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Abstract. We are building a 3D description of upper tropospheric (UT) cloud systems in order to study the relation between 

convection and cirrus anvils. For this purpose we used cloud data from the Atmospheric InfraRed Sounder and the Infrared 

Atmospheric Sounding Inferometer and atmospheric and surface properties from the meteorological reanalyses ERA-Interim 10 

and machine learning techniques. The different artificial neural network models were trained on collocated radar – lidar data 

from the A-Train in order to add cloud top height, cloud vertical extent, cloud layering, as well as a rain intensity classification 
(no, light or heavy) to  other variables describeing the UT cloud systems. The rain intensity classificationlatter has an accuracy 

of about 65 to 70% and allows us to build objects of strong precipitation, used to identify convective organization. This rain 

intensity classification is more efficient to detect large latent heating compared tothan cold cloud temperature. In combination 15 

with a The cloud system concept analysis allows a process-oriented evaluation of parameterizations in climate models. In 

agreement with earlier studies, we found that the rain intensity is maximum after the first development of anvils and that deeper 

convection leads to larger heavy rain areas and a larger detrainment, with a slightly smaller thick anvil emissivity. This kind 

of analysis can be used for a process-oriented evaluation of convective precipitation parameterizations in climate models. 

Finally Furthermore we have shown the usefulness of our data to investigate tropical convective organization metrics. A 20 

comparison of different tropical convective organization indices and proxies to define convective areas has revealed that all 

indices show a similar annual cycle in convective organization, in phase with the one of convective core height and, anvil 

vertical extent, and horizontal detrainment of the mesoscale convective systems and in opposite phase with the one of the ratio 
of thin cirrus over total anvil size. Differences can be understood by seasonal cycles of size and number of areas in phase for 

intense precipitation and opposite phase for cold clouds as proxies. The geographical patterns and magnitudes in radiative 25 

heating rate inter-annual changes with respect to one specific convective organization index (Iorg) for the period 2008 to 2018 

are similar for both proxies, but slightly larger for rain intensity, and they are similar to the ones related to the El Niño Southern 

Oscillation. However, since the inter-annual anomalies of the convective organization indices are very small and noisy, it was 

impossible to find a coherent relationship with those of other tropical mean variables such as surface temperature, thin cirrus 

area or subsidence area. the time series of the inter-annual anomalies of convective organization depend on the convective 30 

organization index. 
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1 Introduction 

Upper tropospheric (UT) clouds represent about 60% of the total cloud cover in the deep tropics (e. g. Stubenrauch et al., 2013, 35 

2017). These clouds, when created as anvil outflow from deep convection, often build large systems (e.g. Houze, 2004). The 

creation and maintenance of these mesoscale convective systems (MCSs) is strongly dependent on the moisture available in 

the lower troposphere and is influenced by wind shear (e. g. Laing and Fritsch, 2000; Chen et al., 2015; Schiro et al., 2020). 

Observational and CRM studies (e.g. Del Genio and Kovari, 2002, Posselt et al., 2012) have shown that tropical storm systems 

over warmer water are denser with more intense precipitation and cover wider areas than those over cooler water. Thin cirrus 40 

surround the highest anvils (Protopapadaki et al., 2017), which may be explained by UT humidification originating from deep 

convection (e.g. Su et al., 2006). Their structure and amount may respond to changing convection induced by climate warming. 

Organized convection, leading to MCSs and therefore associated to extreme precipitation, is a research subject of high interest, 

in particular in regard to climate warming, and many results have been published (e. g. Popp and Bony, 2020; Bony et al., 

2020, Pendergasst et al., 2020; Blaeckberg and Singh, 2022). 45 

The goal of this article is to present a coherent long-term 3D dataset which describes tropical UT cloud systems and which can 

be used on one hand for a process-oriented evaluation of convective parameterizations in climate models and on the other hand 

for the study of convective organization.  

To For the study of the relation between cirrus anvils and convection, we coupled horizontal and vertical structure of UT 

clouds, including precipitation and 3D radiative heating. As single datasets are incomplete, we used their synergy and machine 50 

learning (ML) to get a more complete 3D description as well as simultaneous information on precipitation. A cloud system 

approach makes it possible to link the anvil properties to convection. Furthermore, the horizontal structure of intense rain areas 

within these cloud systems can be used to derive tropical convective organization indices.  

The cross-track scanning Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Inferometers (IASI), 

aboard the polar orbiting Aqua and Metop satellites, provide cloud properties (CIRS, Clouds from IR Sounders, Stubenrauch 55 

et al., 2017) with a large instantaneous horizontal coverage. These have been used to reconstruct UT cloud systems 

(Protopapadaki et al., 2017). The good spectral resolution of IR sounders makes them sensitive to cirrus, down to a visible 

optical depth of 0.1, during daytime and nighttimenight-time. The vertical cloud structure is derived by combined radar-lidar 

measurements of the CloudSat and CALIPSO missions (Stephens et al., 2018), but only along successive narrow nadir tracks 

separated by about 2500 km. In order to get a more complete instantaneous picture, required for process studies, Stubenrauch 60 

et al. (2021) have demonstrated that the radiative heating rate profiles derived along these nadir tracks (CloudSat FLXHR-

lidar, Henderson et al., 2013) can be horizontally extended by artificial neural network (ANN) regression models applied on 

cloud properties retrieved from AIRS and atmospheric and surface properties from meteorological re-analyses from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). The 15-year time series revealed a connection of the 

heating by mesoscale convective systems (MCSs) in the upper and middle troposphere and the (low-level) cloud cooling in 65 
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the lower atmosphere in the cool regions, with a correlation coefficient equal to 0.72, consolidating supporting the hypothesis 

of an energetic connection between the convective regions and the subsidence regions.  

In thisThis article we presents additional variables expanded to the horizontal coverage of AIRS and IASI by machine learning 

models, trained with collocated CloudSat-lidar retrievals: cloud top height, cloud vertical extent, cloud layering (above and 

below the clouds identified by CIRS), as well as a precipitation intensity classification (no, light or heavy).  70 

Apart from the conclusions and outlook given in Section 4, the article is divided into two main sections: Section 2 describes 

the data, methods and evaluation, and Section 3 highlights scientific results which show the applicability of these newly derived 

variables.  

Section 2 includes a descriptionfirst  describes of the collocated data, the neural network development as well as an evaluation 

of the predictions on the collocated data. and In addition, it presents the creation of the 3D dataset containing the construction 75 

of the tropical horizontal fields of these additional variables (2.3). Furthermore we present in this sectionand the cloud system 

reconstruction (2.4). and The last subsection (2.5) gives a short overview of existing metrics on convective organization indices 

derived from areas with heavy precipitationand proxies for defining the convective objects. Section 3 highlights results which 

show the applicability of these newly derived variables: comparisonfirst shows the coherence of these ML-derived properties, 

in particular the rain intensity classification, using the complete 3D dataset (section 3.1). Then, in combination with a cloud 80 

system analysis, section 3.2 presents  of properties of precipitating and non-precipitating UT clouds, statistical analysis of the 

behaviour of MCS properties during with respect to their life cycle stage and in respect to their convective depth. Finally 

weThe last subsection (3.3) explores the annual cycle of tropical convective organization: we compare different proxies for 

convection and resulting indices of convective organization, by investigating annual cycle and inter-annual variability. The 

latter is small over the considered time period (2008 – 2018), but we find interesting geographical patterns in changes of the 85 

radiative heating rate fields in relation to the tropical convective organization with respect to inter-annual changes in tropical 

convective organization. Conclusions and an outlook are given in Section 4. 

2 Data, Methods and Evaluation 

Satellite observations have become a major tool to observe our planet. However, they do not provide instantaneous complete 

views, because passive remote sensing is not able to provide the vertical structure of clouds and active radar-lidar 90 

measurements are only available along very narrow nadir tracks. In order to build a complete 3D cloud dataset, we combine 

the complementary information from passive and active remote sensing, and we train artificial neural networks over these 

collocated data. By training neural networks we combine the complementary information from passive and active remote 

sensing and build a more complete 3D structure of clouds.  
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2.1 Collocated AIRS – CloudSat-lidar – ERA-Interim data 95 

The satellite observations used for the training originate from the A-Train constellation (Stephens et al., 2018), with local 

overpass times around 1:30 AM and 1:30 PM. As input variables for the ANNs we use cloud properties retrieved from AIRS 

measurements by the CIRS (Clouds from IR Sounders) algorithm (Stubenrauch et al., 2017) and coincident atmospheric and 

surface properties from meteorological reanalyses ERA-Interim (Dee et al., 2011). CIRS cloud types are defined according to 

cloud pressure (pcld) and cloud emissivity (cld) from AIRS-CIRS as: highlevel clouds with pcld < 440 hPa, and further high 100 

opaque with cld > 0.95, cirrus with 0.95 > cld > 0.5 and thin cirrus with 0.5 > cld > 0.05. Midlevel clouds (440 hPa < pcld < 

680 hPa) and lowlevel clouds (pcld > 680 hPa) are both separated into two categories: opaque with cld > 0.5 and partly cloudy 

with cld < 0.5. 

