
Responses to reviewers 
 
We thank the reviewers for their comments and suggestions. Each of their comments is copied 
below in blue, and our responses follow in black. Line numbers refer to the tracked-changes 
document. 
 
Reviewer #1 
 

1. The authors describe the inversion approach as using a Kalman filter, but it is unclear to 
me in what way is this a Kalman filter. On page 6, lines 156-157, they mention that 
instead of using a “full Kalman filter” they used a “suboptimal Kalman filter with fixed 
(diagonal) error covariance matrix.” If the covariance is fixed, and the model dynamics is 
not used to update the state nor the errors, how is the scheme a Kalman filter? It is 
unclear to me what is the difference between this scheme and what is referred to as a 
Bayesian synthesis inversion? I would describe this as a time-dependent Bayesian 
synthesis inversion. 
 
Thank you for raising this point. Our algorithm is a suboptimal Kalman filter that 
assumes a persistence model for state evolution. It is a form of Bayesian synthesis. It is 
classified as “suboptimal” because it uses a fixed error covariance matrix. To clarify this 
point, we now include a reference to Todling and Cohn (1994), who discussed 
suboptimal Kalman filters for atmospheric data assimilation (L. 77), and add the 
“suboptimal” qualifier on lines 77, 176, 236, 719. Our persistence state evolution model 
does not seek to predict the dynamics of Permian emissions, because the dynamics are 
too poorly understood. We now clarify this in Section 2.2 (L. 165, 177-178). 
 

2. Page 3, lines 70-72: The text states that “…starting from best available bottom-up prior 
estimates of emissions and using Bayesian synthesis to obtain optimized posterior 
estimates assimilating the information from TROPOMI. We use a Kalman filter to 
quantify weekly basin-wide emissions.” Based on this description, it sounds as though 
both the Bayesian synthesis inversion and the Kalman filter schemes are being used. It 
would be helpful if the authors could better explain this. Perhaps the distinction regarding 
how the two schemes are used can be added to the schematic in Figure 2? 
 
We only use one scheme, the suboptimal Kalman filter with persistence model, which is a 
form of Bayesian synthesis. To prevent confusion, we replace “synthesis” with “inverse 
modeling” in the introduction (L. 76). We retain “synthesis” in Section 2.2 documenting 
our Kalman filter methodology. 
 

3. Page 5, line 126: The text states that the observation vector assembles the observations 
for the week. Are the observations ingested sequentially during the week or does the 
inversion ingest weekly mean observations? This is somewhat unclear. 
 
The observations are ingested sequentially, not as averages. We now state this explicitly 
on L. 137-138. 
 



4. Table 2: The discussion in Section 3.5 is focused on comparing the estimated Permian 
emissions with previous TROPOMI-based estimates (which are given in Table 2). Are 
the differences in the emission estimates that are compared in Table 2 really meaningful? 
It seems to me that the errors for these emission estimates all overlap, with the exception 
of the McNorton et al. (2022) results. Thus, I am not sure how to interpret the discussion 
in Section 3.5. 
 
Good point! Many of the estimates in Table 1 are consistent within errors and we need to 
state that. We now do so on L. 378-379. Our discussion of potential biases is meant to 
address the fact that most previous estimates have central values near 3 Tg a-1, 20-35% 
lower than ours. 
 

5. Page 13, lines 309-311: The text here states that the range of reported estimates between 
this study and the Zhang et al. and Shen et al. studies can be explained by differences in 
the prior emissions and the background specification. Since this study has produced 
averaging kernels, the authors could consider substituting the EDF prior emissions with 
those used in the Zhang et al. and Shen et al. studies to see how much they impact the 
posterior emissions. The posterior emissions are given by x+ = Ax + (I – A)x-, with the 
contribution from the prior given by (I – A)x-, where x- is the prior and A is the 
averaging kernel matrix. How does this contribution change when the other priors are 
used? 
 
This is a great suggestion, thanks. We re-ran our weekly inversions using the EDF 
inventory scaled down to match the (lower) EPA inventory of Zhang et al. (2020), with 
total Permian emissions of 1.2 Tg a-1 instead of 2.7 Tg a-1. We find that the Kalman filter 
is robust to this change after a burn-in period of 7-8 weeks. We discuss this new result in 
Section 3.1 and Section 3.5. This comment also spurred new discussion in Section 3.5 of 
the importance of spatial bias in prior emission estimates. 
 

6. Figure 4 caption. Change “Figure” to “figure. Also, DOFS was already defined on Page 
6, line 171. 
 
Thank you for the correction. We include the definition of DOFS in the caption as an aid 
to readers who skim the figures. 
 

7. Page 16, line 398: I think the paragraph should start with “Table 2 summarizes…” 
 
Yes, that’s right.  

