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Abstract. We are building a 3D description of upper tropospheric (UT) cloud systems in order to study the relation between 

convection and cirrus anvils. For this purpose we used cloud data from the Atmospheric InfraRed Sounder and the Infrared 

Atmospheric Sounding Inferometer and atmospheric and surface properties from the meteorological reanalyses ERA-Interim 10 

and machine learning techniques. The different artificial neural network models were trained on collocated radar – lidar data 

from the A-Train in order to add cloud top height, cloud vertical extent, cloud layering, as well as a rain intensity classification 
to describe the UT cloud systems. The latter has an accuracy of about 65 to 70% and allows us to build objects of strong 

precipitation, used to identify convective organization. This rain intensity classification is more efficient to detect large latent 

heating than cold cloud temperature. In combination with a cloud system analysis we found that deeper convection leads to 15 

larger heavy rain areas and a larger detrainment, with a slightly smaller thick anvil emissivity. This kind of analysis can be 

used for a process-oriented evaluation of convective precipitation parameterizations in climate models. Furthermore we have 

shown the usefulness of our data to investigate tropical convective organization metrics. A comparison of different tropical 

convective organization indices and proxies to define convective areas has revealed that all indices show a similar annual cycle 

in convective organization, in phase with convective core height and anvil detrainment. The geographical patterns and 20 

magnitudes in radiative heating rate inter-annual changes with respect to one specific convective organization index (Iorg) for 

the period 2008 to 2018 are similar to the ones related to the El Niño Southern Oscillation. However, since the inter-annual 

anomalies of the convective organization indices are very small and noisy, it was impossible to find a coherent relationship 
with those of other tropical mean variables such as surface temperature, thin cirrus area or subsidence area.  

 25 

  



2 

 

1 Introduction 

Upper tropospheric (UT) clouds represent about 60% of the total cloud cover in the deep tropics (e. g. Stubenrauch et al., 2013, 

2017). These clouds, when created as anvil outflow from deep convection, often build large systems (e.g. Houze, 2004). The 

creation and maintenance of these mesoscale convective systems (MCSs) is strongly dependent on the moisture available in 30 

the lower troposphere and is influenced by wind shear (e. g. Laing and Fritsch, 2000; Chen et al., 2015; Schiro et al., 2020). 

Observational and CRM studies (e.g. Del Genio and Kovari, 2002, Posselt et al., 2012) have shown that tropical storm systems 

over warmer water are denser with more intense precipitation and cover wider areas than those over cooler water. Thin cirrus 

surround the highest anvils (Protopapadaki et al., 2017), which may be explained by UT humidification originating from deep 

convection (e.g. Su et al., 2006). Their structure and amount may respond to changing convection induced by climate warming. 35 

Organized convection, leading to MCSs and therefore associated to extreme precipitation, is a research subject of high interest, 

in particular in regard to climate warming, and many results have been published (e. g. Popp and Bony, 2020; Bony et al., 

2020, Pendergass, 2020; Blaeckberg and Singh, 2022). 

The goal of this article is to present a coherent long-term 3D dataset which describes tropical UT cloud systems and which can 

be used on one hand for a process-oriented evaluation of convective parameterizations in climate models and on the other hand 40 

for the study of convective organization.  

For the study of the relation between cirrus anvils and convection, we coupled horizontal and vertical structure of UT clouds, 

including precipitation and 3D radiative heating. As single datasets are incomplete, we used their synergy and machine learning 

(ML) to get a more complete 3D description as well as simultaneous information on precipitation. A cloud system approach 

makes it possible to link the anvil properties to convection. Furthermore, the horizontal structure of intense rain areas within 45 

these cloud systems can be used to derive tropical convective organization indices.  

The cross-track scanning Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Inferometers (IASI), 

aboard the polar orbiting Aqua and Metop satellites, provide cloud properties (CIRS, Clouds from IR Sounders, Stubenrauch 

et al., 2017) with a large instantaneous horizontal coverage. These have been used to reconstruct UT cloud systems 

(Protopapadaki et al., 2017). The good spectral resolution of IR sounders makes them sensitive to cirrus, down to a visible 50 

optical depth of 0.1, during daytime and night-time. The vertical cloud structure is derived by combined radar-lidar 

measurements of the CloudSat and CALIPSO missions (Stephens et al., 2018), but only along successive narrow nadir tracks 

separated by about 2500 km. In order to get a more complete instantaneous picture, required for process studies, Stubenrauch 

et al. (2021) have demonstrated that the radiative heating rate profiles derived along these nadir tracks (CloudSat FLXHR-

lidar, Henderson et al., 2013) can be horizontally extended by artificial neural network (ANN) regression models applied on 55 

cloud properties retrieved from AIRS and atmospheric and surface properties from meteorological re-analyses from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). The 15-year time series reveal a connection of the heating 

by MCSs in the upper and middle troposphere and the (low-level) cloud cooling in the lower atmosphere in the cool regions, 
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with a correlation coefficient equal to 0.72, supporting the hypothesis of an energetic connection between the convective 

regions and the subsidence regions.  60 

This article presents additional variables expanded to the horizontal coverage of AIRS and IASI by machine learning models, 

trained with collocated CloudSat-lidar retrievals: cloud top height, cloud vertical extent, cloud layering (above and below the 

clouds identified by CIRS), as well as a precipitation intensity classification (no, light or heavy).  

Apart from the conclusions and outlook given in Section 4, the article is divided into two main sections: Section 2 describes 

the data, methods and evaluation, and Section 3 highlights scientific results which show the applicability of these newly derived 65 

variables.  

Section 2 first describes the collocated data, the neural network development as well as an evaluation of the predictions on the 

collocated data. In addition, it presents the creation of the 3D dataset containing the additional variables (2.3) and the cloud 

system reconstruction (2.4). The last subsection (2.5) gives a short overview of existing convective organization indices and 

proxies for defining the convective objects. Section 3 first shows the coherence of these ML-derived properties, in particular 70 

the rain intensity classification, using the complete 3D dataset (section 3.1). Then, in combination with a cloud system analysis, 

section 3.2 presents the MCS properties with respect to their life cycle stage and their convective depth. The last subsection 

(3.3) explores tropical convective organization: we compare different proxies for convection and resulting indices of 

convective organization, by investigating annual cycle and inter-annual variability. The latter is small over the considered time 

period (2008 – 2018), but we find interesting geographical patterns in changes of radiative heating rate fields in relation to the 75 

tropical convective organization.  

2 Data, Methods and Evaluation 

Satellite observations have become a major tool to observe our planet. However, they do not provide instantaneous complete 

views, because passive remote sensing is not able to provide the vertical structure of clouds and active radar-lidar 

measurements are only available along very narrow nadir tracks. In order to build a complete 3D cloud dataset, we combine 80 

the complementary information from passive and active remote sensing, and we train artificial neural networks over these 

collocated data.  