The target variables are products derived from combined radar – lidar measurements from the CloudSat and CALIPSO 

missions. Cloud top height (ztop), cloud vertical extent (DZ, difference between cloud top and cloud base) and number of 105 

vertical cloud layers are given by the CloudSat 2B - GEOPROF – lidar dataset (Mace et al., 2009), while the precipitation rate 

and its quality are given by the 2C – PRECIP-COLUMN dataset (Haynes et al., 2009). From these one can calculate the ‘cloud 

fuzziness’ as the difference between cloud top height and cloud height retrieved by CIRS (zcld): the larger the vertical path to 

attain opaqueness the larger is the cloud fuzziness. As zcld corresponds to the height at which the cloud reaches an optical depth 

of about 0.5 (Stubenrauch et al., 2017), we define a cloud fuzziness indicator as (ztop – zcld)/DZ.  We collocated these datasets 110 

over the period 2007 to 2010, as described in Stubenrauch et al. (2021), and used the latitude band 30N – 30S for the training 

and application. Input and target variables, as well as derived variables are presented in Table 1.  

Table 1: List of input and output variables for regarding the prediction of cloud vertical structure and precipitation rate. 

Input 

Clouds 115 

CIRS cloud properties and uncertainties cld, pcld, Tcld, zcld, dcld, dpcld, dTcld, dzcld,min
2      

cloud spectral emissivity difference  (cld (12m) - (cld (9m)) 

Atmosphere 

AIRS TB at 0.5° x 0.5°   TB(11.85m), (TB), TB(7.18m) 
ERA-Interim atmospheric properties total precipitable water, ptropopause  120 

ERA-Interim relative humidity profile RH (determined from T and water vapour) within 10 layers  

Surface      

ERA-Interim surface properties  psurf, Tsurf, nb of atm. layers down to psurf 

IASI spectral surface emissivity  surf(9, 10, 12m)  (monthly mean climatology over land) 

day-night flag, land-ocean flag 125 

Target / Output 

Cloud top height    ztop 
Cloud vertical extent   DZ = ztop - zbase 

Classifications: 

Cloud layers below   0 or 1 130 

Cloud layers above   0 or 1 
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Rain rate     0: no rain, 1: rain rate < 5 mm/hr, 2: rain rate > 5 mm/hr 

Certain rain    0: no, possible or likely rain,  1: certain rain 

Variables deduced from target variables 

Normalized cloud vertical extent  DZ/ ztop  135 

Cloud fuzziness    (ztop – zcld)/DZCloud types are defined according to cloud pressure (pcld) and 

cloud emissivity (cld) from AIRS-CIRS as: highlevel clouds with pcld < 440 hPa, and further high opaque with cld > 0.95, 

cirrus with 0.95 > cld > 0.5 and thin cirrus with 0.5 > cld > 0.05. Midlevel clouds (440 hPa < pcld < 680 hPa) and lowlevel 

clouds (pcld > 680 hPa) are both separated into two categories: opaque with cld > 0.5 and partly cloudy with cld < 0.5. 

 140 

2.2 Artificial Neural Network predictions and evaluation 

2.2.1 Development of prediction models 

 

We developed artificial neural network (ANN) regression models for cloud top height (ztop) and cloud vertical extent (DZ), 

and classification models for cloud vertical layering and rain intensity (rain rate), separately for high-level clouds and for mid- 145 

/ low-level clouds. The training was executed separately, over ocean and over land.  

The prediction of the rain rate is the most difficult, partly because its distribution is highly skewed with a very large peak at 0 

mm/hr. Therefore we only predict a ‘rain rate classification’, with three classes: 0: no rain, 1: small rain rate (> 0 mm/hr and 

< 5 mm/hr) 2: large rain rate (> 5 mm/hr). The CloudSat 2C-PRECIP-COLUMN data also provide a quality flag, varying 

between no, possible, likely and certain rain. We transformed this flag into a binary flag with 1 for certain rain and 0 else. Due 150 

to the skewedness of the distributions, we introduced class weights for the training, to balance statistics, comparing (0.25, 0.25 

and 0.5) and (0.2, 0.3 and 0.5) for the rain rate classification, and (0.5, 0.5) and (0.4, 0.6) for the determination of certain rain. 

We also tested investigated a model development separately for three cloud scenes (i) high opaque, ii) cirrus / thin cirrus and 

iii) mid- / lowlevel clouds) and for two cloud scenes (i) high clouds excluding thin cirrus and ii) mid- / lowlevel clouds), over 

ocean and over land. The samples for the development of these scene type dependent models vary from 4.8 million data points 155 

for mid- and low-level clouds over ocean to 94000 data points for opaque high-level clouds over land. 

For the regression models, the final ANNs consist of an input layer with the approximately 30 input variables (Table 1), one 

hidden layer with 64 neurons, one with 32 neurons, one with 16 neurons and one output layer. We used the rectified linear unit 

(ReLU) layer activation function. For the classification models, we use anotherThe activation function for the output layer is 

(Sigmoid for binary classification classification and Softmax for multi-classification) for the output layer. Furthermore, we 160 

use the Adaptive Moment Estimation (Adam) optimizer with a learning rate of 0.0001 and a batch size of 256. For the training, 

we use randomly chosen 80% of the dataset chosen at random. The remaining 20% are used for validation. The random data 

choice is stratified by day-night and by cloud type (section 2.1), in order to have similar statistics in these portions. 

As many input variable distributions are not Gaussian, and to avoid outliers, we determined for each variable acceptable 

minimum and maximum values, adapted to each scene for which the models were trained: ocean or land, high clouds or mid- 165 
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/ low-level clouds. Then we normalized the input variables by subtracting the minimum value and then dividing by the 

difference between maximum and minimum. Before the application of the models, all input variables are first bounded between 

these minimum and maximum values. 

The model parameters are fitted by minimizing a loss function, corresponding to the average of the squared differences (square 

mean error, SME) for the regression, and corresponding to the cross entropy for the classification, between the predicted and 170 

the target value.  

 

 

2.2.2 Evaluation using collocated data along the narrow nadir tracks 

For the evaluation we use as metricsThe ANN models are evaluated using the mean absolute error (MAE) between the 175 

predicted and observed target values for the regression and the accuracy for the classification. In order to avoid overfitting, we 

stop the fitting when the minimum loss does not further improve during twenty iterations (epochs). The accuracy (ratio of 

correctly classified samples and overall number of samples) for unbalanced datasets provides an overoptimistic estimation of 

the classifier ability on the majority class, and therefore we present the Matthews correlation coefficient (MCC) in Table 3. 

MCC produces only a high score if the prediction obtains good results in all of the four confusion matrix categories (true 180 

positives, false negatives, true negatives, and false positives), proportionally to both, the size of positive elements and the size 

of negative elements in the dataset. As MCC ranges from -1 to +1, with MCC = 0 meaning a random result, we use the 

normalized MCC, (MCC+1)/2, which better compares with accuracy, with 0.5 meaning a random result. 

Tables 2 and 3 present the uncertainties given by the MAE for the regression models and the normalized MCC for the 

classification models, separately for different cloud types, over ocean and over land. In the case of vertical extent DZ and the 185 

classifications of cloud layering and rain intensity, we compare results for two modeling strategies:  

1) Iterative approach, using predicted variables as additional input: We first develop a regression model for the prediction of 

ztop. Then the predicted ztop is used as an additional input variable for the prediction of DZ. Finally predicted ztop and DZ are 

used as additional input variables for the classifications of cloud layering, rain rate and certain rain. For ztop, DZ and cloud 

layering the models have been separately developed over high and mid- / lowlevel clouds, while for rain rate and certain rain 190 

the training datasets for high clouds have been further divided into Cb and Ci / thin Ci.  

2) Using only ML-independent variables as input: We determine each variable independently and don’t use predicted variables 

in the prediction of DZ, cloud layering, rain rate and certain rain. Instead, for the rain rate and certain rain classification we 

exclude thin cirrus and use slightly different class weights (see above) for balancing the training statistics. For the prediction 

of cloud layers below, we exclude low-level clouds.  195 
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The MAEs and normalized MCCs are very similar for both strategies. The uncertainty of the cloud top height is about 1 km 

for high- and midlevel clouds (6% and 9%) and about 0.5 km for low-level clouds (20%). The quartiles indicated by the boxes 

in Figure S1 are about half of the MAEs. The uncertainty of DZ varies from 0.5 km (37%) for low-level clouds to 2.9 km 