 
Reviewer #2 
 

1. In general, there are a few published papers in the same region that used similar approach 
(i.e. Zhang et al., 2020), although this submission is conducted at a weekly scale instead 
of a monthly or annual scale, the authors still need to address the improvement of their 
study from previous ones, i.e. approach in the inversion framework? or found the weekly 
relationship between CH4 emissions and other activity indexes? or used more robust 



observations? or prior emissions and background? 
 
We summarize the novelty of our study in the introductory paragraph: “Here we show 
how satellite observations can be used to quantify weekly temporal variability in oil and 
gas methane emissions from a major production basin (the Permian) over a ~30-month 
period, and we show that this temporal variability can be explained by specific activity 
drivers” (L. 48-51). We also summarize how this differs from previous contributions: “A 
number of studies have used TROPOMI observations for inverse analyses of emissions at 
the scale of individual oil and gas basins (Zhang et al., 2020; Schneising et al., 2020; Liu 
et al., 2021; Shen et al., 2021; 2022; McNorton et al., 2022), but have generally focused 
on seasonal or annual estimates” (L. 56-59). 
 

2. Line 19-21 “The mean oil and gas emission from the region (± standard deviation of 
weekly estimates) was 3.7 ± 0.9 Tg higher than previous TROPOMI inversion estimates 
that may have used too-low prior emissions or biased background assumptions”. It seems 
the inversion results are sensitive to prior emissions, have you tested or quantified this 
potential bias of using different prior emissions to your results? 
 
Great question, thanks. See our response to Reviewer #1, comment #5. We ran an 
additional weekly inversion using a down-scaled version of the EDF inventory as initial 
prior estimate, following the 2012 EPA inventory (1.2 Tg a-1 instead of 2.7 Tg a-1). These 
results are now discussed in Sections 3.1 and 3.5.  
 

3. Line 88-89, “19346 ± 13073 observations per week over our full inversion domain (96°–
110°W, 25°–38°N), including 3062 ± 2314”, The standard deviation of available data 
numbers in each week is so high and is comparable with averages, which indicates there 
are not enough data in some weeks, please address what the potential bias for emission 
inversion in these weeks with lower available observation numbers. And can you display 
the time series of available CH4 observation numbers in each week? 
 
Thanks for raising this point. We report that 124/127 of our weekly inversions have 
sufficient degrees of freedom for signal (DOFS) to estimate basin-wide emissions (L. 
272). Inversions for weeks with few to no observations/DOFS return the prior. We now 
clarify that “Inversions with low DOFS are mainly constrained by the prior emission 
estimate” (L. 271-272). Figure 4 currently shows the number of observations and DOFS 
for each week; we do not feel that a time series of observation count merits an additional 
figure. 
 
For some rainy or cloudy weeks, the available observation data can be sparse, leading to 
a large missing data gap in the study domain, and how will this situation affect inversion 
results for this large region?  The reason to mention this comment is that your following 
analysis of the relationship between CH4 emissions and activity indexes ignored the 
influence of available data. 
 
We find that we have sufficient observational information to infer emissions for the vast 
majority of our study period (124/127 weeks). To address your point that low information 



content can introduce error to the interpretation of temporal trends, we now say that 
inversions with low DOFS “may introduce smoothing error to the inference of weekly 
temporal trends” (L. 272-273). 
 

4. Line 92-94, “We use dynamic 3-hour boundary conditions from a global 4°×5° 
simulation corrected with spatially and temporally smoothed TROPOMI data as 
described by Shen et al. (2021). A one-month spin-up simulation starting from these 
boundary conditions is used for initialization”. As we know that CH4 background 
uncertainty (bias) will be carried on to calculated CH4 enhancement, which is directly 
related to posterior CH4 emissions, what the bias of CH4 background in this study and 
potential uncertainty in deriving CH4 emissions? 
 
As we say in the passage quoted here, our background is corrected relative to TROPOMI 
to remove bias between GEOS-Chem and the observations. Some spatially variable bias 
may remain due to model representation and smoothing error on the 4°×5° grid, and we 
include 8 coarse buffer elements in the state vector to mitigate this (discussed in Sect. 2.1, 
2.2, and 3.5). We further discuss background/boundary conditions as a source of error in 
Section 3.5 (L. 375-399). Running an ensemble of inversions with different boundary 
condition datasets is beyond the scope of this study. 
 

5. Line 110, “It attributes 94% of Permian emissions to oil and gas activity, and we assume 
the same fraction for our posterior emission estimates.”, Can you clarify what is the 
potential uncertainty of using the constant fraction of 94% to oil and gas activity in 
inversion results? As I know most inversion studies have the ability to constrain posterior 
emissions from different categories. 
 
Emissions in the Permian basin are dominated by oil and gas, which inversions cannot 
typically distinguish due to the spatial correlation of those sectors. Assuming a fixed prior 
sectoral breakdown of emissions (e.g., Z. Chen et al., 2022 ACP) is common in satellite-
based estimation of regional methane emissions. There is some error in the sectoral 
breakdown of the EDF inventory, but in any case the emissions are dominated by oil and 
gas, so this would be a small error. We now state this on L. 218-220. 
 

