We thank the reviewers for carefully reading our manuscript and for their valuable comments. Listed below are our responses in blue font addressing the general and specific comments from the reviewers of our manuscript.

Anonymous Referee #2

Summary: This manuscript details the viscosity measurement of organic-inorganic mixed droplets with varying RH at room temperature and shows better comparison results with AIOMFAC-VISC makes this a solid paper and provides important dataset. This manuscript is very appropriate for ACP and only minor revisions are needed. There are a few points I'd like to ask the authors to consider:

General Comments of Referee #2

[1] Starting in the Abstract, the physical state performance of organic-inorganic mixed droplets has not been highlighted as viscosity. It's better to show the main part of physical state from the results. In the Introduction, physical state is mentioned by describing the phase transition between liquid and solid state. Does the phase state equals to physical state? Aerosol particles are frequently internally mixed, but also shows phase separation with different state. The use of physical state needs to be clear in the paper.

[A1] Thank you for the comment and suggestion. Perhaps a brief clarification: we distinguish between the terms "viscosity" and "physical state". Strictly, the physical states of relevance here (in the classical sense) are gaseous, liquid, and solid. However, in the context of viscous liquids, additional terms like a "semisolid state" are widespread to characterize different physicochemical or mechanical properties of viscous (liquid) materials. Hence, while viscosity provides a quantifiable way to distinguish among "liquids", we also emphasize in this study the occurrence of phase transitions and associated changes in physical state, e.g. from (viscous) liquid to crystalline solid. The term phase state is typically used synonymous with physical state, but in the context of viscosity of liquids, states like semisolid may be considered a distinct phase state (but not a distinct physical state). For consistency, we use the term physical state and avoid the term phase state in the revised manuscript. To address the reviewer's comment, we have modified several sentences of the Abstract to the following:

"Herein, we quantified viscosities at 293 ± 1 K upon dehydration for the binary systems, sucrose/H₂O and ammonium sulfate (AS)/H₂O, and the ternary systems, sucrose/AS/H₂O for organic-to-inorganic dry mass ratios (OIRs) = 4:1, 1:1, and 1:4. For binary systems, the viscosity of sucrose/H₂O particles gradually increased from $\sim 4 \times 10^{-1}$ to $> \sim 1 \times 10^{8}$ Pa·s when the relative humidity (RH) decreased from ~81% to ~24% ranging from liquid to semisolid or solid state, which agrees with previous studies. The viscosity of AS/H₂O particles remained in the liquid state (< 10^2 Pa·s) for RH > ~50%, while for RH \leq ~50%, the particles showed a viscosity of > $\sim 1 \times 10^{12}$ Pa·s, corresponding to a solid state. In case of the ternary systems, the viscosity of organic-rich particles (OIR = 4:1) gradually increased from $\sim 2 \times 10^{-1}$ to $\sim 1 \times 10^{8}$ Pa·s for a RH decrease from ~81% to ~18%, similar to the binary sucrose/H₂O particles. In the ternary particles for OIR = 1:1, the viscosities ranged from less than $\sim 1 \times 10^2$ for RH > 34% to $> \sim 1 \times 10^8$ Pa·s at $\sim 27\%$ RH. Compared to the organic-rich particles, in the inorganic-rich particles (OIR = 1:4), drastic enhancement in viscosity was observed as RH decreased; the viscosity increased by approximately 8 orders of magnitude during a decrease in RH from 43% to 25%. Based on the collected viscosity data, all particles studied in this work were observed to exist as a liquid, semi-solid or solid depending on the RH."

[2] P3L68: '...the ozone uptake coefficient of semi-solid particles was approximately one order of magnitude less than that of liquid particles...' Is the one order of magnitude very important and show much impact on the further reaction? This sentence did not highlight the importance of phase transition.

[A2] To address the referee's comment, we have modified this sentence to the following:

"For example, Steimer et al. (2015) showed that the ozone uptake coefficient of semi-solid particles was approximately one order of magnitude less than that of liquid particles. This result can influence significantly the reaction limitation of mass transport."

Reference:

Steimer, S. S., Berkemeier, T., Gilgen, A., Krieger, U. K., Peter, T., Shiraiwa, M., and Ammann, M.: Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass, phys. Chem. Chem. Phys., 17, 31101-31109,

https://doi.org/10.1039/C5CP04544D, 2015.