(33%) for Cb. The quartiles of the relative differences between predicted and observed DZ are about 25 to 35%. Mean biases 

are small (a few meters). The normalized frequency distributions of observed and predicted ztop in Figure 1 agree quite well 200 

for each of the cloud types (Cb, Ci, thin Ci and mid-/ low-level clouds). It is interesting to note that the features of slightly 

higher clouds and more midlevel clouds over land than over ocean are also well obtained by the predictions. However, the z top 

distributions of the predicted values are slightly narrower than the ones of the observations. The normalized frequency 

distributions of observed and predicted DZ in Figure 1 agree also very well for Ci, thin cirrus and mid-/ low-level clouds, with 

decreasing DZ with decreasingwhen cloud emissivity and cloud height decrease. However, the bimodality for Cb, with a large 205 

peak around 15 km corresponding to the convective towers and a smaller peak around 6 km, probably corresponding to thick 

anvils, could not be reproduced. By investigating further, Figure S2 shows that for those Cb for which a DZ < 10 km is 

predicted, there is no bias, but when a DZ > 10 km is predicted, corresponding to most of the convective towers, DZ is 

underestimated on average by about 1.5 km over ocean and by about 2 km over land. This systematic bias may be corrected 

by adding these values to the predicted DZ for those cases.  210 

The normalized MCCs for the classifications of certain rain, rain rate, and cloud layers additional to the one identified by CIRS 

are about 0.7. Merely the prediction of rain from thin cirrus is close to random. This is because thin cirrus do not precipitate, 

and detected rain can only be linked to the clouds underneath, for which the CIRS data do not have any information. Therefore 

we trained the second model only for Cb and Ci, assuming no rain for thin cirrus. With this assumption we miss about 2% of 

rainy areas beneath thin cirrus. 215 

 

  

Table 2 MAE and relative MAE for the prediction of ztop and DZ, over ocean and over land. For DZ, results are shown for predicted 

ztop included and not included as input parameter. Relative MAE refers to strategy 2. 

ocean Cb Ci thin Ci lowlevel midlevel  

ztop 0.8 km 

4.4 % 

1.1 km 

6.5 % 

0.90 km 

5.0 % 

0.5 km 

18.9 % 

0.8 km 

8.8 % 
 

DZ 2.9 / 2.9 km   

31 %  

2.4 / 2.5km 

38 % 

1.2 / 1.3 km 

32 % 

0.5 / 0.6 km 

36 % 

1.8 / 1.9 km 

82 % 
 

land Cb Ci thin Ci lowlevel midlevel  

ztop 0.9 km 
5.1 % 

1.3 km 
7.0 % 

1.0 km 
5.4 % 

0.6 km 
21.3 % 

0.9 km 
21.3 % 
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DZ 3.2 / 3.2 km 

39 % 

2.6 / 2.8 km 

43 % 

1.4 / 1.5 km 

37 % 

0.7 / 0.8 km 

47 % 

2.0 / 2.1 km 

91 % 
 

 220 

Table 3 Normalized Matthews correlation coefficient for the prediction of rain rate (no, small, large), certain rain, cloud layer above 

and below, over ocean and over land. Two results are compared: the first include predicted ztop and DZ as input parameters, the 

second does not. Instead, we used the hypotheses of no rain from thin Ci and no clouds underneath low-level clouds.  

ocean Cb Ci thin Ci lowlevel midlevel 

rain rate  0.65 / 0.64 0.69 / 0.70 0.55 / - 0.62 / 0.62 0.68 / 0.67 

certain rain  0.68 / 0.68 0.67 / 0.68 0.52 / - 0.55/ 0.57 0.65 / 0.68 

cloud layer above 0.64 / 0.67 0.71 / 0.72 0.68 / 0.69 0.69 / 0.71 0.67 / 0.68 

cloud layer below 0.54 / 0.55 0.67 / 0.67 0.65 / 0.65 0.56 / - 0.69 / 0.67 

land Cb Ci thin Ci lowlevel midlevel 

rain rate  0.63 / 0.63 0.65 / 0.70 0.52 / - 0.58 / 0.59 0.61 / 0.62 

certain rain  0.66 / 0.67 0.64 / 0.70 0.50 / - 0.57 / 0.51 0.64 / 0.60 

cloud layer above 0.66 / 0.71 0.74 / 0.74 0.66 / 0.70 0.70 / 0.72 0.67 / 0.70 

cloud layer below 0.53 / 0.52 0.65 / 0.65 0.64 / 0.64 0.50 / - 0.66 / 0.69 

 

 225 

2.3 Construction of tropical horizontal fieldsthe 3D dataset by applying the ML models 

The results in section 2.2.2 do not clearly show which of both models is performing better. For the prediction of DZ the 

inclusion of the predicted ztop may lead to slightly better results, as the quartiles are slightly smaller (Figure S1). For further 

investigation we have applied both sets of ANN models to the whole AIRS-CIRS - ERA-Interim dataset over the period 2004 

– 2018.  230 

For the construction of the convective organization indices (section 2.5), we have also applied these models on IASI-CIRS – 

ERA-Interim data, provided at local observation times of 9:30 AM and 9:30 PM. This is possible, because the models use 

input variables which are available in both datasets.  

While these new target variables have been obtained from machine learning per AIRS footprint (spatial resolution of 15 km), 

the final dataset has been gridded to 0.5° latitude x 0.5° longitude. The substructure of this dataset has been kept by averaging 235 

over the most frequent cloud scene type, distinguishing between (defined as highlevel clouds or, mid- / lowlevel clouds), clear 

sky, and by keeping the fraction of coverage by Cb, Ci, thin Ci, mid- / lowlevel clouds and clear sky per grid box. In order tTo 

give an information on the rain intensity, we constructed a ‘rain rate indicator’ at footprint resolution by combining both, rain 
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rate classification and rain quality binary classification, with values of 0 (0 & 0), 1 (0 & 1), 1.5 (1 & 0), 2.5 (1 & 1), 5 (2 & 0) 

and 7.5 (2 & 1). This rain rate indicator has then been averaged over 0.5°. In addition, we estimated the fractions within 0.5° 240 

of no rain and of certain rain as well as of light rain rate and of strong rain rate. 

We illustrate the newly gained benefit by presenting in Figure 2 snapshots of the horizontal structure of some of these variables, 

at a specific day in January, once during a La Niña situation (2008) and once during an El Niño situation (2016), at two local 

times (1:30AM and 9:30PM). The gaps between orbits (corresponding to about 30% in the tropics) have been iteratively filled 

by the data closest in time. By using the data which are four hours apart, the data coverage has increased from 70% to 90%. 245 

Including also data which are 8 hours apart increases the coverage to 97%, and finally with those 12 hours apart leads to 

complete coverage. These instantaneous horizontal structures, which are not possible to obtain from CloudSat-lidar data alone 

(Figure 1 of Stubenrauch et al., 2021), are quite different between La Niña and El Niño: While during the La Niña situation a 

very large multi-cell convective system evolved over Indonesia, the convective systems are more evenly distributed over the 

whole tropical band during the El Niño case. The latter can be explained by the shift of warmer SST towards the Central 250 

Pacific. The multi-cell convective cluster during the La Niña case shows bands of large DZ and rain rate, while during the El 

Niño case these are more scattered. The different horizontal structure in precipitating areas over the tropical band between La 

Niña and El Niño suggests to derive a metrics for convective organization from these data (see Section 2.5). Figure 2 also 

indicates clouds above and below the CIRS clouds. We observe clouds below the edges of the cirrus anvils and multiple layer 

clouds in the region of thin cirrus bands. The latter are continued as very thin clouds above low-level clouds. All in all, these 255 

horizontal structures obtained from machine learning seem to be coherent, also those obtained from IASI, which are very 

similar to those from AIRS.  

When investigating monthly mean anomalies in the time series, we have seen a small artificial peak for the rain rate indicator 

in March 2014 for the AIRS observations. This peak was larger for the first model than for the second model. Therefore we 

show in the following all results using the second model which does not include predicted variables as input for the rain rate 260 

classification. At the end of this disturbance, most probably evoked by cosmic particles during a solar flare event, the AIRS 

instrument shut down on 22 March, as its electronic circuit was affected. The instrument was operational again by end of 

March. No obvious failure is seen in the retrieved cloud variables, but many small areas with strong rain rate appear during 

this period.  

2.4 UT cloud system reconstruction 265 

The cloud system reconstruction (Protopapadaki et al., 2017) is based on two independent variables, pcld and cld, over grid 

cells of 0.5° latitude x 0.5° longitude.  This method is different with respect to other mesoscale cloud system analyses based 

on IR brightness temperature alone (e. g. Machado et al., 1998; Roca et al., 2014). After the filling of data gaps between 

adjacent orbits (Protopapadaki et al., 2017), UT cloud systems were built from adjacent elements, containing at least 90% UT 

clouds (pcld < 440 hPa) of similar cloud height (within 6 hPa x ln(pcld/hPa), which corresponds to 27 hPa for pcld = 100 hPa  270 
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and to 37 hPa for pcld = 400 hPa(within 50 hPa, pcld < 440 hPa). In a next step, the cloud emissivity was used to distinguishes 

between convective cores (cld > 0.98), cirrus anvil (0.98 > cld > 0.5) and surrounding thin cirrus (0.5 > cld > 0.05). In order 

to reduce the noise in the determination of the number of convective cores, one searches for grid cells with cld > 0.98 within 

regions of cld > 0.930. The convective core fraction within a MCS is then the total number of these grid cells divided by the 

number of grid cells belonging to the whole system; and the number of convective cells corresponds to the number of regions 275 

with cld > 0.930 which include at least one grid cell with cld > 0.98. Each of these regions with at least one such grid cell 

counts as a convective core. The original UT cloud system reconstruction was used to study the amount of surrounding thin 

cirrus as a function of convective depth. In order to maximize the coverage of thin cirrus, a cell was declared to be covered by 

UT clouds, when it was already covered by 70% of UT clouds. These UT cloud systems cover about 25% of the latitude band 

between 30N and 30S.  280 

Since these cloud systems reached very large sizes, in particular over the tropical Warm Pool, we revised the reconstruction 

by merging only grid cells which contain at least 90% UT clouds and of similar height defined within 6 hPa x ln(pcld/hPa) 

(corresponding to 27 hPa for pcld = 100 hPa  and to 37 hPa for pcld = 400 hPa). In addition, the threshold for defining the regions 

in which one looks for convective cores has been changed from 0.90 to 0.93. With this definition, the mesoscale UT cloud 

system coverage is reduced toabout 20% within the latitude band 30N - 30S. MCSs with at least one convective core cover 285 

15% of this latitude band, while the coverage of all UT clouds (pcld < 440 hPa) is about 35%. 