6. Section 2.2, As displayed in the reference list, there are some other inversion studies in 
the same domain, (i.e. Zhang et al., 2020), it's better to illustrate what the main 
improvement of your study when compared with these previous studies, because it's very 
hard for audiences to remember and distinguish the method difference between all related 
studies. 
 
See response to comment #1. 
 

7. Line 125, “mitigate boundary-condition errors (Shen et al., 2021; Varon et al., 2022).”, 
have you assessed the improvement of CH4 background with observations? 
 
The boundary conditions are corrected relative to TROPOMI observations. We find that 
our inversion (with 8 coarse buffer elements in the state vector) improves the mean 



TROPOMI bias in the Permian basin from -9.0 ppb to -2.0 ppb. We now state this in the 
text on L. 232-233. 
 

8. Line 136-137, “The error covariance matrices and are assumed diagonal with uniform 
error standard deviations of 50% and 15 ppb, respectively”, As I understand, the 50% 
uncertainty for prior inventory may represent regional averages not all grid cells in study 
domain, which can be much larger than 50%, the same as 15 ppb for observations and 
GEOS-Chem simulations, so whether the inversion results are sensitive to different 
values of 50% and 15 ppb, if you assign a slightly larger extent (i.e. 80%, and 20 ppb), 
how much will the results change? 
 
Thanks for this question. Our sensitivity inversions vary 𝛾, which has the same effect on 
the cost function as varying the prior and/or observational errors. Our assumption of 
uncorrelated errors exaggerates the information content of the observations, and 𝛾 
corrects for this. We now clarify this in Section 2.2 (L. 149-152). 
 
In figure 3, the weekly emission changes can vary by 100%, indicating the potential bias 
or uncertainty of CH4 emissions at weekly scale can be much larger than 50%. 
 
That’s true. The 50% error on individual state vector elements is an error standard 
deviation (L. 148), so larger deviations are allowed. We now clarify that our assumption 
of uncorrelated prior errors would underestimate the error on regional aggregated 
emissions (L.150-151). Our sensitivity inversions varying 𝛾 better quantify uncertainty 
on the regional scale (L. 152-154). 
 

9. Line 190, It seems the use of proportion 94% will largely influence your results of CH4 
emissions from oil and gas. I am curious why the inversion model cannot constrain CH4 
emissions from each category? 
 
See our response to comment #5. 
 

10. Data displayed in Figure 5 for model simulated xCH4 and observation.  
 
Overall, why tower based CH4 concentrations seem higher than simulations with both 
prior and posterior emissions (scatter plot is below 1:1 line)? Whether it indicates the 
posterior CH4 emissions are still underestimated? How about plotting time series of 
concentration? 
 
Whether one of the reasons for the large difference between model simulation and tower 
observations is the vertical gradient in the lowest GEOS-Chem model? And what is the 
height of the lowest model level? or aggregation error for spatial resolution between the 
point scale and regional scale(25km)? 
 
Line 256-257, “The mean satellite-inferred emission (0.72 Tg is 20% lower than the 
mean tower (0.88 Tg and Scientific Aviation (0.89 Tg estimates during the period of 
overlap”, From the above concentration comparisons, I also agree that the satellite-



inferred emissions are obviously underestimated. 
 
Thanks for raising this point. The good agreement with aerial emission estimates (Fig. 6) 
and higher basin-wide estimates than previously reported (Table 1) would suggest that 
our satellite-inferred emissions are not significantly underestimated. More likely is that 
the GEOS-Chem error is due to representation error (including vertical, as you point out) 
and transport error on the model grid, which we mention on L. 308-310. As we write on 
L. 305, the tower-model comparison is done in the nearest (3D) model grid cell. 
 

11. Line 398-410, It's better to display the comparisons between atmospheric inversions and 
multiple linear regression with figures instead of only using tables and numbers. 
 
Thank you for this comment. It prompted us to revisit our regression analysis. We found 
that predicting the four-week moving-average emissions, rather than the raw weekly 
estimates, leads to much higher explanatory power. We updated the analysis and 
discussion accordingly – including addition of a third regression model in Table 2 and 
new text in Section 3.6 (L. 485-531). We feel the table adequately communicates the key 
results that new well development and gas price are the most important predictors in this 
study.  
 

12. Line 438, “assuming 80% methane content for Permian”, whether the assumption of 
using 80% is reasonable, and what the general extent of this value in the study region? 
 
We cite Alvarez et al. (2018) for the 80% gas content figure, which is widely used in the 
literature (e.g., Zhang et al., 2020 Sci. Adv.; Shen et al., 2022 ACP). 
 

13. Line 398, “summarizes the models and results” I just guess the first author forget to 
delete this sentence of comment from other co-authors. 
 
Thanks, we meant to refer to Table 2 here. Fixed! 


