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Parameter Calculation and Compound Categorization.  

The value of double-bond equivalent (DBE) was calculated to reflect the sum of 

π-bonds and rings in a neutral molecule (Lechtenfeld et al., 2014; Qiao et al., 2020). 

The equation was shown below. 

DBE = 1 + NC –NH/2 + NN/2                                            (1) 

where the NC, NH, and NN denote the number of carbon, hydrogen, and nitrogen atoms 

in a molecular formula, respectively. 

The modified aromaticity index (AImod) can be used to reflect the aromaticity of 

organic molecules, which was calculated by the following equation (Koch and Dittmar, 

2006; Schmidt et al., 2017). 

AImod = (1 + NC – 0.5 × NO – NS – 0.5 × NN – 0.5 × NH)/(NC – 0.5 × NO – NS – NN)     (2) 

where the NC, NH, NO, NN, and NS denote the number of carbon, hydrogen, oxygen, 

nitrogen, and sulfur atoms in a molecular formula, respectively. 

The carbon oxidation state (OSc) is an indicator to describe the evolving 

composition of aerosol organics undergoing oxidation processes (Kroll et al., 2011). 

For assignable molecular formulas, OSC was calculated with following equation. 

OSC ≈ 2 × NO/NC –NH/NC                                                                   (3) 

where the NC, NH, NO, and NN denote the number of carbon, hydrogen, oxygen, and 

nitrogen atoms in a molecular formula, respectively. Although the heteroatoms (N, S, 

and P) can introduce some uncertainties to the OSC of a given molecule in the 

measurement of ultrahigh resolution ESI-MS, the influences of these heteroatoms on 

OSC of the orgainc aerosols are generally small (Kroll et al., 2011). 
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In this sutdy, the molecular formulas of organic molecules were classified into five 

categories according to the AImod range and ratios of H/C and O/C. Specifically, these 

categories include (A) unsaturated aliphatic-like (1.5 ≤  H/C < 2.0), (B) highly 

unsaturated-like (AImod ≤ 0.5 and H/C < 1.5), (C) highly aromatic-like (0.5 < AImod 

≤ 0.67), (D) polycyclic aromatic-like (AImod > 0.67), and (E) saturated-like (H/C ≥ 

2.0 or O/C ≥ 0.8) molecules (Seidel et al., 2014; Sihui et al., 2021). Considering that 

the numerous isomers of each formula, the divided categories only represent the 

compounds cantaining the most likely functional structure mentioned above (Butturini 

et al., 2020; Xie et al., 2021). 

 

Aerosol Liquid Water (ALW) Prediction 

The model ISORROPIA-II was used to estimate the water mass concentration with 

particle-phase concentrations of Na+, NH4
+, K+, Ca2+, Mg2+, SO4

2−, NO3
−, and Cl−, as 

well as meteorological data (ambient temperature and relative humidity) as inputs (Guo 

et al., 2015; Nguyen et al., 2016; Tan et al., 2017). In this study, the model was run in 

the “reverse mode” without inputs of gas-phase parameters (Nguyen et al., 2015; Xu et 

al., 2020). In addition, the thermodynamically metastable state was set in the 

subsequent calculation (Guo et al., 2015; Nguyen et al., 2015; Nguyen et al., 2016). The 

“forward mode” was also run with inputs of only particle-phase ion concentration data, 

temperature, and relative humidity. The calculation results of water concentrations 

showed little difference irrespective of the mode used, which is consistent with the 

previous measurements (Guo et al., 2015; Hennigan et al., 2015).  
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Due to the complex composition of aerosol organics, it is difficult to directly 

quantify the mass concentration of water associated with organic fraction (Cruz and 

Pandis, 2000; Nguyen et al., 2016; Sareen et al., 2013). Accordingly, the mass 

concentration of water derived from organic compounds was predicted using a 

simplified model with the Zdanovskii−Stokes−Robinson (ZSR) mixing rule, as 

suggested by previous studies (Nguyen et al., 2015; Nguyen et al., 2016). Briefly, the 

hygroscopic growth of aerosol mixtures can be estimated using weighted 

hygroscopicity of each component according to their dry volume fractions (Bian et al., 

2014; Nguyen et al., 2014; Nguyen et al., 2016). The detailed calculation was shown 

below (Kreidenweis et al., 2008; Petters and Kreidenweis, 2007). 

Vw, o = Vo κorg aw / (1 – aw)                                             (4) 

where Vw, o and Vo are the volumes of water and organics, respectively. κorg is 

dimensionless and represents the hygroscopicity parameter of the organics. aw is also 

dimensionless and indicates water activity. The typical value of 1.4 g cm−3 for organic 

density was used to calculate the Vo value (Davidson et al., 2005; Turpin and Lim, 2001). 