Figure 3 compares the normalized frequency distributions of the cloud top and cloud base height as well as the normalized 

vertical extent, DZ/ ztop, of the convective cores, cirrus anvils and surrounding thin cirrus within the MCSs for the 30% warmest 

(SST > 302 K) and coolest (SST < 300 K) tropical ocean. As expected, this variable is close to 1 for a convective tower, with 

a peak of the distribution at 0.8 for convective cores, and decreases with the optical depth or emissivity of the anvil parts, with 290 

a peak of the distribution at 0.2 for the surrounding thin cirrus. First of all, the cloud top height distributions of all parts are 

very similar, with a slightly higher top of the convective cores. As expected, the cloud systems reach a much higher top in the 

warm regions than in the cool regions. For the other two variables,While the distributions of convective cores and of thin cirrus 

are well separated, with the convective core base height in general smaller than 6 km and DZ/ztop larger than 0.6 (filling more 

than 60% between surface and cloud top). The distribution of the cirrus anvils lies in between. The. We observe that the  295 

overlapping between cirrus anvils and convective cores is however larger is larger forover the cooler ocean regions. This 

indicates that the convective cores of the systems in these regions are probably less well defined by cld > 0.98 than the ones 

of the MCSs in the warmer regions, which are less high than in the warmer,the latter being more convective regions(e. g. 

Figure 10 of Stubenrauch et al. 2021), are probably less well defined by cld > 0.98 than the ones of the MCSs in the warmer 

regions. Since we have now the normalized vertical cloud extent from the machine learning, we can use it to improve the 300 

definition of convective cores, by adding the condition DZ/ztop > 0.6 (cloud filling more than 60% between the surface and 

cloud top). All grid cells which do not fulfilfulfil the condition DZ/ztop > 0.6 are then counted back as cirrus anvil. 
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2.5 Indicators of tropical convective organization 

Convective aggregation, which refers to the clustering of convective cells, occurs at multiple spatial scales in the tropics. 

Organized convection, leading to MCSs and therefore associated to extreme precipitation, is a research subject of high interest, 305 

in particular in regard to climate warming. The creation and maintenance of MCSs is strongly dependent on the available 

moisture in the lower troposphere and is influenced by wind shear. With the spatial resolution of our data we are mainly able 

to consider the organization of MSCs into large squall lines, hurricanes or super-clusters. This type of organization should be 

more influenced by the large-scale environment and circulation. 

There are two main factors that define play a role in estimating the degree of organization for a given dataset: the variable used 310 

to define convection (section 2.5.1) and the metric used to compute the degree of organization (section 2.5.2). 

2.5.1 Definition of convective areas within UT clouds 

Studies have used cold IR brightness temperatures (e. g. Tobin et al., 2012; Bony et al., 2020) as well as precipitation rate (e. 

g. Popp and Bony, 2020; Blaeckberg and Singh, 2022) to define convective objects for the determination of convective 

organization metrics. 315 

In order to estimate the organization of convection, measures of convection without missing data are needed. Since both AIRS 

and IASI data still show gaps of missing data between the orbits, we have filled these gaps with the measurements that are 

nearest in time. First we excluded snapshots which have a data coverage in the latitudinal band 30N – 30S less than 68% for 

AIRS and less than 74% for IASI (as the swath is slightly larger for IASI). This ensures complete orbits. As described in 

section 2.3, gGaps between orbits are then iteratively filled by using the observations closest in time. In general with four 320 

observations per day we get complete snapshots (coverage larger than 99.5%). 

In general, strong vertical updraft, strong precipitation and very cold and optically thick cloud tops indicate deep convective 

towers (e. g. Machado et al., 1998; Liu and Zipser, 2007; Yuan and Houze, 2010). Cold and optically thick cloud tops can be 

identified by a threshold in IR brightness temperature, TB, a measurement available by any radiometer aboard geostationary 

and polar orbiting satellites over a long time period. However, as this variable depends on both cloud height and emissivity 325 

(Figure 2 of Protopapadaki et al., 2017), for TB > 230 K, very cold semi-transparent cirrus may be misidentified as lower 

opaque clouds, leading to uncertainties in the sizes of the convective areas.  

Figure 4 compares latent heating (LH) profiles derived from the precipitation radar measurements of the Tropical Rain 

Measurement Mission (TRMM) for the same percentile statistics, using the coldest TB, the largest precipitation intensity (given 

by a largethe ML ML-deduced rain rate indicator) and the largest horizontal extent of rain within each grid cell of 0.5° (given 330 

by the fraction of any precipitation deduced by ML). These LH profiles have been retrieved by the Spectral Latent Heating 

(SLH) algorithm (Shige et al., 2009) and are averaged over 0.5°. The time interval with the AIRS-CIRS data is within 20 

minutes. The same percentile statistics allows to directly compare the efficiency of each variable to identify large latent heating, 
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an indicator of deep convection. In all cases the LH increases with decreasing TB, increasing rain rate indicator and increasing 

horizontal rain coverage per grid cell, showing that all both variables can be used as proxies for deep convection. Moreover, 335 

at fixed percentiles the ML ML-derived rain rate indicator as well as the grid cell rain coverage both lead to a larger LH than 

TB. This means that the ML derived rain rate classification, together with the CIRS identification of UT cloud, is a slightly 

better proxy for regions of large latent heating than TB.  

 

2.5.2 Convective organization indices 340 

It is not easy to define suitable organization metrics. The organization index Iorg (e. g. Tompkins and Semie, 2017) compares 

a cumulative distribution of nearest-neighbour distance (NNCDF) toto the one of the expected by randomly distributed points 

in the domain. Iorg lies between 0 and 1, with 0.5 corresponding to randomly distributed objects., and Iorg > 0.5 indicates an 

organized state. However, Weger et al. (1992), who initially developed this method to study the distribution of cumulus clouds, 

pointed out that the NNCDF is sensitive to the number of areas and to their size, in particular when the total area is larger than 345 

5 to 15% of the studied domain: In the latterthat case, possible merging of the objects leads to an artificial decrease of Iorg. 

When using Iorg, one has therefore to use a proxy for the definition of convective areas which corresponds to a total area that 

only covers a small fraction of the area region to be studied. 

Therefore White et al. (2018) developed the convective organization potential (COP), by assuming that 2D objects that are 

larger and closer together are more likely to interact with each other in the horizontal plane. It uses the distance between the 350 

centers of the objects and radii of equal area circles. Jin et al. (2022) have further developed COP to the area-based convective 

organization potential (ABCOP) by using the area rather than the radius and by changing the distances between centers to 

distances between outer boundaries. Furthermore the interaction potentials are computed for only one pair per aggregate and 

summed up instead of averaged over all pairs. It ABCOP is however very sensitive to the total area of the objects (section 3.3). 

The Radar Organization MEtric (ROME) developed by Retsch et al. (2020) considers the average size, proximity and size 355 

distribution of the convective objects in a domain and is similar to COP, but like ABCOP it employs the distance between the 

outer boundaries. ROME defines interactions between pairs by assigning a weight to each pair that decreases with the distance 

and increases essentially with the area of the larger areaobject, adding a contribution of the smaller area, depending on the 

separation distance. It is given in units of km2 and lies between the mean area of the objects and twice their mean area. Hence 

ROME is very sensitive to the mean areas of the objects (section 3.3). 360 

3 Results 

In this sectionAs application examples  we highlight results results from analyses on the ML derived variables by investigating 

relationshipsusing this long-term 3D dataset. We particularly concentrate our interest on the ML-derived rain rate indicator. 

Section 3.1 shows the coherence of this newly derived variable. The cloud system approach enables us to study the behaviour 
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of these variables within MCSs with respect to their life cycle stage and convective depth. This process-oriented analysis 365 

presented in section 3.2 can be used to evaluate parameterizations in climate models (Stubenrauch et al., 2019). In particularIn 

section 3.3, we show results concerning mesoscale convective organization. Mesoscale convective organization has been 

identified by larger and higher systems, which also live longer than unorganized systems (e. g. Rossow and Pearl, 2007; 

Takahashi et al., 2021), and they also lead to increases in tropical rainfall (e. g. Tan et al., 2015). We first compare convective 

organization indices the rain rate classification and its horizontal and temporal expansion allow us to derived from objects 370 

defined by strong rain and by cold cloud temperature indices of tropical convective organization and then to investigate changes 

in geographical patterns of radiative heating with respect to one of these indices (Iorg). the difference in UT cloud properties 

and their environment between periods of small and large tropical convective organization.  

