubland onin the European 

scalecontext. Country-scale considerations reveal a more uneven representation in some countries, such as Norway where 

coniferous forests are mainly within the network view. The land- cover view is not necessarily the same as the GEE-view due 545 

to CO₂-fluxes being spatially and temporally heterogeneous within European land- cover types and further indicates that highly 

active broadleaf forest fluxes are missed. Monitoring potential maps indicate especially highRelative monitoring potential 

maps indicate a high potential for this flux, and similarly underrepresented grass & shrubland flux, in southeasternsouth-eastern 

Europe. The presented views of the carbon flux landscape from the ICOS network will change as new countries are joining 

the network, national networks are expandingchanging, and the underlying flux landscape is changing. With careful planning 550 

of new station locations, we can hopefully make the most of measurements in the ongoing task of improving our understanding 

of the carbon flux landscape.  

6 Code availability  

A folder with scripts and a notebooknotebooks to re-produce the analyses of the study also for other stations, countries, and 

networks has been published (Storm et al., 2022). There are dependencies with files on the ICOS Carbon Portal Jupyter Service 555 

(https://www.icos-cp.eu/data-services/tools/jupyter-notebook) and the notebooknotebooks can only be run there. Hypothetical 

https://www.icos-cp.eu/data-services/tools/jupyter-notebook
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or actual stations with existing footprints can be used directly, and footprints for additional locations can be produced using 

the Carbon Portal’s STILT on demand calculator (https://stilt.icos-cp.eu/worker/). 

7 Data availability  

Datasets used as input for the analyses are listed throughout the paper. Station footprints used to create network footprints are 560 

published with persistent identifiers and available for download at the Carbon Portal (https://data.icos-cp.eu/). The figures and 

tables in the result section have been created with the published scripts. 
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