In this study, the κorg value of 0.08 was used for urban aerosol (Cerully et al., 2015; 

Dusek et al., 2010; Gunthe et al., 2009; Nguyen et al., 2016). The aw value can be treated 

as relative humidity to simplify the calculation (Nguyen et al., 2015). This consideration 

was based on the following assumptions. The effect of aerosol curvature is insignificant. 

Furthermore, the effect of aerosol water uptake on ambient vapor pressure is also 

negligible (Bian et al., 2014). However, this assumption may lead to an overestimation 

in hygroscopicity (4–11%) (Nguyen et al., 2014). 
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Table S1. The arithmetic and peak-intensity-weighted averages of the elemental ratios and DBE values for different compound subgroups in 

different PM2.5 samples. 

PM2.5 samples 

All compounds CHO CHON 

O/C ± SD 

O/Cw 

H/C ± SD 

H/Cw 

DBE ± SD 

DBEw 

O/C ± SD 

O/Cw 

H/C ± SD 

H/Cw 

DBE ± SD 

DBEw 

O/C ± SD 

O/Cw 

H/C ± SD 

H/Cw 

DBE ± SD 

DBEw 

Air spray 

(23 March) 

0.52 ± 0.21 

0.56 

1.35 ± 0.36 

1.56 

6.93 ± 3.33 

4.51 

0.46 ± 0.17 

0.49 

1.24 ± 0.35 

1.27 

7.61 ± 3.19 

7.04 

0.49 ± 0.19 

0.46 

1.21 ± 0.31 

1.24 

8.61 ± 3.17 

8.22 

Ground aspersion 

(23 March) 

0.53 ± 0.21 

0.55 

1.27 ± 0.41 

1.56 

7.44 ± 3.64 

4.57 

0.47 ± 0.17 

0.49 

1.09 ± 0.38 

1.05 

8.45 ± 3.52 

8.95 

0.47 ± 0.16 

0.43 

1.05 ± 0.31 

1.13 

9.79 ± 2.98 

9.18 

Air spray 

(24 March) 

0. 49± 0.2 

0.52 

1.33 ± 0.36 

1.56 

7.15 ± 3.32 

4.58 

0.44 ± 0.17 

0.47 

1.21 ± 0.36 

1.23 

8.06 ± 3.59 

7.57 

0.45 ± 0.17 

0.42 

1.20 ± 0.30 

1.24 

8.71 ± 2.73 

8.28 

Ground aspersion 

(24 March) 

0.55 ± 0.21 

0.57 

1.29 ± 0.40 

1.57 

7.30 ± 3.61 

4.45 

0. 48 ± 0.15 

0.50 

1.08 ± 0.38 

1.06 

9.50 ± 4.13 

9.21 

0.50 ± 0.16 

0.47 

1.07 ± 0.31 

1.14 

9.40 ± 2.79 

8.88 

Air spray 

(25 March) 

0.46 ± 0.19 

0.45 

1.23 ± 0.41 

1.48 

8.36 ± 4.18 

5.54 

0.42 ± 0.15 

0.43 

1.09 ± 0.40 

1.07 

9.57 ± 4.38 

9.27 

0.42 ± 0.15 

0.39 

1.06 ± 0.33 

1.10 

10.47 ± 3.60 

9.88 

Ground aspersion 

(25 March) 

0.18 ± 0.21 

0.57 

1.25 ± 0.39 

1.59 

12.00 ± 3.48 

4.23 

0.49 ± 0.17 

0.52 

1.14 ± 0.38 

1.10 

7.68 ± 3.18 

8.07 

0.49 ± 0.16 

0.46 

1.07 ± 0.31 

1.15 

9.66 ± 3.10 

8.88 

No water spray (A) 

(26 March) 

0.55 ± 0.22 

0.54 

1.29 ± 0.38 

1.54 

7.49 ± 3.69 

4.79 

0.47 ± 0.16 

0.50 

1.14 ± 0.36 

1.14 

8.96 ± 4.14 

8.54 

0.51 ± 0.17 

0.45 

1.09 ± 0.31 

1.14 

9.44 ± 2.97 

8.97 

No water spray (B) 

(26 March) 