3.1 Properties of UT cloudsCoherence of ML-derived rain intensity classification 

First we test the coherence between the ML- derived rain rate classification and the collocated TRMM LH profiles already 375 

presented in section 2.5.1. Figure 5 compares the LH profiles averaged over all UT clouds and over all mid- and low-level 

clouds and separately over those with no rain, light rain and heavy rain according to the rain rate classification described in 

section 2.3. Indeed, when the rain rate classification indicates no rain, the latent heating from TRMM is very small. The latent 

heating is on average about ten (five) times larger for grid cells which include heavy precipitation than the tropical average for 

UT clouds (mid- and low-level clouds). While latent heating profiles have a peak between 400 and 500 hPa for heavily 380 

precipitating UT clouds, the peak lies around 850 hPa for strongly precipitating mid- and low-level clouds. This shows 

indicates that the ML ML-derived rain rate classification seems to be coherent for UT clouds as well as for lower clouds, 

though the noise for the latter may be larger. 

Figure 6 compares normalized frequency distributions of cld, ztop, ‘cloud fuzziness’,  (ztop – zcld)/DZ, and normalized vertical 

extent DZ/ztop of precipitating and non-precipitating, lightly and heavily precipitating UT clouds. Cloud fuzziness increases 385 

with the difference between cloud top height and the cloud height retrieved by CIRS. The latter corresponds to the height at 

which the cloud reaches an optical depth of about 0.5 (Stubenrauch et al., 2017). From these figures we clearly deduce that 

heavily precipitating UT clouds in the tropics have an emissivity close to 1, and are in general higher, have a much less fuzzy 

cloud top and have a much larger vertical extent than non- precipitating UT clouds. These results are coherent with expectations 

and again confirm the quality of the rain rate classification derived by our machine learning procedure.  390 

 

 

3.2 Process-oriented behaviour of mesoscale convective systems 

 

The cloud system concept described in section 2.4 allowspermits to link the convective core and anvil properties and therefore 395 

a process-oriented evaluation of parameterizations in climate models (Stubenrauch et al., 2019): The fraction of the convective 
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core area within a cloud system indicates the life cycle stage (e. g. Machado et al., 1998), with a large fraction indicating the 

developing stage and a decreasing fraction during dissipation. Once the systems have reached maturity, the minimum 

temperature within a convective core is a proxy for the convective depth.  

3.2.1 Behaviour of precipitating areas  400 

According to Takahashi et al. (2021), using a convection-tracking analysis on data from Intergrated Multisatellite Retrievals 

for GPM (IMERG), the fraction of precipitating cores (adjacent grid cells with a rain rate > 5 mm/hr) within precipitation 

systems (adjacent grid cells with rain rate > 0.5 mm/hr) first increases and then decreases during the evolution of these systems. 

The maximum of the strong rain area relative to the whole precipitating area as well as the maximum and average intensity of 

the precipitation increase with the life time of the systems. This behaviour was also found by Roca et al. (2017). 405 

Our data do not provide the absolute system life time, but the convective core fraction within a system indicates the maturity 

stage in a normalized life cycle. We also know that the coldest systems have also a tendency to live the longest (e. g. Rossow 

and Pearl, 2007; Takahashi et al., 2021). Figure 7 presents the statistical evolution during the life cycle of a) the precipitating 

area relative to the whole MCS area and ba) the strong rain area relative to the precipitating area, within for single core MCSs 

and b) the precipitating area relative to the whole MCS area. As the rain rate classification was obtained per CIRS footprint, a 410 

grid cell of 0.5° x 0.5° can be declared as precipitating by using different thresholds on the fraction of footprints with rain rate 

> 0 mm/hr. The same applies for grid cells including strong rain. Results using three different thresholds to define the 

precipitating and strongly precipitating areas are compared. For all thresholds, the precipitating area is very large in the 

beginning of the life cycles, when the anvil is just developing and then decreasesystems are precipitating already in the 

developing stage, while the fraction of strong rain stays constant until the anvil reaches 40% of the system size and only then 415 

decreases.develops slightly later with a maximum just before reaching maturity, With our coarse spatial resolution we did not 

see the increase in strong rain after the developing stage, which has been observed by in agreement with Fiolleau and Roca 

(2013) and Takahashi et al. (2021), using data with better time and space resolution. This means that we miss the very first 

development of the convective tower itself, as can also be seen in Figure 7c, which presents the evolution of the convective 

core size and the convective core top height. The latter varies much less than the convective core size, with an average of 420 

already 12.8 km for a convective core fraction close to 1. So due to the coarse spatial resolution and considering only high-

level clouds, we start to identify the systems when they are already near to their maximum height, which is attained just before 

the decrease of the heavy rain portion. 

The core size increases rapidly and then stays stable until dissipation of the system. We identify MCS maturity by a core 

fraction between 0.2 and 0.4, because by then the core size has attained its maximum.  425 

Once the convective systems are mature, we can study. During dissipation, relative rain area and strong rain area decrease. 

The maximum rain area relative to the system area is about 0.45 when only grid cells are considered which are completely 

covered by rain. The maximum strong rain area relative to the precipitating area within the MCSs is about 0.12, when one 

considers a strong rain grid cell coverage of at least 0.2. It drops to 0.05 for a threshold of 0.5. To show the behaviour of 

precipitating areastheir properties with respect to their convective depth:, Figure 87 also presents for mature MCSs (convective 430 
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core fraction within the system between 0.1 and 0.4, according to Protopapadaki et al., 2017), as a function of the minimum 

temperature within the convective cores, ac) the strong rain area relative to the precipitating area (again considering three 

thresholds), and db) the volume of the thick anvil (cld > 0.5) relative to the volume of the convective core, which is a proxy 

for detrainment, and the emissivity of the thick anvil and c) the size of the surrounding thin cirrus relative to the total anvil 

size as well as the 50% warmest surface temperature underneath the MCSsprecipitating area relative to the whole MCS area. 435 

Again the behaviour is the same for all three thresholds: We deduce that deeper convection clearly leads to 1) larger areas of 

heavy rain within the precipitating areas, in agreement with earlier studies, 2) to a larger volume detrainment but with a slightly 

smaller emissivity and 3) to more surrounding thin cirrus while the precipitating areas within the system areas decrease, 

because the anvils are much larger in these deep convective cloud systems than in less deep convective systems (see next 

section). From Figure 8 we also conclude that deeper convection occurs in general in the warmer regions of the tropics, as 440 

expected. 

3.2.2 Behaviour of convective core and anvil properties  

Figure 8 presents the evolution during the life cycle of convective core and anvil properties: a) core size, b) core top height, c) 

vertical extent of the thick anvil and d) emissivity of the thick anvil, separately for maritime and continental MCSs. The 

behaviour is similar, with increasing core size and core top height during the development phase and a decrease in the 445 

dissipating stage. Oceanic systems reach slightly larger core sizes and core top heights than continental systems. However, the 

core size depends on the definition of convective core. Our definition may lead to a larger size than a definition based on strong 

vertical updraft. While the thick anvil emissivity decreases nearly linearly and has equal values for MCSs over land and over 

ocean, the thick anvil vertical extent reaches a maximum only after the anvil developed, with a larger extent over ocean than 

over land in the same development stage. Only towards dissipation the vertical extents are similar.  450 

According to Figure 9, properties of mature MCSs (with a convective core fraction between 0.1 and 0.4) differ with convective 

depth: the relative area of thin cirrus and the ratio of thick anvil volume over convective core volume, the latter gives an 

indication of detrainment, both increase with convective depth, with similar values over ocean and over land. It is interesting 

to note that the thick anvils of MCSs with larger convective depth have a slightly smaller emissivity but larger vertical extent 

than those with smaller convective depth. The latter leads to a larger thick anvil volume, while the first indicates a smaller ice 455 

water content.  

Finally we compare in Figure 10 the MCS properties of those over oceanic regions with the 30% warmest SSTs and those with 

the 30% coolest SSTs. The warmest oceanic regions in the tropics are the ones where deep convection, given by large core top 

height, develops, with a larger fraction of strong rain, deeper and larger anvils, but also with a smaller anvil emissivity and 

more surrounding thin cirrus. The latter have an effect on the radiative heating. 460 
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3.3 Tropical convective organization 

In this section we demonstrate the usefulness of this new dataset by analyzing the convective organization in the tropics. Wwe 

explore and compare results using different various metrics of convective organization and, using different proxies for to define 

convective objects, ason described in section 2.5. A spatial resolution of 0.5° relates to an organization of MSCs at a scale 

which is more linked to the large-scale environment and circulation. We first consider the annual cycle of convective 465 

organization and then highlight an application on inter-annual variability. 

