The paper presents the OSSE experiments results to demonstrate the benefit of GEMS
ozone observations in future applications. Both the methods and the data assimilation
results with additional OMI and surface synthetic observations are well presented.
However, improvement can be made if the authors can address the following
concerns.

We thank the reviewer for the thoughtful comments. Our point-by-point responses to
the comments are in blue. We have also carefully considered and addressed each
comment in the revised manuscript.

General:

When the influence of assimilation frequency is investigated, it is not clear how data
assimilation experiments with a longer assimilation time window of 3-hr are carried
out. Are the hourly surface station observations averaged inside the 3-hr time window?
Are the satellite data inside the 3-hr time window assumed to be valid at one
particular instance? If so, when are they supposed to be valid?

Response: In Exp 5-8, we reduce the number of assimilated observations and only
assimilate the daytime synthetic observations at discrete 3 h time steps (i.e., 01:00,
04:00, 07:00, and 10:00 UTC) of the GEOS-Chem model rather than taking the
average inside a 3 h time window. The satellite observations are assumed to be valid
and assimilated at the corresponding hour when available.

The authors found that sometimes the data assimilation has negative effects. For
instance, “In Japan and Mongolia, the assimilation of GEMS data generally
contributes to a deterioration of simulated ozone and even counteracts the positive
impact of surface observations when performing the joint assimilation.” It is not
impossible to encounter such cases. When this happens, it is probably worth to
investigate the reason for such a behavior. With the current OSSE setting, it is
probably not too hard to investigate the underlying causes.

Response: Accepted.
We have revised this part in the revised Section 3.1 (lines 299-303) as follows:

“However, the influence of assimilation efforts is complicated in East Asia, such as in
Japan and Mongolia where the a priori ozone and its bias are relatively low. In this
case, adding the synthetic GEMS observations results in a slight deterioration of
simulated ozone and even counteracts the positive impact of surface observations
when performing the joint assimilation. We attribute this partly to the improper
specification of model errors and the spatial spread of observational information via
transboundary transport.”



Specific:

Line 20: It is probably better to replace “data assimilation better represents” to “data
assimilation improves”

Response: Corrected.

We have replaced “better represents” with “improves”. Please see line 20 in the
revised manuscript.

Line 22: RMSE is a accuracy metric rather than a precision measure.
Response: Corrected.

We have replaced “precision improvements” with “significant improvements”. Please
see line 22 in the revised manuscript.

Line 113: Is “optimal estimation” the same as “optimal interpolation™?

Response: Optimal estimation is a regularized matrix inverse method based on Bayes’
theorem. It is commonly used in geosciences to solve different kinds of inverse
problems, particularly for atmospheric sounding (Rodgers, 2000). Optimal
interpolation, however, is a relatively simple but useful method of data assimilation,
which is a particular kind of inverse problem (Brasseur and Jacob, 2017).

Equation 5: It would be better to use "y" for variables in observation space.
Response: Corrected.

We have replaced “  ” with “ 7 in the revised Section 2.3. Please see lines 196—197
in the revised manuscript.

Line 196: Xap should be in a vector in observation space, but it appears as a state
vector. It is better to clearly differentiate state and observation vectors.

Response: Accepted.

is the a priori profile (vector) used in the satellite retrieval procedure (Eq. 1 in
Section 2.2). In the data assimilation procedure, the a priori profile , and

averaging kernels  from satellite retrievals (Section 2.2) are used for the calculation
of observation operator  for satellite measurements as follows. This procedure aims
to remove the dependence of the analysis on the model-retrieval comparison
(Miyazaki et al., 2012, 2020) following our previous work (Shu et al., 2022).
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We have added the definition of the state vector () and use for the observation
vector in the revised Section 2.3 (lines 195-196) to differentiate state and observation
vectors as follows:

“At each assimilation time step, we calculate the optimal estimate of the true
ozone concentrations ( , state vector) as a weighted average of the model forecast
and the observation .”

Line 211: It is reasonable to assume no correlation between surface station
observations. But it is probably questionable to assume no correlation for satellite
observations.

Response: Accepted.

Since the horizontal resolution of all the synthetic observations (satellite and surface
observations) is much finer than that of the GEOS-Chem model (0.5°x0.625°), we
adopt the super-observation approach to produce more representative data and reduce
the horizontal observation error correlations (Miyazaki et al., 2012; Barré¢ et al., 2015;
Ma et al., 2019). The approach is to average the observations (including errors and
averaging kernels) across each 0.5° latitude x 0.625° longitude bin. In addition, it is
also computationally cheaper to use super-observations in satellite data assimilation.
We have previously discussed this in Section 2.3.

We have rephrased this part in the revised Section 2.3 (lines 213-218) to avoid
ambiguity as follows:

“ is the observation error covariance matrix, including the contributions from the
measurement error and the representativeness error. Since the horizontal resolution of
all synthetic observations (GEMS, LEO satellite, and surface observations) is much
finer than that of the model, we apply a super-observation approach to produce more
representative data and reduce the horizontal observation error correlations (Miyazaki
et al., 2012; Ma et al., 2019). A super-observation is generated by averaging all the
observations (including errors and averaging kernels) within the same 0.5° latitude x
0.625° longitude GEOS-Chem model grid. Thus,  is assumed to be diagonal, that is,
the observation errors are not correlated.”

Figure 6d: What do the two different shades of color represent in the lower two
panels?

Response: Corrected.
We have revised the caption of Fig. 6 (lines 729-736) to make it clear as follows:

“Figure 6. Comparison of the averaged diurnal cycle of (a) surface ozone, (b) mean



bias, and (¢) RMSE, as well as (d) the histogram (in percentage) of the temporal
correlation coefficient of hourly ozone at validation grids (Fig. S4), as simulated by
the control run (a priori, in blue) and three assimilation runs (Exp 1-3 in Table 1, in
green, yellow, and red, respectively) relative to the nature run (“True”, black line in
panel a) for June 2020. In panel (d), the green, yellow, and red bars respectively
represent the frequency (%) of the temporal correlation coefficient of simulated ozone
between the three assimilation runs (Exp 1-3) and the nature run, which is in
comparison to that of the control run (in blue). The blue bars are the same in the three
sub-panels to better illustrate the improvements in the temporal correlation of
simulated ozone relative to the control run. The mean values of the temporal
correlation coefficient (colored the same as lines in panel a) at all validation grids are
inset.”
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