2.1 Collocated AIRS – CloudSat-lidar – ERA-Interim data 

The satellite observations used for the training originate from the A-Train constellation (Stephens et al., 2018), with local 

overpass times around 1:30 AM and 1:30 PM. As input variables for the ANNs we use cloud properties retrieved from AIRS 85 

measurements by the CIRS (Clouds from IR Sounders) algorithm (Stubenrauch et al., 2017) and coincident atmospheric and 

surface properties from meteorological reanalyses ERA-Interim (Dee et al., 2011). CIRS cloud types are defined according to 

cloud pressure (pcld) and cloud emissivity (cld) from AIRS-CIRS as: highlevel clouds with pcld < 440 hPa, and further high 
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opaque with cld > 0.95, cirrus with 0.95 > cld > 0.5 and thin cirrus with 0.5 > cld > 0.05. Midlevel clouds (440 hPa < pcld < 

680 hPa) and lowlevel clouds (pcld > 680 hPa) are both separated into two categories: opaque with cld > 0.5 and partly cloudy 90 

with cld < 0.5. 

The target variables are products derived from combined radar – lidar measurements from the CloudSat and CALIPSO 

missions. Cloud top height (ztop), cloud vertical extent (DZ, difference between cloud top and cloud base) and number of 

vertical cloud layers are given by the CloudSat 2B - GEOPROF – lidar dataset (Mace et al., 2009), while the precipitation rate 

and its quality are given by the 2C – PRECIP-COLUMN dataset (Haynes et al., 2009). From these one can calculate the ‘cloud 95 

fuzziness’ as the difference between cloud top height and cloud height retrieved by CIRS (zcld): the larger the vertical path to 

attain opaqueness the larger is the cloud fuzziness. As zcld corresponds to the height at which the cloud reaches an optical depth 

of about 0.5 (Stubenrauch et al., 2017), we define a cloud fuzziness indicator as (ztop – zcld)/DZ.  We collocated these datasets 

over the period 2007 to 2010, as described in Stubenrauch et al. (2021), and used the latitude band 30N – 30S for the training 

and application. Input and target variables, as well as derived variables are presented in Table 1.  100 

Table 1: List of input and output variables regarding the prediction of cloud vertical structure and precipitation rate. 

Input 

Clouds 

CIRS cloud properties and uncertainties cld, pcld, Tcld, zcld, dcld, dpcld, dTcld, dzcld,min
2      

cloud spectral emissivity difference  (cld (12m) - (cld (9m)) 105 

Atmosphere 

AIRS TB at 0.5° x 0.5°   TB(11.85m), (TB), TB(7.18m) 
ERA-Interim atmospheric properties total precipitable water, ptropopause  

ERA-Interim relative humidity profile RH (determined from T and water vapour) within 10 layers  

Surface      110 
ERA-Interim surface properties  psurf, Tsurf, nb of atm. layers down to psurf 

IASI spectral surface emissivity  surf(9, 10, 12m)  (monthly mean climatology over land) 

day-night flag, land-ocean flag 

Target / Output 

Cloud top height    ztop 115 

Cloud vertical extent   DZ = ztop - zbase 
Classifications: 

Cloud layers below   0 or 1 

Cloud layers above   0 or 1 

Rain rate     0: no rain, 1: rain rate < 5 mm/hr, 2: rain rate > 5 mm/hr 120 

Certain rain    0: no, possible or likely rain,  1: certain rain 

Variables deduced from target variables 

Normalized cloud vertical extent  DZ/ ztop  

Cloud fuzziness    (ztop – zcld)/DZ 

 125 
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2.2 Artificial Neural Network predictions and evaluation 

2.2.1 Development of prediction models 

We developed artificial neural network (ANN) regression models for cloud top height (ztop) and cloud vertical extent (DZ), 

and classification models for cloud vertical layering and rain intensity (rain rate), separately for high-level clouds and for mid- 

/ low-level clouds. The training was executed separately over ocean and over land.  130 

The prediction of the rain rate is the most difficult, partly because its distribution is highly skewed with a very large peak at 0 

mm/hr. Therefore we only predict a ‘rain rate classification’, with three classes: 0: no rain, 1: small rain rate (> 0 mm/hr and 

< 5 mm/hr) 2: large rain rate (> 5 mm/hr). The CloudSat 2C-PRECIP-COLUMN data also provide a quality flag, varying 

between no, possible, likely and certain rain. We transformed this flag into a binary flag with 1 for certain rain and 0 else. Due 

to the skewness of the distributions, we introduced class weights for the training, to balance statistics, comparing (0.25, 0.25 135 

and 0.5) and (0.2, 0.3 and 0.5) for the rain rate classification, and (0.5, 0.5) and (0.4, 0.6) for the determination of certain rain. 

We also investigated a model development separately for three cloud scenes (i) high opaque, ii) cirrus / thin cirrus and iii) mid- 

/ lowlevel clouds) and for two cloud scenes (i) high clouds excluding thin cirrus and ii) mid- / lowlevel clouds). The samples 

for the development of these scene type dependent models vary from 4.8 million data points for mid- and low-level clouds 

over ocean to 94000 data points for opaque high-level clouds over land. 140 

For the regression models, the final ANNs consist of an input layer with the approximately 30 input variables (Table 1), one 

hidden layer with 64 neurons, one with 32 neurons, one with 16 neurons and one output layer. We used the rectified linear unit 

(ReLU) layer activation function. The activation function is Sigmoid for binary classification and Softmax for multi-

classification for the output layer. Furthermore, we use the Adaptive Moment Estimation (Adam) optimizer with a learning 

rate of 0.0001 and a batch size of 256. For the training, we use 80% of the dataset chosen at random. The remaining 20% are 145 

used for validation. The random data choice is stratified by day-night and by cloud type (section 2.1), in order to have similar 

statistics in these portions. 

As many input variable distributions are not Gaussian, and to avoid outliers, we determined for each variable acceptable 

minimum and maximum values, adapted to each scene for which the models were trained: ocean or land, high clouds or mid- 

/ low-level clouds. Then we normalized the input variables by subtracting the minimum value and then dividing by the 150 

difference between maximum and minimum. Before the application of the models, all input variables are first bounded between 

these minimum and maximum values. 

The model parameters are fitted by minimizing a loss function, corresponding to the average of the squared differences (square 

mean error, SME) for the regression, and corresponding to the cross entropy for the classification, between the predicted and 

the target value.  155 
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2.2.2 Evaluation using collocated data along the narrow nadir tracks 

The ANN models are evaluated using the mean absolute error (MAE) between the predicted and observed target values for the 

regression and the accuracy for the classification. In order to avoid overfitting, we stop the fitting when the minimum loss does 

not further improve during twenty iterations (epochs). The accuracy (ratio of correctly classified samples and overall number 160 

of samples) for unbalanced datasets provides an overoptimistic estimation of the classifier ability on the majority class, and 

therefore we present the Matthews correlation coefficient (MCC) in Table 3. MCC produces only a high score if the prediction 

obtains good results in all of the four confusion matrix categories (true positives, false negatives, true negatives, and false 

positives), proportionally to both the size of positive elements and the size of negative elements in the dataset. As MCC ranges 

from -1 to +1, with MCC = 0 meaning a random result, we use the normalized MCC, (MCC+1)/2, which better compares with 165 

accuracy, with 0.5 meaning a random result. 