Figure 11 9 presents the annual cycle of a) Iorg, b) ROME, and c) COP, of d) the total area and and e) mean sizes area of the 

convective areas objects and f) their number over the tropics. We also compare investigate results using different variables to 

define these areasobjects, in particular precipitation intensity (given by ML ML-derived rain rate indicator) of UT clouds (pcld 

< 350 hPa) and cold cloud temperature (Tcld < 230 K) of opaque clouds (cld > 0.95). The latter definition is similar to TB < 470 

230 K, but without any contamination of colder thinner Ci. Since ROME is strongly related to the size of the convective 

areasobjects, we have also computed the annual anomalies of the three indices by using only a constant 2% of areas with the 

largest precipitation intensities for constructing the convective objectsy. This corresponds to comparing the indices for a 

constant total area of convection. A similar approach was undertaken in a study by Blaeckberg and Singh (2022), using the 

precipitation intensity and ROME as proxies for convection and convective organization, respectively.  475 

All three indices reveal a clear annual cycle of convective organization, with a minimum in April and November and a 

maximum in July / August and in January / February, though with differences in magnitude and width of the oscillations due 

to the choice of proxy for convective area. While the amplitude of the annual cycle is the smallest for Iorg (0.04), the seasonal 

anomalies of COP are the less sensitive and those of ROME the most sensitive to the choice of proxy. The latter look very 

similar to those of the mean area of the convective objects (with a correlation coefficient larger than 0.9). Thus the seasonal 480 

anomalies of ROME primarily reflect the ones of the mean areas of the convective objects. We also observe in Figure 9e, that 

the minima and maxima in the annual cycle of the mean area of objects with intensive rain are shifted compared to those with 

cold opaque cloud. When using a fixed total area of intense precipitation, the magnitude of the seasonal anomalies is much 

smaller and the shift in behaviour compared to using the proxy of cold opaque clouds disappears.  

The annual cycle of the total area of convective objects can be reconstructed by the one of the mean area times the one of the 485 

number of the convective objects (Figures 9 d-f): For the latter there are pronounced maxima in January and July. Note that 

Tthe relative flatness of the seasonal cycle of the total tropical area of cold cloud objectss can be explained by a nearlyn 

opposite seasonal cycle in their mean size and number of areas, whileereas for intense precipitation their cycles are in phase 

which then leads to a pronounced cycle in their total area. 

The absolute values of the convective organization indices, presented in Figure S3 of the supplement, depend more strongly 490 

on the proxy used to define the convective objects: The absolute maximum of COP is the same for all proxies during boreal 

summer, while for other seasons COP, like Iorg, is larger when considering precipitation intensity. While ROME primarily 
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reflects the mean area, ABCOP reflects the total area of the convective objects (both with a correlation coefficient larger than 

0.8). Whereas the mean area of the convective objects is clearly an indication of meso-scale convective organization, the total 

area may not be directly linked to convective organization, only perhaps if one considers local regions. Iorg, only considering 495 

the distance between convective objects, seems to add another aspect. Iorg indicates a more organized convection when 

precipitation intensity is used instead of cold cloud temperature to identify the convective objects, though the total area of 

intense precipitation areas is smaller than the one of the cold cloud objects. The difference in the absolute peak values of the 

Iorg and COP anomalies between boreal summer and boreal winter may be explained by regional shifts in intense precipitation 

occurrence, as shown in Figure S4 and in agreement with earlier results (e. g. Berry and Reeder, 2014). 500 

In Figure 102 we observe apresents the seasonal behaviourannual cycle of MCS properties discussed in the earlier sections:  

in phase with the one of convective organization for Tthe core height of the MCSs, the anvil vertical extent (Figure S3), and 

anvil horizontal detrainment, the latter estimated by the ratio of anvil over convective core size and the vertical extent of the 

anvil (Figure S5) are in phase with the annual cycle of Iorg and COP. This shows that in seasons with larger tropical convective 

organization the MCSs have in general higher cloud tops and larger anvils. T. The opposite annual cycle of the fraction of 505 

single core MCSs and the ratio of thin cirrus over total anvil size are in opposite phase. The first confirms that convective 

organization corresponds to multi-core MCSs. The latter may be not directly expected as we have seen that this ratio increases 

with the height of the MCSs (convective depth). On second thought it In that case the ratio of thin cirrus over total anvil size 

is smaller, which may be explained by the fact that clustering of convective systems leaves less space for the thin cirrus between 

them for thin cirrus. The average tropical UT humidity is slightly higher between May and September, this is also the period 510 

where the surface temperature underneath the MCSs is largest (Figure S3). It is interesting to note that the minima and 

maximaannual cycle of the relative subsidence area (clear sky and low-level clouds) are is also in accordance phase with the 

one of Iorg and COP. with the ones of convective organization. This then leads to a relation betweenmeans that larger heating 

of the upper and middle tropospheric heating by the more organized MCS and theleads to more cooling of the lower 

troposphere in the cooler subsidence regions, which has recently been found by Stubenrauch et al. (2021). 515 

By comparing the choice of proxies for the definition of convective areas, we observe that the seasonal anomalies of COP are 

the less sensitive, while those of ROME are the most sensitive. The latter look very similar to those of the mean size of the 

convective areas (with a correlation coefficient larger than 0.9), and the minima and maxima in the cycle of intensive rain 

horizontal extent are shifted compared to those of cold opaque cloud horizontal extent. Thus the seasonal anomalies of ROME 

primarily reflect the ones of the mean areas of convection. When using a fixed area of intense precipitation, the magnitude is 520 

much smaller and the shift between the maxima due to the choice of cold clouds or intensive rain disappears.  

The absolute values of the indices, presented in Figure S4 of the supplement, depend more strongly on the proxy used to define 

convective areas, but this dependency varies:  Iorg, reflecting the distance between convective areas, is larger over the whole 

annual cycle when one considers precipitation intensity instead of cold cloud temperature. The absolute maximum of COP is 

the same for all proxies during boreal summer, while for other seasons COP, like Iorg, is larger when considering precipitation 525 
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intensity. ABCOP reflects the total tropical area, which seems to be more constant over the seasons when cold clouds are 

considered than when strongly precipitating clouds are selected. For the latter there are pronounced maxima in January and 

July. Note that the relative flatness of the seasonal cycle of the total tropical area of cold clouds can be explained by an opposite 

seasonal cycle in mean size and number of areas, while for intense precipitation their cycles are in phase. 

This difference in seasonal behaviour indicates that the choice of the proxy for the definition of convective areas and of the 530 

convective organization metrics plays a non-negligible role in the interpretation of results. The seasonal geographical 

distributions of intense precipitation occurrence (rain rate indicator > 2) in Figure S5 show that the regions of maximal 

occurrence also vary with season, in agreement with earlier results (e. g. Berry and Reeder, 2014). These may explain the 

difference in the absolute peak values of convective organization anomaly between boreal summer and boreal winter.  

Of all the studied indices, ROME and ABCOP have a very high correlation with the mean area and the total area of convective 535 

objects, respectively (larger than 0.8). However, these correlations depend on the domain and on the domain's spatial 

resolution. For the specific domain (30N-30S) and spatial resolution (0.5°) of this analysis, Iorg is the metric that is less related 

to these variables, and consequently, it is also the one that contains the additional information on organization. Therefore, we 

use Iorg in the following to explore changes of different variables with respect to inter-annual convective organization 

anomalies. 540 

Changes in gradients of tropospheric radiative heating relate to changes in atmospheric circulation. We use link the inter-

annual anomalies of the 3D radiative heating rate (HR) fields described inof Stubenrauch et al. (2021) and to those of Iorg 

computed from convective areas defined once by strong precipitation and once by cold cloud temperature over the period from 

2008 to 2018. In order to remove the seasonal dependency, we computed the 121 12-month running mean anomalies for these 

variables. The geographical distribution of changes in radiative heating change with respect to convective organization change 545 

are presented in Figure 113, separately for the upper (100-200 hPa), mid (200-600 hPa) and low (600-900 hPa) troposphere 

and for the two proxies to define convective areasobjects. These geographical maps have been obtained by linear regression 

per grid cell of the 121 pairs of heating rate and Iorg anomaly (see examples in Figure S6 in the supplement). 