0.52 ± 0.21 

0.61 

1.31 ± 0.38 

1.56 

7.18. ± 3.37 

4.47 

0.47 ± 0.17 

0.49 

1.18 ± 0.36 

1.17 

8.07 ± 3.45 

8.09 

0.48 ± 0.16 

0.47 

1.10 ± 0.31 

1.15 

9.27 ± 2.88 

8.83 
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Figure S1. Map and diagram showing (a) the location and surrounding of the sampling 

site. The symbol of “γ” indicates the location where PM2.5 mass concentration was 

monitored before and after mist cannon truck passed. The symbols of “α” and “ꞵ” refer 

to (b) the locations where the mist cannon truck photograph and the traditional 

sprinkling truck photograph were taken respectively. The symbol of “A” indicates that 

(d) the sampling was conducted on the air spray road segment or no water spray road 

segment (A). The symbol of “B” indicates that (d) the sampling was conducted on the 

ground aspersion road segment or no water spray road segment (B). The conceptual 

diagram of the sampling campaign is shown in figure (e). The maps (figure a and d) are 

from the Baidu map (Baidu, China). 
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Figure S2. Classification of CHO, CHON, CHOS, and CHONS species into subgroups 

according to the number of O atoms in their molecules in WSOM in PM2.5 collected 

from different cases: (a, b, and c) air spray road segment vs ground aspersion road 

segment and (d) no water spray road segment (A) vs no water spray road segment (B). 
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Figure S3. Van Krevelen diagrams of unique CHO compounds in WSOM in PM2.5 

collected from different cases: air spray road segment vs ground aspersion road segment 

on (a) March 23, (b) March 24, and (c) March 25 and two road segments without water 

spray (A vs B) on (d) March 26. For the above cases of paired comparison, the unique 

CHO compounds indicate the CHO molecules identified in PM2.5 collected from the air 

spray (/no water spray-A) road segments. The classifications of compounds include (A) 

unsaturated aliphatic-like, (B) highly unsaturated-like, (C) highly aromatic-like, (D) 

polycyclic aromatic-like, and (E) saturated-like molecules.  
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Figure S4. OSc of each CHO molecule in WSOM in PM2.5 collected from different 

cases: air spray road segment vs ground aspersion road segment on (a) March 23, (b) 

March 24, and (c) March 25 and no water spray road segment (A) vs no water spray 

road segment (B) on (d) March 26. 
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Figure S5. Van Krevelen diagrams of CHON compounds in WSOM in PM2.5 collected 

from different cases: air spray road segment vs ground aspersion road segment on (a) 

March 23, (b) March 24, and (c) March 25 and two road segments without water spray 

(A vs B) on (d) March 26. The circles of different colors indicate the unique organic 

compounds identified in the above cases of paired comparison. Common molecules 

identified in different cases are shown as gray circles. The classifications of compounds 

include (A) unsaturated aliphatic-like, (B) highly unsaturated-like, (C) highly aromatic-

like, (D) polycyclic aromatic-like, and (E) saturated-like molecules. 
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Figure S6. Van Krevelen diagrams of unique CHON compounds in WSOM in PM2.5 

collected from different cases: air spray road segment vs ground aspersion road segment 

on (a) March 23, (b) March 24, and (c) March 25 and two road segments without water 

spray (A vs B) on (d) March 26. For the above cases of paired comparison, the unique 

CHON compounds indicate the CHON molecules identified in PM2.5 collected from 

the air spray (/no water spray-A) road segments. The classifications of compounds 

include (A) unsaturated aliphatic-like, (B) highly unsaturated-like, (C) highly aromatic-

like, (D) polycyclic aromatic-like, and (E) saturated-like molecules. 
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Figure S7. OSc of unique CHON2 molecules in WSOM in PM2.5 collected from 

different cases: air spray road segment vs ground aspersion road segment on (a) March 

23, (b) March 24, and (c) March 25 and two road segments without water spray (A vs 

B) on (d) March 26. For the above cases of paired comparison, the unique CHON2 

compounds indicate the CHON2 molecules identified in PM2.5 collected from the air 

spray (/no water spray-A) road segments. The light orange background indicates areas 

of HOA (hydrocarbon-like organic aerosol), BBOA and VEOA (biomass burning and 

vehicle emission organic aerosols) (Kroll et al., 2011; Tong et al., 2016), SV-OOA 

(semivolatile oxidized organic aerosol), and LV-OOA (low-volatility oxidized organic 

aerosol) (Kroll et al., 2011). The grey circles refer to the identified oxidation-product 

pairs. 
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Figure S8. OSc of each CHON molecule in WSOM in PM2.5 collected from different 

cases: air spray road segment vs ground aspersion road segment on (a) March 23, (b) 

March 24, and (c) March 25 and no water spray road segment (A) vs no water spray 

road segment (B) on (d) March 26. 
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