Tables 2 and 3 present the uncertainties given by the MAE for the regression models and the normalized MCC for the 

classification models, separately for different cloud types, over ocean and over land. In the case of vertical extent DZ and the 

classifications of cloud layering and rain intensity, we compare results for two modeling strategies:  

1) Iterative approach, using predicted variables as additional input: We first develop a regression model for the prediction of 170 

ztop. Then the predicted ztop is used as an additional input variable for the prediction of DZ. Finally predicted ztop and DZ are 

used as additional input variables for the classifications of cloud layering, rain rate and certain rain. For ztop, DZ and cloud 

layering the models have been separately developed over high and mid- / lowlevel clouds, while for rain rate and certain rain 

the training datasets for high clouds have been further divided into Cb and Ci / thin Ci.  

2) Using only ML-independent variables as input: We determine each variable independently and don’t use predicted variables 175 

in the prediction of DZ, cloud layering, rain rate and certain rain. Instead, for the rain rate and certain rain classification we 

exclude thin cirrus and use slightly different class weights (see above) for balancing the training statistics. For the prediction 

of cloud layers below, we exclude low-level clouds.  

The MAEs and normalized MCCs are very similar for both strategies. The uncertainty of the cloud top height is about 1 km 

for high- and midlevel clouds (6% and 9%) and about 0.5 km for low-level clouds (20%). The quartiles indicated by the boxes 180 

in Figure S1 are about half of the MAEs. The uncertainty of DZ varies from 0.5 km (37%) for low-level clouds to 2.9 km 

(33%) for Cb. The quartiles of the relative differences between predicted and observed DZ are about 25 to 35%. Mean biases 

are small (a few meters). The normalized frequency distributions of observed and predicted ztop in Figure 1 agree quite well 

for each of the cloud types (Cb, Ci, thin Ci and mid-/ low-level clouds). It is interesting to note that the features of slightly 

higher clouds and more midlevel clouds over land than over ocean are also well obtained by the predictions. However, the z top 185 

distributions of the predicted values are slightly narrower than the ones of the observations. The normalized frequency 

distributions of observed and predicted DZ in Figure 1 agree also very well for Ci, thin cirrus and mid-/ low-level clouds, with 

decreasing DZ when cloud emissivity and cloud height decrease. However, the bimodality for Cb, with a large peak around 
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15 km corresponding to the convective towers and a smaller peak around 6 km, probably corresponding to thick anvils, could 

not be reproduced. By investigating further, Figure S2 shows that for those Cb for which a DZ < 10 km is predicted, there is 190 

no bias, but when a DZ > 10 km is predicted, corresponding to most of the convective towers, DZ is underestimated on average 

by about 1.5 km over ocean and by about 2 km over land. This systematic bias may be corrected by adding these values to the 

predicted DZ for those cases.  

The normalized MCCs for the classifications of certain rain, rain rate, and cloud layers additional to the one identified by CIRS 

are about 0.7. Merely the prediction of rain from thin cirrus is close to random. This is because thin cirrus do not precipitate, 195 

and detected rain can only be linked to the clouds underneath, for which the CIRS data do not have any information. Therefore 

we trained the second model only for Cb and Ci, assuming no rain for thin cirrus. With this assumption we miss about 2% of 

rainy areas beneath thin cirrus. 

 

Table 2 MAE and relative MAE for the prediction of ztop and DZ, over ocean and over land. For DZ, results are shown for predicted 200 
ztop included and not included as input parameter. Relative MAE refers to strategy 2. 

ocean Cb Ci thin Ci lowlevel midlevel  

ztop 0.8 km 

4.4 % 

1.1 km 

6.5 % 

0.90 km 

5.0 % 

0.5 km 

18.9 % 

0.8 km 

8.8 % 
 

DZ 2.9 / 2.9 km   

31 %  

2.4 / 2.5km 

38 % 

1.2 / 1.3 km 

32 % 

0.5 / 0.6 km 

36 % 

1.8 / 1.9 km 

82 % 
 

land Cb Ci thin Ci lowlevel midlevel  

ztop 0.9 km 

5.1 % 

1.3 km 

7.0 % 

1.0 km 

5.4 % 

0.6 km 

21.3 % 

0.9 km 

21.3 % 
 

DZ 3.2 / 3.2 km 

39 % 

2.6 / 2.8 km 

43 % 

1.4 / 1.5 km 

37 % 

0.7 / 0.8 km 

47 % 

2.0 / 2.1 km 

91 % 
 

 

Table 3 Normalized Matthews correlation coefficient for the prediction of rain rate (no, small, large), certain rain, cloud layer above 

and below, over ocean and over land. Two results are compared: the first include predicted ztop and DZ as input parameters, the 

second does not. Instead, we used the hypotheses of no rain from thin Ci and no clouds underneath low-level clouds.  205 

ocean Cb Ci thin Ci lowlevel midlevel 

rain rate  0.65 / 0.64 0.69 / 0.70 0.55 / - 0.62 / 0.62 0.68 / 0.67 

certain rain  0.68 / 0.68 0.67 / 0.68 0.52 / - 0.55/ 0.57 0.65 / 0.68 

cloud layer above 0.64 / 0.67 0.71 / 0.72 0.68 / 0.69 0.69 / 0.71 0.67 / 0.68 

cloud layer below 0.54 / 0.55 0.67 / 0.67 0.65 / 0.65 0.56 / - 0.69 / 0.67 
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land Cb Ci thin Ci lowlevel midlevel 

rain rate  0.63 / 0.63 0.65 / 0.70 0.52 / - 0.58 / 0.59 0.61 / 0.62 

certain rain  0.66 / 0.67 0.64 / 0.70 0.50 / - 0.57 / 0.51 0.64 / 0.60 

cloud layer above 0.66 / 0.71 0.74 / 0.74 0.66 / 0.70 0.70 / 0.72 0.67 / 0.70 

cloud layer below 0.53 / 0.52 0.65 / 0.65 0.64 / 0.64 0.50 / - 0.66 / 0.69 

 

 

2.3 Construction of the 3D dataset by applying the ML models 

The results in section 2.2.2 do not clearly show which of both models is performing better. For the prediction of DZ the 

inclusion of the predicted ztop may lead to slightly better results, as the quartiles are slightly smaller (Figure S1). For further 210 

investigation we have applied both sets of ANN models to the whole AIRS-CIRS - ERA-Interim dataset over the period 2004 

– 2018.  