The geographical patterns and magnitudes in HR change with respect to change in Iorg are similar for both proxies, but with 

slightly larger derivatives for strong precipitation areas. This may be expected as intense precipitation should be a more direct 550 

proxy for convection than cold cloud top. In general the derivatives are large because inter-annual changes in Iorg are very 

small, as shown in Figure 124. In the upper troposphere we observe increased heating North and South of the equator in the 

Central Pacific and a decrease over the West PacificWarm Pool, while in the mid and low troposphere there is an increase in 

heating around the equator over the whole Pacific and Indian ocean, and a decrease in heating over the Warm Pool and in the 

Atlantic. The HR pattern changes in the convective regions are induced by relative changes of thin cirrus, cirrus and high 555 

opaque clouds, which are similar but not identical to the ones related to the El Niño Southern Oscillation (ENSO) during this 

period (Figure S7), with increasing convection close to the equator and increasing cirrus and thin cirrus around the equator. 
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Indeed, the correlation between Iorg and the oceanic Niño index (ONI) is positive (with correlation coefficients of 0.7 and 0.3 

for cold cloud temperature and precipitation intensity as proxy, respectively). In the stratocumulus regions off the Western 

coasts of the Americas and of Australia there seems to be less cooling in the low troposphere, probably due to a recent reduction 560 

in low-level clouds, in particular in the NE Pacific, which was found in coincidence with a shift in the phase of the Pacific 

decadal Oscillation (Loeb et al., 2018, Loeb et al., 2020, Sun et al., 2022). The similarity between the maps obtained with the 

two selections validates once again the reliability of the rain rate indicator obtained with ML., and tThe slightly stronger 

patterns lead to the conclusion that strong precipitation is a slightly better proxy to define convective areas than cold 

temperature.  565 

WhileWhereas the geographical patterns of the derivatives of heating / cooling with respect to Iorg show a coherent picture, we 

did not find any correlations between deseasonalized the very small inter-annual anomalies of Iorg (shown in Figure 124) and 

the ones of of the tropical means of different variables like surface temperature, thin cirrus area and subsidence area are much 

noisier, because inter-annual changes of the tropical means are small..  The correlations depend on the proxies for the definition 

of the convective areas and in particular on the metrics for convective organization. Already the time series of the inter-annual 570 

anomalies of the different indices have a different behaviour as can be seen in Figure S8 in the supplement. We have also 

investigated tighter thresholds on the variables which define deep convection (like rain rate indicator > 2.5 or Tcld < 210 K), 

however we are left with only about 0.5% total area, which increases the noise level. In addition, we found that the results also 

change when we exclude objects with the size of only one grid cell (not shown), as already pointed out by Jin et al. (2022). 

Therefore we do not consider it meaningful to use the discussed convective organization indices for an estimation of tropical 575 

mean changes with respect to changes in convective organization.  

While we have seen that the convective organization indices vary much more seasonally than inter-annually, Figure 13 suggests 

that the difference of the density distributions of convective core height and strong rain area within the MCSs between April 

and July or between cool years (2008/11) and warm years (2015/16) is of the same order, with a shift towards higher core 

height and a longer tail in strong rain area. However, the size distributions of the MCSs are similar. The tail in the mean area 580 

of strong precipitation within the MCSs is clearly larger in the case of warmer years. This indicates that a shift in tropical 

surface temperature changes only a small part of the MCSs, with more extreme values. Such a behavior cannot be identified 

using a convective organization index computed over the whole tropics. 

 

4. Conclusions and Outlook 585 

We have presented a methodology to extend spatially and temporally information on the cloud vertical structure and 

precipitation derived from active lidar and radar measurements of CALIPSO and CloudSat missions. This new approach made 

use of CIRS data obtained from advanced IR sounder measurements of AIRS and IASI combined with ERA-Interim reanalyses 

and machine learning technologies using ANN. This synergy brought us one step further to build a completeThe resulting  3D 
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dataset of UT cloud systems, covering 2008 to 2018,, at 0.5° spatial resolution, together with a similarly produced dataset of 590 

radiative heating rates (Stubenrauch et al., 2021), which can be used to improve ourused for process studies in order to better 

understanding of the relationship between tropical convection and resulting anvils and how they are impacted by and feed 

back to climate change.  

Uncertainties, expressed as maximum absolute error, of cloud top height and cloud vertical extent predicted by ANN regression 

models with about 30 input variables are about 1 km (0.5 km) and 30% (40%) for UT (low-level) clouds, respectively. 595 

Classifications of cloud vertical layering (separately clouds above and below) and of precipitation rate (no, light and heavy 

rain) haveThough the uncertainties in the predicted variables and classifications are relative large (with an accuracy , given by 

the normalized Matthews correlation coefficient, of about 65 to 70% for the rain intensity classification, except for rain rate of 

low-level clouds for which the accuracy is only about 60%.), Nevertheless, this method new dataset allows to study their 

horizontal structures of these variables on specific snapshots in time. In order to haveFor a complete instantaneous coverage, 600 

necessary to compute indices of tropical convective organization, the remaining 30% due to gaps between the orbits have been 

filled iteratively with the four observations per day of AIRS and IASI data, starting with those closest in time (already leading 

to 90% coverage). These snapshots have been used to compute indices of tropical convective organization. We compared in 

particular two proxies to define the convective areas: precipitation intensity and cold opaque cloud. We could showhave 

demonstrated that the newly developed precipitation intensity classification is slightly more efficient to detect large latent 605 

heating and therefore deep convection compared to the cold cloud temperature. 

The cloud system approach developed by Protopapadaki et al. (2017) has been slightly modified, , leading to smaller cloud 

systems with less surrounding thin cirrus, as the grid cells belonging to the systems need now to include at least 90% UT 

clouds (instead of 65%).and tThe normalized vertical extent obtained from the ML approach was thenhas been employed to 

slightly improve the identification of the convective cores, in particular in the cooler tropical regions. MCSs with at least one 610 

convective core cover about 15% of the latitude band 30N to 30S, while the coverage of all UT clouds is about 35%. 

The cloud system concept allows to link the convective core and anvil properties and therefore a process-oriented evaluation 

of parameterizations in climate models (Stubenrauch et al., 2019). In agreement with earlier studies (e. g. Schumacher and 

Houze, 2003; Roca et al., 2014, Takahashi et al., 2021), we found that the rain intensity is maximum after the first development 

of anvils and that deeper convection leads to larger areas of heavy rain areas. These results also confirm the quality of the 615 

ML ML-derived precipitation rate classification.  

With increasing convective depth mature MCSs also show an increase in volume detrainment, given by the ratio of thick anvil 

volume over convective core volume,. wWhile the anvil vertical extent of the thick anvil increases, the average emissivity 

slightly decreases with convective depth.  Deep convection develops in the warmest oceanic regions of the tropics, producing 

a larger fraction of strong rain, deeper and larger anvils, but also have anvils with a slightly smaller average emissivity and 620 

more surrounding thin cirrus. The latter have an effect on the radiative heating. 
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Finally Moreover we have shown the usefulness of our new dataset to by investigatinge tropical convective organization 

metrics. By comparing different organization metrics indices (Iorg, COP, ABCOP and ROME) and proxies to define convective 

areas objects, we have shown that the three indices Iorg, COP and ROME indicate a similar annual cycle of convective 

organization. However, ABCOP and ROME is are strongly correlated to the total and mean area of the objects, respectively.  625 

While the mean area of the objects is certainly an indication of convective organization, their total area at tropical scale seems 

to be less linked to organization. The index Iorg, which only considers the distance between convective objects, seems to add 

another information. The core height of the MCSs and their anvil detrainment are in phase with the annual cycle of Iorg and 

COP, as well as the relative subsidence area. This shows also a link between the MCSs and subsidence areas. It is interesting 

to note that the annual cycles of the total area of cold cloud objects and of intense precipitation objects are very different. This 630 

can be related to a nearly opposite cycle in their mean size and number for the first, and to a cycle in phase for the latter. 

Considering the annual cycle of size and numbers of the object areas as well as their total area over the tropics, we observe a 

pronounced seasonal cycle of the total area of intense precipitation, while the total area of cold clouds in the tropics stays stable 

over the annual cycle, linked to a seasonal cycle in phase of size and number in the first case and an opposite seasonal cycle 

in the latter. This interesting difference in the behaviour of the two proxies should be further explored in the future. The 635 

seasonal cycle of core height of the MCSs, anvil vertical extent and anvil horizontal detrainment is in phase with the one of 

convective organization, while an opposite cycle of the fraction of single core MCSs confirms that convective organization is 

strongly linked to multi-core MCSs. In that case the ratio of thin cirrus over total anvil size is smaller, which may be explained 

by the fact that clustering of convective systems leaves less space between them for thin cirrus. It is also interesting to note 

that the minima and maxima of the relative subsidence area are in accordance with the ones of convective organization. 640 

 

Changes in gradients of tropospheric radiative heating relate to changes in atmospheric circulation. The geographical patterns 

and magnitudes in radiative heating rate inter-annual changes with respect to Iorg are similar for both proxies, but slightly larger 

for strong precipitation areas. This may be expected as intense precipitation should be a more direct proxy for convection than 

cold cloud top. Furthermore tThe HR pattern changes are similar to the ones related to ENSO during this period.  645 

However, the time series of the inter-annual anomalies of convective organization strongly depend on the convective 

organization metrics, and correlations between these anomalies and those of the tropical means of different atmospheric 

variables do not show consistent results. The tail of the distribution of strong rain areas seems to be more related to warmer 

tropics than the indices themselves. Therefore one has to be careful using only one of these organization indices and proxies 

to study climate change. More detailed studies are necessary to show the behaviour of these indices with spatial resolution and 650 

domain size. 

This data base of UT cloud systems, their vertical structure and precipitation areas is being constructed within the framework 

of the GEWEX (Global Energy and Water Exchanges) Process Evaluation Study on Upper Tropospheric Clouds and 



22 

 

Convection (GEWEX UTCC PROES, https://gewex-utcc-proes.aeris-data.fr/) to advance our knowledge on the climate 

feedbacks of UT clouds. It will be made available within this year via https://gewex-utcc-proes.aeris-data.fr/. For the future it 655 

will also be interesting to use this dataset for the study of cold pools, using data of Garg et al. (2020). 