[3] P5L131: Optical observation of particles during dehydration: It should be notice why the optical observation is needed in the viscosity measurement experiment. It seems to provide direct evidence that when the droplets effloresce and the poke and flow test limitation occurs. This should be mentioned in the discussion part.

[A3] To address the referee's comment, the following text has been added to Section 2.3 of the revised manuscript.

"To confirm whether the particles studied undergo efflorescence or not during dehydration, particle morphologies were observed optically."

[4] P7L215: '...A gradual increase in the viscosities of was observed...' "of" can be removed.[A4] We have now corrected it.

[5] Figure 3: Optical images use different absolute length of white scale to indicate 20 μ m among 4 subfigures. It seems that the viscosity measurement detect among 20 -100 μ m droplets at random. Does the droplet size influence the measurement uncertainty between bead-mobility and poke-and-flow techniques?

[A5] We did not observe a size dependence for the relatively narrow range of sizes investigated during the bead-mobility and poke-and-flow experiments. Renbaum-Wolff et al. (2013) and Rovelli et al. (2019) also showed viscosities with no significant difference in the micrometer-sized range of particles at a given relative humidity.

References:

Renbaum-Wolff, L., Grayson, J., and Bertram, A.: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples, Atmos. Chem. Phys., 13, 791-802, https://doi.org/10.5194/acp-13-791-2013, 2013.

Rovelli, G., Song, Y.-C., Maclean, A. M., Topping, D. O., Bertram, A. K., and Reid, J. P.:

Comparison of approaches for measuring and predicting the viscosity of ternary component aerosol particles, Anal. Chem., 91, 5074-5082, https://doi.org/10.1021/acs.analchem.8b05353, 2019.

[6] Figure 4: As the author mentioned, the red dots do not cover the $\sim 30 - 40\%$ RH before the cracking RH ($\sim 25\%$) by using the poke and flow technique. Why does the bead mobility method cannot measure the droplets between 30 – 40% RH? It should be the large variation through liquid to semi-solid phase transition, and the bead mobility technique should be able to measure the viscosity up to 10^3 Pa s. It needs to explain here.

[A6] To address the referee's suggestion, we have now added the following text in Sect. 3.2 (lines: 239 - 242).

"In the RH range from ~40 to ~30% we could not quantify the viscosities of the particles with sufficient accuracy, neither with the bead-mobility nor the poke-and-flow techniques. In this RH range, the bead movements inside the particles were too slow to observe and quantify. In addition, when we poked the particles, the particles would stick to the needle, rendering that approach unsuitable."

[7] Figure 4: "...Mean viscosities shown are the result of bead-mobility experiment with the error along the x-axis direction representing standardization of 3 - 5 beads in one or two particles at given RH." "shown" can be removed.

[A7] We have corrected it in the revised manuscript.

[8] Figure 4: Does the viscosity measurement of sucrose and AS mixed droplets have the literature results to compare. This organic-inorganic mixed system is common and usually been chosen for lab experiment. More comparison of the viscosity data obtained by different techniques are needed.

[A8] Thank you for the comment. Right. This sucrose/AS system is common and has been chosen for other laboratory studies; however, studies on viscosity are limited. Very recently, a paper of Tong et al. (2022) showed the viscosity of sucrose/AS droplet for OIR = 1:1 using an optical tweezer setup at 297 K. We have now added their data points in Fig. 4 and rephrased

related sentences (lines: 232 - 235).

"Results showed that viscosities for sucrose/AS droplet from this study and Tong et al. (2022) are consistent within ~1 order of magnitude at given RH. The viscosity deviations at give RH when comparing the two series of measurements may come from uncertainties associated with the different techniques, temperature ranges, and mode of RH changes (i.e. decreasing or increasing RH)."

Reference:

Tong, Y.-K., Liu, Y., Meng, X., Wang, J., Zhao, D., Wu, Z., and Ye, A.: The relative humiditydependent viscosity of single quasi aerosol particles and possible implications for atmospheric aerosol chemistry, Phys. Chem. Chem. Phys., https://doi.org/10.1039/D2CP00740A, 2022.