For the construction of the convective organization indices (section 2.5), we have also applied these models on IASI-CIRS – 

ERA-Interim data, provided at local observation times of 9:30 AM and 9:30 PM. This is possible, because the models use 

input variables which are available in both datasets.  215 

While these new target variables have been obtained from machine learning per AIRS footprint (spatial resolution of 15 km), 

the final dataset has been gridded to 0.5° latitude x 0.5° longitude. The substructure of this dataset has been kept by averaging 

over the most frequent cloud scene type  (defined as highlevel clouds or mid- / lowlevel clouds), and by keeping the fraction 

of coverage by Cb, Ci, thin Ci, mid- / lowlevel clouds and clear sky per grid box. In order to give an information on the rain 

intensity, we constructed a ‘rain rate indicator’ at footprint resolution by combining both rain rate classification and rain quality 220 

binary classification with values of 0 (0 & 0), 1 (0 & 1), 1.5 (1 & 0), 2.5 (1 & 1), 5 (2 & 0) and 7.5 (2 & 1). This rain rate 

indicator has then been averaged over 0.5°. In addition, we estimated the fractions within 0.5° of no rain and of certain rain as 

well as of light rain rate and of strong rain rate. 

We illustrate the newly gained benefit by presenting in Figure 2 snapshots of the horizontal structure of some of these variables, 

at a specific day in January, once during a La Niña situation (2008) and once during an El Niño situation (2016), at two local 225 

times (1:30AM and 9:30PM). The gaps between orbits (corresponding to about 30% in the tropics) have been iteratively filled 

by the data closest in time. By using the data which are four hours apart, the data coverage has increased from 70% to 90%. 

Including also data which are 8 hours apart increases the coverage to 97%, and finally with those 12 hours apart leads to 

complete coverage. These instantaneous horizontal structures, which are not possible to obtain from CloudSat-lidar data alone 

(Figure 1 of Stubenrauch et al., 2021), are quite different between La Niña and El Niño: While during the La Niña situation a 230 

very large multi-cell convective system evolved over Indonesia, the convective systems are more evenly distributed over the 
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whole tropical band during the El Niño case. The latter can be explained by the shift of warmer SST towards the Central 

Pacific. The multi-cell convective cluster during the La Niña case shows bands of large DZ and rain rate, while during the El 

Niño case these are more scattered. The different horizontal structure in precipitating areas over the tropical band between La 

Niña and El Niño suggests to derive a metrics for convective organization from these data (see Section 2.5). Figure 2 also 235 

indicates clouds above and below the CIRS clouds. We observe clouds below the edges of the cirrus anvils and multiple layer 

clouds in the region of thin cirrus bands. The latter are continued as very thin clouds above low-level clouds. All in all, these 

horizontal structures obtained from machine learning seem to be coherent, also those obtained from IASI, which are very 

similar to those from AIRS.  

When investigating monthly mean anomalies in the time series, we have seen a small artificial peak for the rain rate indicator 240 

in March 2014 for the AIRS observations. This peak was larger for the first model than for the second model. Therefore we 

show in the following all results using the second model which does not include predicted variables as input for the rain rate 

classification. At the end of this disturbance, most probably evoked by cosmic particles during a solar flare event, the AIRS 

instrument shut down on 22 March, as its electronic circuit was affected. The instrument was operational again by end of 

March. No obvious failure is seen in the retrieved cloud variables, but many small areas with strong rain rate appear during 245 

this period.  

2.4 UT cloud system reconstruction 

The cloud system reconstruction (Protopapadaki et al., 2017) is based on two independent variables, pcld and cld, over grid 

cells of 0.5° latitude x 0.5° longitude.  This method is different with respect to other mesoscale cloud system analyses based 

on IR brightness temperature alone (e. g. Machado et al., 1998; Roca et al., 2014). After the filling of data gaps between 250 

adjacent orbits, UT cloud systems were built from adjacent elements, containing at least 90% UT clouds (pcld < 440 hPa) of 

similar cloud height (within 6 hPa x ln(pcld/hPa), which corresponds to 27 hPa for pcld = 100 hPa  and to 37 hPa for pcld = 400 

hPa). In a next step, the cloud emissivity was used to distinguish between convective cores (cld > 0.98), cirrus anvil (0.98 > 

cld > 0.5) and surrounding thin cirrus (0.5 > cld > 0.05). In order to reduce the noise in the determination of the number of 

convective cores, one searches for grid cells with cld > 0.98 within regions of cld > 0.93. The convective core fraction within 255 

a MCS is then the total number of these grid cells divided by the number of grid cells belonging to the whole system; and the 

number of convective cells corresponds to the number of regions with cld > 0.93 which include at least one grid cell with cld 

> 0.98. Each of these regions with at least one such grid cell counts as a convective core. With this definition, the mesoscale 

UT cloud system coverage is about 20% within the latitude band 30N - 30S. MCSs with at least one convective core cover 

15% of this latitude band, while the coverage of all UT clouds (pcld < 440 hPa) is about 35%. 260 

Figure 3 compares the normalized frequency distributions of the normalized vertical extent of the convective cores, cirrus 

anvils and surrounding thin cirrus within the MCSs for the 30% warmest (SST > 302 K) and coolest (SST < 300 K) tropical 
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ocean. As expected, this variable is close to 1 for a convective tower, with a peak of the distribution at 0.8 for convective cores, 

and decreases with the optical depth or emissivity of the anvil parts, with a peak of the distribution at 0.2 for the surrounding 

thin cirrus. While the distributions of convective cores and thin cirrus are well separated, the distribution of the cirrus anvils 265 

lies in between. The overlapping between cirrus anvils and convective cores is however larger over the cooler ocean regions. 

This indicates that the convective cores in these regions are probably less well defined by cld > 0.98 than the ones of the MCSs 

in the warmer regions, the latter being more convective (e. g. Figure 10 of Stubenrauch et al. 2021). Since we have now the 

normalized vertical cloud extent from the machine learning, we use it to improve the definition of convective cores, by adding 

the condition DZ/ztop > 0.6 (cloud filling more than 60% between the surface and cloud top). All grid cells which do not fulfil 270 

the condition DZ/ztop > 0.6 are then counted back as cirrus anvil. 

2.5 Indicators of tropical convective organization 

Convective aggregation, which refers to the clustering of convective cells, occurs at multiple spatial scales in the tropics. 

Organized convection, leading to MCSs and therefore associated to extreme precipitation, is a research subject of high interest, 

in particular in regard to climate warming. With the spatial resolution of our data we are mainly able to consider the 275 

organization of MSCs into large squall lines, hurricanes or super-clusters. This type of organization should be more influenced 

by the large-scale environment and circulation. 

There are two main factors that play a role in estimating the degree of organization: the variable used to define convection 

(section 2.5.1) and the metric used to compute the degree of organization (section 2.5.2). 

2.5.1 Definition of convective areas within UT clouds 280 

Studies have used cold IR brightness temperatures (e. g. Tobin et al., 2012; Bony et al., 2020) as well as precipitation rate (e. 

g. Popp and Bony, 2020; Blaeckberg and Singh, 2022) to define convective objects for the determination of convective 

organization metrics. 

In order to estimate the organization of convection, measures of convection without missing data are needed. Since both AIRS 

and IASI data still show gaps of missing data between the orbits, we have filled these gaps with the measurements that are 285 

nearest in time. First we excluded snapshots which have a data coverage in the latitudinal band 30N – 30S less than 68% for 

AIRS and less than 74% for IASI (as the swath is slightly larger for IASI). This ensures complete orbits. As described in 

section 2.3, gaps between orbits are then iteratively filled by using the observations closest in time. In general with four 

observations per day we get complete snapshots (coverage larger than 99.5%). 