In order to continue this dataset beyond 2018, In general, climate feedback studies are undertaken by climate model 

simulations, which rely upon their representation of convection and detrainment. We are now expanding the latent heating 

rates from TRMM onto this data base, using similar machine learning techniques. Once the total 3D diabatic heating is 

available, it will be used together with the information of the UT cloud systems to quantify the dynamical response of the 660 

climate system to the atmospheric heating induced by the anvil cirrus, refining and extending the studies of Li et al. (2013).  

At present we are now preparing a new version of CIRS data, using ERA5 (Hersbach et al., 2020) instead of ERA-Interim 

ancillary data in order to have a continuous dataset from 2003 to present, and newly calibrated AIRS L1C radiances (Manning 

et al., 2019) as input. 
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Figures  815 

 

  

Figure 1: Normalized frequencyDensity distributions of Ztop (above) and DZ (below), separately for Cb, Ci, thin Ci and mid- / 

lowlevel clouds (identified by CIRS), and separately over ocean and land. The prediction models have been applied to 20% of the 
collocated data and are compared with the results derived from CloudSat-lidar 2B GEOPROF data (obs).  820 
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3 January 2008 (La Niña) 1:30AM / 9:30PM   18 January 2016 (El Niño) 1:30AM / 9:30PM 

 

Figure 2: Horizontal structure for one specific day during a La Niña (left) and El Niño situation (right) at 1:30AM and 

at 9:30PM LT of a) CIRS scene type b) cloud top heightztop (km), c) DZ cloud vertical extent(km), d) rain rate indicator 825 

and e) cloud layers in addition to the identified UT clouds by CIRSing of UT clouds. 
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Figure 3: Normalized Density distributions of cloud top height, cloud base height and relativenormalized vertical extent (DZ/Ztop) 

of MCS convective cores, Ci anvils and surrounding thin Ci, separately over the 30% warmest regions (left) and over the 30% coolest 830 
regions (right) over ocean. Statistics is for 2008-2018 at 1:30AM and 1:30PM, and distributions are compared over the 30% warmest 
regions (top) and the 30% coolest regions (bottom) over ocean. 
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Figure 4: Comparison of latent heating rate profiles from TRMM (Shige et al., 2009) averaged over the same percentile statistics, 835 
using the coldest brightness temperature (Tb), the largest rain rate indicator (right) and the largest spatial extension of rain within 

a grid cell of 0.5° (left). Since the grid cell precipitation coverage saturates at 1, one can only go down to the 10% largest cover.  
Statistics of collocated TRMM - AIRS data in the period 2008-2013. 

 
   840 

 

Figure 5: Average lLatent heating profiles derived from TRMM (Shige et al., 2009) producaveraged by over UT clouds (left) and by 

over mid- and low-level clouds (right) identified by AIRS, at the local time of 1:30 AM. In addition to the tropical mean are shown 

means of over non-precipitating, lightly precipitating and heavily precipitating clouds. These precipitation conditions are given by 
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the rain rate indicator classification derived from ML models applied to CloudSat and AIRS-ERA Interim machine learningand 845 
trained with CloudSat. Statistics of collocated TRMM-AIRS in the period 2008-2013.   

 
 

Figure 6: Normalized Density distributions of a) cloud emissivity, b) cloud top height, c) difference between cloud top and CIRS 

near-top heightcloud fuzziness, scaled by cloud vertical extent, and d) normalized cloud vertical extent, scaled by cloud top height, 850 
for precipitating and non-precipitating, lightly precipitating and heavily precipitating UT clouds.  Statistics is for 2008-2015 at 

1:30AM. 
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Figure 7: MCS properties as function of their life cycle stage, given by fraction of convective core area within the system (1 

corresponds to developing phase, with no anvil and 0.1 to dissipating stage). Only cloud systems with a single convective core are 

considered: a) ratio of precipitating area over MCS size, b) ratio of strong rain area over precipitating area and c) size and top 

height of the convective cores. For a) and b) different thresholds on the rain fraction per grid cell are compared. The condition on 860 
strong rain also includes the condition that at least 50% of the grid cells are covered by any rain.  Statistics combines observations 

at 1:30AM and 1:30PM, for 2008-2018. 
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Figure 7: Ratio of relative strong rain area over precipitating area (left) and fraction of rainy area (right) within single core 

convective systems as a function of life cycle stage (top), given by decreasing convective core fraction, and within mature 

convective systems as a function of convective depth (bottom), given by decreasing minimum temperature within the 870 

convective cores. The convective cores are defined by cloud emissivity > 0.98, fraction of Cb within grid cell > 0.2 and DZ/Ztop 

> 0.6. Different thresholds on the rain fraction per grid cell to be included into the areas are compared. The condition on strong 

rain also includes the condition that at least 50% of the grid cells are covered by any rain.  Statistics combines observations at 
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1:30AM and 1:30PM, for 2008-2018. 
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Figure 8: Mature MCS system properties as function of their convective depth, given by decreasing minimum temperature within 

the convective cores: a) ratio of strong rain area over precipitating area, b) volume detrainment and thick anvil emissivity and c) 

50% warmest surface temperature underneath the MCSs and ratio of thin cirrus over total anvil area. For a) different thresholds 

on the fraction of strong rain per grid cell are compared and at least 50% of the grid cells are covered by any rain.  Statistics 

combines observations at 1:30AM and 1:30PM, for 2008-2018. 880 
 
Figure 10: Normalized frequency distributions of mature MCS system properties over the 30% warmest and coolest tropical ocean 

regions. Top panel rom left to right: height of convective cores, size of anvils, and ratio of areas with strong over total precipitation; 

bottom panel from left to right: ratio of areas with thin cirrus over total anvil, thick anvil emissivity, and thick anvil vertical extent. 

Statistics combines observations at 1:30AM and 1:30PM, for 2008-2018. 885 
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Figure 8: MCS properties as function of their life cycle stage, given by fraction of convective core area within the system (1 

corresponds to developing phase, with no anvil and 0.1 to dissipating stage): size and top height of the convective cores, vertical 

extent and emissivity of the thick anvils (emissivity > 0.5). Statistics combines observations at 1:30AM and 1:30PM, for 2008-2018. 890 
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Figure 9: Mature MCS system properties as function of their convective depth, given by the minimum temperature within the 

convective cores: ratio of areas with thin cirrus over total anvil, thick anvil emissivity and ratio of strong rain area over rainy area 

(right) within mature convective systems as a function of convective depth, given by decreasing minimum temperature within the 900 
convective cores. The convective cores are defined by cloud emissivity > 0.93, fraction of Cb within grid cell > 0.2 and DZ/Ztop > 

0.6. Different thresholds on the fraction of rain per grid cell to be included into the areas are compared. The condition on strong 

rain also includes the condition that at least 50 of the grid cells are covered by any rain.  Statistics combines observations at 

1:30AM and 1:30PM, for 2008-2018.  
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Figure 10: Normalized frequency distributions of mature MCS system properties over the 30% warmest and coolest tropical ocean 

regions. Top panel rom left to right: height of convective cores, size of anvils, and ratio of areas with strong over total precipitation; 

bottom panel from left to right: ratio of areas with thin cirrus over total anvil, thick anvil emissivity, and thick anvil vertical extent. 910 
Statistics combines observations at 1:30AM and 1:30PM, for 2008-2018. 
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 Figure 911: Relative aAnnual cycle of a) Iorg, b) ROME, c) COP, d) total area of convective objects, and e) mean convective areas 

and f) number of convective areas. These areas are built from grid cells covered by at least 90% UT clouds, with rain rate indicator 

> 2 (dark blue), Tcld < 230 K (red) and cld > 0.95 (red), or using the 2% largest rain rate indicator values (cyan). The latter leads to 

a constant total area of convection. Monthly statistics of UT clouds averaged over four observation times from 2008 to 2018. 
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Figure 102: right: Annual cycle of a) MCS core top height (blue), total anvil area over convective core areahorizontal detrainment 

(redgreen) and fraction of subsidence area (given by clear sky and low-level clouds) over the tropics (greenred) and b) percentage 925 
oratio off thin cirrus over total anvil size (cyanblue) and fraction of single core MCSs (redgreen). Monthly statistics averaged over 
four observation times from 2008 to 2018.   
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Figure 113: Change in radiative heating rates with respect to deseasonalized Iorg computed from convective areas defined by grid 

cells with rain indicator > 2 (left) and by grid cells with Tcld < 230 K and cld > 0.95 (right).  The troposphere is divided into three 930 
layers: upper troposphere (100-200 hPa), mid troposphere (200-600 hPa), and low troposphere (600-900 hPa). Monthly statistics 
from 2008 to 2018.  
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Figure 124: Time series of deseasonalized monthly anomalies of Iorg, using different proxies to define the convective areas. The 

deseasonalization was done by computing 12-month running means. The monthly anomalies are shown in light grey. 940 
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Figure 13: Density distributions of MCS system properties, comparing April and July (top) and cooler and warmer years (bottom): 

height of convective cores (left), size of areas with strong precipitation (middle) and system size (right). Statistics combines 945 
observations at 1:30AM and 1:30PM, for 2008-2018, for MCSs with core fraction > 0.1. 

 