In general, strong vertical updraft, strong precipitation and very cold and optically thick cloud tops indicate deep convective 290 

towers (e. g. Machado et al., 1998; Liu and Zipser, 2007; Yuan and Houze, 2010). Cold and optically thick cloud tops can be 

identified by a threshold in IR brightness temperature, TB, a measurement available by any radiometer aboard geostationary 

and polar orbiting satellites over a long time period. However, as this variable depends on both cloud height and emissivity 
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(Figure 2 of Protopapadaki et al., 2017), for TB > 230 K, very cold semi-transparent cirrus may be misidentified as lower 

opaque clouds, leading to uncertainties in the sizes of the convective areas.  295 

Figure 4 compares latent heating (LH) profiles derived from the precipitation radar measurements of the Tropical Rain 

Measurement Mission (TRMM) for the same percentile statistics, using cold TB, precipitation intensity (given by the ML-

deduced rain rate indicator) and horizontal extent of rain within each grid cell of 0.5° (given by the fraction of any precipitation 

deduced by ML). These LH profiles have been retrieved by the Spectral Latent Heating (SLH) algorithm (Shige et al., 2009) 

and are averaged over 0.5°. The time interval with the AIRS-CIRS data is within 20 minutes. The same percentile statistics 300 

allows to directly compare the efficiency of each variable to identify large latent heating, an indicator of deep convection. In 

all cases the LH increases with decreasing TB, increasing rain rate indicator and increasing horizontal rain coverage per grid 

cell, showing that both variables can be used as proxies for deep convection. Moreover, at fixed percentiles the ML-derived 

rain rate indicator as well as the grid cell rain coverage both lead to a larger LH than TB. This means that the ML derived rain 

rate classification, together with the CIRS identification of UT cloud, is a slightly better proxy for regions of large latent 305 

heating than TB.  

2.5.2 Convective organization indices 

It is not easy to define suitable organization metrics. The organization index Iorg (e. g. Tompkins and Semie, 2017) compares 

a cumulative distribution of nearest-neighbour distance (NNCDF) to the one expected by randomly distributed points in the 

domain. Iorg lies between 0 and 1, with 0.5 corresponding to randomly distributed objects. Iorg > 0.5 indicates an organized 310 

state. However, Weger et al. (1992), who initially developed this method to study the distribution of cumulus clouds, pointed 

out that the NNCDF is sensitive to the number of areas and to their size, in particular when the total area is larger than 5 to 

15% of the studied domain: In that case, possible merging of the objects leads to an artificial decrease of Iorg. When using Iorg, 

one has therefore to use a proxy for the definition of convective areas which corresponds to a total area that only covers a 

small fraction of the region to be studied. 315 

Therefore White et al. (2018) developed the convective organization potential (COP), by assuming that 2D objects that are 

larger and closer together are more likely to interact with each other in the horizontal plane. It uses the distance between the 

centers of the objects and radii of equal area circles. Jin et al. (2022) have further developed COP to the area-based convective 

organization potential (ABCOP) by using the area rather than the radius and by changing the distances between centers to 

distances between outer boundaries. Furthermore the interaction potentials are computed for only one pair per aggregate and 320 

summed up instead of averaged over all pairs. ABCOP is however very sensitive to the total area of the objects (section 3.3). 

The Radar Organization MEtric (ROME) developed by Retsch et al. (2020) considers the average size, proximity and size 

distribution of the convective objects in a domain and is similar to COP, but like ABCOP it employs the distance between the 

outer boundaries. ROME defines interactions between pairs by assigning a weight to each pair that decreases with the distance 

and increases essentially with the area of the larger object, adding a contribution of the smaller area, depending on the 325 
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separation distance. It is given in units of km2 and lies between the mean area of the objects and twice their mean area. Hence 

ROME is very sensitive to the mean areas of the objects (section 3.3). 

3 Results 

As application examples we highlight results from analyses using this long-term 3D dataset. We particularly concentrate our 

interest on the ML-derived rain rate indicator. Section 3.1 shows the coherence of this newly derived variable. The cloud 330 

system approach enables us to study the behaviour of the MCSs with respect to their life cycle stage and convective depth. 

This process-oriented analysis presented in section 3.2 can be used to evaluate parameterizations in climate models 

(Stubenrauch et al., 2019). In section 3.3, we show results concerning mesoscale convective organization. Mesoscale 

convective organization has been identified by larger and higher systems, which also live longer than unorganized systems (e. 

g. Rossow and Pearl, 2007; Takahashi et al., 2021), and they also lead to increases in tropical rainfall (e. g. Tan et al., 2015). 335 

We first compare convective organization indices derived from objects defined by strong rain and by cold cloud temperature 

and then investigate changes in geographical patterns of radiative heating with respect to one of these indices (Iorg).  

3.1 Coherence of ML-derived rain intensity classification 

First we test the coherence between the ML-derived rain rate classification and the collocated TRMM LH profiles already 

presented in section 2.5.1. Figure 5 compares the LH profiles averaged over all UT clouds and over all mid- and low-level 340 

clouds and separately over those with no rain, light rain and heavy rain according to the rain rate classification described in 

section 2.3. Indeed, when the rain rate classification indicates no rain, the latent heating from TRMM is very small. The latent 

heating is on average about ten (five) times larger for grid cells which include heavy precipitation than the tropical average for 

UT clouds (mid- and low-level clouds). While latent heating profiles have a peak between 400 and 500 hPa for heavily 

precipitating UT clouds, the peak lies around 850 hPa for strongly precipitating mid- and low-level clouds. This indicates that 345 

the ML-derived rain rate classification seems to be coherent for UT clouds as well as for lower clouds, though the noise for 

the latter may be larger. 

Figure 6 compares normalized frequency distributions of cld, ztop, cloud fuzziness and normalized vertical extent of non-

precipitating, lightly and heavily precipitating UT clouds. From these figures we clearly deduce that heavily precipitating UT 

clouds in the tropics have an emissivity close to 1, are in general higher, have a much less fuzzy cloud top and a much larger 350 

vertical extent than non- precipitating UT clouds. These results are coherent with expectations and again confirm the quality 

of the rain rate classification derived by our machine learning procedure.  

 

3.2 Process-oriented behaviour of mesoscale convective systems 

The cloud system concept described in section 2.4 permits to link the convective core and anvil properties: The fraction of the 355 

convective core area within a cloud system indicates the life cycle stage (e. g. Machado et al., 1998), with a large fraction 
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indicating the developing stage and a decreasing fraction during dissipation. Once the systems have reached maturity, the 

minimum temperature within a convective core is a proxy for the convective depth.  

According to Takahashi et al. (2021), using a convection-tracking analysis on data from Intergrated Multisatellite Retrievals 

for GPM (IMERG), the fraction of precipitating cores (adjacent grid cells with a rain rate > 5 mm/hr) within precipitation 360 

systems (adjacent grid cells with rain rate > 0.5 mm/hr) first increases and then decreases during the evolution of these systems. 

The maximum of the strong rain area relative to the whole precipitating area as well as the maximum and average intensity of 

the precipitation increase with the life time of the systems. This behaviour was also found by Roca et al. (2017). 

Our data do not provide the absolute system life time, but the convective core fraction within a system indicates the maturity 

stage in a normalized life cycle. Figure 7 presents the statistical evolution during the life cycle of a) the precipitating area 365 

relative to the whole MCS area and b) the strong rain area relative to the precipitating area, for single core MCSs. As the rain 

rate classification was obtained per CIRS footprint, a grid cell of 0.5° x 0.5° can be declared as precipitating by using different 

thresholds on the fraction of footprints with rain rate > 0 mm/hr. The same applies for grid cells including strong rain. Results 

using three different thresholds to define the precipitating and strongly precipitating areas are compared. For all thresholds, 

the precipitating area is very large in the beginning of the life cycle, when the anvil is just developing and then decreases, 370 

while the fraction of strong rain stays constant until the anvil reaches 40% of the system size and only then decreases. With 

our coarse spatial resolution we did not see the increase in strong rain after the developing stage, which has been observed by 

Fiolleau and Roca (2013) and Takahashi et al. (2021), using data with better time and space resolution. This means that we 

miss the very first development of the convective tower itself, as can also be seen in Figure 7c, which presents the evolution 

of the convective core size and the convective core top height. The latter varies much less than the convective core size, with 375 

an average of already 12.8 km for a convective core fraction close to 1. So due to the coarse spatial resolution and considering 

only high-level clouds, we start to identify the systems when they are already near to their maximum height, which is attained 

just before the decrease of the heavy rain portion. 

The core size increases rapidly and then stays stable until dissipation of the system. We identify MCS maturity by a core 

fraction between 0.2 and 0.4, because by then the core size has attained its maximum.  380 

Once the convective systems are mature, we can study their properties with respect to their convective depth: Figure 8 presents, 

as a function of the minimum temperature within the convective cores, a) the strong rain area relative to the precipitating area 

(again considering three thresholds), b) the volume of the thick anvil (cld > 0.5) relative to the volume of the convective core, 

which is a proxy for detrainment, and the emissivity of the thick anvil and c) the size of the surrounding thin cirrus relative to 

the total anvil size as well as the 50% warmest surface temperature underneath the MCSs. We deduce that deeper convection 385 

clearly leads to 1) larger areas of heavy rain within the precipitating areas, in agreement with earlier studies, 2) to a larger 

volume detrainment but with a slightly smaller emissivity and 3) to more surrounding thin cirrus. From Figure 8 we also 

conclude that deeper convection occurs in general in the warmer regions of the tropics, as expected. 
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3.3 Tropical convective organization 

In this section we demonstrate the usefulness of this new dataset by analyzing the convective organization in the tropics. We 390 

compare results using various metrics of convective organization and proxies to define convective objects, as described in 

section 2.5. A spatial resolution of 0.5° relates to an organization of MSCs at a scale which is more linked to the large-scale 

environment and circulation. We first consider the annual cycle of convective organization and then highlight an application 

on inter-annual variability. 

Figure 9 presents the annual cycle of a) Iorg, b) ROME, c) COP, d) total area and e) mean area of the convective objects and f) 395 

their number. We also investigate different variables to define these objects, in particular precipitation intensity (given by ML-

derived rain rate indicator) of UT clouds (pcld < 350 hPa) and cold cloud temperature (Tcld < 230 K) of opaque clouds (cld > 

0.95). The latter definition is similar to TB < 230 K, but without any contamination of colder thinner Ci. Since ROME is 

strongly related to the size of the convective objects, we have also computed the annual anomalies of the three indices by using 

only 2% of the largest precipitation intensities for constructing the convective objects. This corresponds to comparing the 400 

indices for a constant total area of convection. A similar approach was undertaken in a study by Blaeckberg and Singh (2022), 

using the precipitation intensity and ROME as proxies for convection and convective organization, respectively.  

All three indices reveal a clear annual cycle of convective organization, with a minimum in April and November and a 

maximum in July / August and in January / February, though with differences in magnitude and width of the oscillations due 

to the choice of proxy for convective area. While the amplitude of the annual cycle is the smallest for Iorg (0.04), the seasonal 405 

anomalies of COP are the less sensitive and those of ROME the most sensitive to the choice of proxy. The latter look very 

similar to those of the mean area of the convective objects (with a correlation coefficient larger than 0.9). Thus the seasonal 

anomalies of ROME primarily reflect the ones of the mean areas of the convective objects. We also observe in Figure 9e, that 

the minima and maxima in the annual cycle of the mean area of objects with intensive rain are shifted compared to those with 

cold opaque cloud. When using a fixed total area of intense precipitation, the magnitude of the seasonal anomalies is much 410 

smaller and the shift in behaviour compared to using the proxy of cold opaque clouds disappears.  

The annual cycle of the total area of convective objects can be reconstructed by the one of the mean area times the one of the 

number of the convective objects (Figures 9 d-f): The relative flatness of the seasonal cycle of the total area of cold cloud 

objects can be explained by a nearly opposite seasonal cycle in their mean size and number, whereas for intense precipitation 

their cycles are in phase which then leads to a pronounced cycle in their total area. 415 

The absolute values of the convective organization indices, presented in Figure S3 of the supplement, depend more strongly 

on the proxy used to define the convective objects: The absolute maximum of COP is the same for all proxies during boreal 

summer, while for other seasons COP, like Iorg, is larger when considering precipitation intensity. While ROME primarily 

reflects the mean area, ABCOP reflects the total area of the convective objects (both with a correlation coefficient larger than 

0.8). Whereas the mean area of the convective objects is clearly an indication of meso-scale convective organization, the total 420 
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area may not be directly linked to convective organization, only perhaps if one considers local regions. Iorg, only considering 

the distance between convective objects, seems to add another aspect. Iorg indicates a more organized convection when 

precipitation intensity is used instead of cold cloud temperature to identify the convective objects, though the total area of 

intense precipitation areas is smaller than the one of the cold cloud objects. The difference in the absolute peak values of the 

Iorg and COP anomalies between boreal summer and boreal winter may be explained by regional shifts in intense precipitation 425 

occurrence, as shown in Figure S4 and in agreement with earlier results (e. g. Berry and Reeder, 2014). 

Figure 10 presents the annual cycle of MCS properties discussed in the earlier sections: The core height of the MCSs, the anvil 

horizontal detrainment estimated by the ratio of anvil over convective core size and the vertical extent of the anvil (Figure S5) 

are in phase with the annual cycle of Iorg and COP. This shows that in seasons with larger tropical convective organization the 

MCSs have in general higher cloud tops and larger anvils. The fraction of single core MCSs and the ratio of thin cirrus over 430 

total anvil size are in opposite phase. The first confirms that convective organization corresponds to multi-core MCSs. The 

latter may be not directly expected as we have seen that this ratio increases with the height of the MCSs (convective depth). 

On second thought it may be explained by the fact that clustering of convective systems leaves less space for the thin cirrus 

between them. It is interesting to note that the annual cycle of the relative subsidence area (clear sky and low-level clouds) is 

also in phase with the one of Iorg and COP. This means that larger heating of the upper and middle tropospheric heating by 435 

more organized MCS leads to more cooling of the lower troposphere in the subsidence regions, which has recently been found 

by Stubenrauch et al. (2021). 

Changes in gradients of tropospheric radiative heating relate to changes in atmospheric circulation. We link inter-annual 

anomalies of the 3D radiative heating rate (HR) fields of Stubenrauch et al. (2021) to those of Iorg over the period from 2008 

to 2018. In order to remove the seasonal dependency, we computed the 121 12-month running mean anomalies for these 440 

variables. The geographical distribution of changes in radiative heating with respect to convective organization are presented 

in Figure 11, separately for the upper, mid and low troposphere and for the two proxies to define convective objects. These 

geographical maps have been obtained by linear regression per grid cell of the 121 pairs of heating rate and Iorg anomaly (see 

examples in Figure S6 in the supplement). 

The geographical patterns and magnitudes in HR change with respect to change in Iorg are similar for both proxies, but with 445 

slightly larger derivatives for strong precipitation areas. This may be expected as intense precipitation should be a more direct 

proxy for convection than cold cloud top. In general the derivatives are large because inter-annual changes in Iorg are very 

small, as shown in Figure 12. In the upper troposphere we observe increased heating North and South of the equator in the 

Central Pacific and a decrease over the Warm Pool, while in the mid and low troposphere there is an increase in heating around 

the equator over the whole Pacific and Indian ocean, and a decrease in heating over the Warm Pool and in the Atlantic. The 450 

HR pattern changes in the convective regions are induced by relative changes of thin cirrus, cirrus and high opaque clouds, 

which are similar but not identical to the ones related to the El Niño Southern Oscillation (ENSO) during this period (Figure 

S7), with increasing convection close to the equator and increasing cirrus and thin cirrus around the equator. Indeed, the 
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correlation between Iorg and the oceanic Niño index (ONI) is positive (with correlation coefficients of 0.7 and 0.3 for cold 

cloud temperature and precipitation intensity as proxy, respectively). In the stratocumulus regions off the Western coasts of 455 

the Americas and of Australia there seems to be less cooling in the low troposphere, probably due to a recent reduction in low-

level clouds, in particular in the NE Pacific, which was found in coincidence with a shift in the phase of the Pacific decadal 

Oscillation (Loeb et al., 2018, Loeb et al., 2020, Sun et al., 2022). The similarity between the maps obtained with the two 

selections validates once again the reliability of the rain rate indicator obtained with ML. The slightly stronger patterns lead to 

the conclusion that strong precipitation is a slightly better proxy to define convective areas than cold temperature.  460 

Whereas the geographical patterns of the derivatives of heating / cooling with respect to Iorg show a coherent picture, we did 

not find any correlation between the very small inter-annual anomalies of Iorg (shown in Figure 12) and the ones of the tropical 

means of different variables like surface temperature, thin cirrus area and subsidence area. The correlations depend on the 

proxies for the definition of the convective areas and in particular on the metrics for convective organization. Already the time 

series of the inter-annual anomalies of the different indices have a different behaviour as can be seen in Figure S8 in the 465 

supplement. We have also investigated tighter thresholds on the variables which define deep convection (like rain rate indicator 

> 2.5 or Tcld < 210 K), however we are left with only about 0.5% total area, which increases the noise level. In addition, we 

found that the results also change when we exclude objects with the size of only one grid cell (not shown), as already pointed 

out by Jin et al. (2022). Therefore we do not consider it meaningful to use the discussed convective organization indices for 

an estimation of tropical mean changes with respect to changes in convective organization. 470 

While we have seen that the convective organization indices vary much more seasonally than inter-annually, Figure 13 suggests 

that the difference of the density distributions of convective core height and strong rain area within the MCSs between April 

and July or between cool years (2008/11) and warm years (2015/16) is of the same order, with a shift towards higher core 

height and a longer tail in strong rain area. However, the size distributions of the MCSs are similar. The tail in the mean area 

of strong precipitation within the MCSs is clearly larger in the case of warmer years. This indicates that a shift in tropical 475 

surface temperature changes only a small part of the MCSs, with more extreme values. Such a behavior cannot be identified 

using a convective organization index computed over the whole tropics. 

4. Conclusions and Outlook 

We have presented a methodology to extend spatially and temporally information on the cloud vertical structure and 

precipitation derived from active lidar and radar measurements of CALIPSO and CloudSat missions. This new approach made 480 

use of CIRS data obtained from advanced IR sounder measurements of AIRS and IASI combined with ERA-Interim reanalyses 

and machine learning technologies using ANN. The resulting 3D dataset of UT cloud systems, covering 2008 to 2018, together 

with a similarly produced dataset of radiative heating rates (Stubenrauch et al., 2021), can be used to improve our 

understanding of the relationship between tropical convection and resulting anvils and how they are impacted by and feed 

back to climate change.  485 
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Though the uncertainties in the predicted variables and classifications are relative large (with an accuracy of about 65 to 70% 

for the rain intensity classification), this new dataset allows to study their horizontal structures on specific snapshots in time. 

For a complete instantaneous coverage, necessary to compute indices of tropical convective organization, the gaps between 

the orbits have been filled iteratively with the four observations per day of AIRS and IASI data, starting with those closest in 

time (already leading to 90% coverage). We have demonstrated that the newly developed precipitation intensity classification 490 

is slightly more efficient to detect large latent heating and therefore deep convection compared to the cold cloud temperature. 

The cloud system approach developed by Protopapadaki et al. (2017) has been slightly modified, and the normalized vertical 

extent obtained from the ML approach has been employed to slightly improve the identification of the convective cores, in 

particular in the cooler tropical regions. The cloud system concept allows a process-oriented evaluation of parameterizations 

in climate models. In agreement with earlier studies (e. g. Schumacher and Houze, 2003; Roca et al., 2014, Takahashi et al., 495 

2021), we found that deeper convection leads to larger areas of heavy rain. These results also confirm the quality of the ML-

derived precipitation rate classification. With increasing convective depth mature MCSs also show an increase in volume 

detrainment, while the anvil emissivity slightly decreases.  

Moreover we have shown the usefulness of our new dataset by investigating convective organization metrics. By comparing 

different organization indices (Iorg, COP, ABCOP and ROME) and proxies to define convective objects, we have shown that 500 

the indices indicate a similar annual cycle of convective organization. However, ABCOP and ROME are strongly correlated 

to the total and mean area of the objects, respectively. While the mean area of the objects is certainly an indication of 

convective organization, their total area at tropical scale seems to be less linked to organization. The index Iorg, which only 

considers the distance between convective objects, seems to add another information. The core height of the MCSs and their 

anvil detrainment are in phase with the annual cycle of Iorg and COP, as well as the relative subsidence area. This shows also 505 

a link between the MCSs and subsidence areas. It is interesting to note that the annual cycles of the total area of cold cloud 

objects and of intense precipitation objects are very different. This can be related to a nearly opposite cycle in their mean size 

and number for the first, and to a cycle in phase for the latter.  

Changes in gradients of tropospheric radiative heating relate to changes in atmospheric circulation. The geographical patterns 

and magnitudes in radiative heating rate changes with respect to Iorg are similar for both proxies, but slightly larger for strong 510 

precipitation areas. This may be expected as intense precipitation should be a more direct proxy for convection than cold cloud 

top. Furthermore the HR pattern changes are similar to the ones related to ENSO during this period.  

However, the time series of the inter-annual anomalies of convective organization strongly depend on the convective 

organization metrics, and correlations between these anomalies and those of tropical means of different atmospheric variables 

do not show consistent results. The tail of the distribution of strong rain areas seems to be more related to warmer tropics than 515 

the indices themselves. Therefore one has to be careful using only one of these organization indices and proxies to study 
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climate change. More detailed studies are necessary to show the behaviour of these indices with spatial resolution and domain 

size. 

This data base of UT cloud systems, their vertical structure and precipitation areas is being constructed within the framework 

of the GEWEX (Global Energy and Water Exchanges) Process Evaluation Study on Upper Tropospheric Clouds and 520 

Convection (GEWEX UTCC PROES) to advance our knowledge on the climate feedbacks of UT clouds. It will be made 

available within this year via https://gewex-utcc-proes.aeris-data.fr/. For the future it will also be interesting to use this dataset 

for the study of cold pools, using data of Garg et al. (2020). 

In order to continue this dataset beyond 2018, we are now preparing a new version of CIRS data, using ERA5 (Hersbach et 

al., 2020) instead of ERA-Interim ancillary data, and newly calibrated AIRS L1C radiances (Manning et al., 2019) as input. 525 
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Figure 1: Density distributions of Ztop (above) and DZ (below), separately for Cb, Ci, thin Ci and mid- / lowlevel clouds (identified 

by CIRS), separately over ocean and land. The prediction models have been applied to 20% of the collocated data and are compared 
with the results derived from CloudSat-lidar 2B GEOPROF data (obs).  
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3 January 2008 (La Niña) 1:30AM / 9:30PM   18 January 2016 (El Niño) 1:30AM / 9:30PM 680 

 

Figure 2: Horizontal structure for one specific day during a La Niña (left) and El Niño situation (right) at 1:30AM and 

at 9:30PM LT of a) CIRS scene type b) cloud top height, c) cloud vertical extent, d) rain rate indicator and e) cloud 

layers in addition to the identified UT clouds by CIRS. 
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Figure 3: Density distributions of normalized vertical extent (DZ/Ztop) of MCS convective cores, Ci anvils and surrounding thin Ci, 
separately over the 30% warmest regions (left) and over the 30% coolest regions (right) over ocean. Statistics is for 2008-2018. 
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Figure 4: Comparison of latent heating rate profiles from TRMM (Shige et al., 2009) averaged over the same percentile statistics, 

using the coldest brightness temperature (Tb), the largest rain rate indicator (right) and the largest spatial extension of rain within 

a grid cell of 0.5° (left). Since the grid cell precipitation coverage saturates at 1, one can only go down to the 10% largest cover. 
Statistics of collocated TRMM - AIRS data in the period 2008-2013. 
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Figure 5: Latent heating profiles derived from TRMM averaged over UT clouds (left) and over mid- and low-level clouds (right) 

identified by AIRS. In addition are shown means over non-precipitating, lightly precipitating and heavily precipitating clouds. These 

precipitation conditions are given by the rain rate indicator classification derived from ML models applied to AIRS-ERA Interim 700 
and trained with CloudSat. Statistics of collocated TRMM-AIRS in the period 2008-2013.   
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Figure 6: Density distributions of a) cloud emissivity, b) cloud top height, c) cloud fuzziness, and d) normalized cloud vertical extent, 
for non-precipitating, lightly precipitating and heavily precipitating UT clouds.  Statistics is for 2008-2015 at 1:30AM. 
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Figure 7: MCS properties as function of their life cycle stage, given by fraction of convective core area within the system (1 

corresponds to developing phase, with no anvil and 0.1 to dissipating stage). Only cloud systems with a single convective core are 

considered: a) ratio of precipitating area over MCS size, b) ratio of strong rain area over precipitating area and c) size and top 710 
height of the convective cores. For a) and b) different thresholds on the rain fraction per grid cell are compared. The condition on 

strong rain also includes the condition that at least 50% of the grid cells are covered by any rain.  Statistics combines observations 

at 1:30AM and 1:30PM, for 2008-2018. 
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Figure 8: Mature MCS system properties as function of their convective depth, given by decreasing minimum temperature within 

the convective cores: a) ratio of strong rain area over precipitating area, b) volume detrainment and thick anvil emissivity and c) 

50% warmest surface temperature underneath the MCSs and ratio of thin cirrus over total anvil area. For a) different thresholds 720 
on the fraction of strong rain per grid cell are compared and at least 50% of the grid cells are covered by any rain.  Statistics 

combines observations at 1:30AM and 1:30PM, for 2008-2018. 
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 Figure 9: Annual cycle of a) Iorg, b) ROME, c) COP, d) total area of convective objects, e) mean convective area and f) number of 

convective areas. These areas are built from grid cells covered by at least 90% UT clouds, with rain rate indicator > 2 (dark blue), 

Tcld < 230 K and cld > 0.95 (red), or using the 2% largest rain rate indicator values (cyan). The latter leads to a constant total area 

of convection. Monthly statistics of UT clouds averaged over four observation times from 2008 to 2018. 
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Figure 10: right: Annual cycle of a) MCS core top height (blue), horizontal detrainment (green) and fraction of subsidence area 

(given by clear sky and lowlevel clouds) over the tropics (red) and b) ratio of thin cirrus over total anvil size (blue) and fraction of 735 
single core MCSs (green). Monthly statistics averaged over four observation times from 2008 to 2018.   
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Figure 11: Change in radiative heating rates with respect to deseasonalized Iorg computed from convective areas defined by grid cells 

with rain indicator > 2 (left) and by grid cells with Tcld < 230 K and cld > 0.95 (right).  The troposphere is divided into three layers: 

upper troposphere (100-200 hPa), mid troposphere (200-600 hPa), and low troposphere (600-900 hPa). Monthly statistics from 2008 740 
to 2018.  
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Figure 12: Time series of deseasonalized monthly anomalies of Iorg, using different proxies to define the convective areas. The 

deseasonalization was done by computing 12-month running means. The monthly anomalies are shown in light grey. 
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Figure 13: Density distributions of MCS system properties, comparing April and July (top) and cooler and warmer years (bottom): 

height of convective cores (left), size of areas with strong precipitation (middle) and system size (right). Statistics combines 

observations at 1:30AM and 1:30PM, for 2008-2018, for MCSs with core fraction > 0.1. 
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