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Abstract. The unprecedented lockdown of human activities during the COVID-19 pandemic have significantly influenced 23 

the social life in China. However, understanding of the impact of this unique event on the emissions of different species is 24 

still insufficient, prohibiting the proper assessment of the environmental impacts of COVID-19 restrictions. Here we 25 

developed a multi-air pollutant inversion system to simultaneously estimate the emissions of NOx, SO2, CO, PM2.5 and PM10 26 

in China during COVID-19 restrictions with high temporal (daily) and horizontal (15km) resolutions. Subsequently, 27 

contributions of emission changes versus meteorology variations during COVID-19 lockdown were separated and quantified. 28 

The results demonstrated that the inversion system effectively reproduced the actual emission variations of multi-air 29 

pollutants in China during different periods of COVID-19 lockdown, which indicate that the lockdown is largely a 30 

nationwide road traffic control measurement with NOx emissions decreased substantially by ~40%. However, emissions of 31 

other air pollutants were found only decreased by ~10%, both because power generation and heavy industrial processes were 32 

not halted during lockdown, and residential activities may actually have increased due to the stay-at-home orders. 33 

Consequently, although obvious reductions of PM2.5 concentrations occurred over North China Plain (NCP) during 34 

lockdown period, the emission change only accounted for 8.6% of PM2.5 reductions, and even led to substantial increases of 35 

O3. The meteorological variation instead dominated the changes in PM2.5 concentrations over NCP, which contributed 90% 36 
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of the PM2.5 reductions over most parts of NCP region. Meanwhile, our results also suggest that the local stagnant 37 

meteorological conditions together with inefficient reductions in PM2.5 emissions were the main drivers of the unexpected 38 

COVID-19 haze in Beijing. These results highlighted that traffic control as a separate pollution control measure has limited 39 

effects on the coordinated control of O3 and PM2.5 concentrations under current complex air pollution conditions in China. 40 

More comprehensive and balanced regulations for multiple precursors from different sectors are required to address O3 and 41 

PM2.5 pollution in China. 42 

1 Introduction 43 

A novel coronavirus disease (COVID-19) broke out in Wuhan at the end of 2019 but quickly spread across the whole 44 

China within a month. To curb the spread of the virus, strict epidemic control measures were implemented by Chinese 45 

governments to prevent large gatherings, including strict travel restriction, shutting down of non-essential industries, 46 

extended holidays, closing of schools and entertainment houses(Cheng et al., 2020). These restrictions have had a significant 47 

impact on the industrial activities and social life, as exemplified by the drop of China’s industrial output by 15-30% 48 

(https://data.stats.gov.cn/, last accessed on 22 Oct, 2022) and the dramatic decrease of traffic flow by 60–90% in major cities 49 

of China during COVID-19 epidemic (http://jiaotong.baidu.com/, last accessed on 22 Oct, 2022), which provides us a natural 50 

experiment to examine the responses of the emissions and air quality on the changes in human activities.  51 

It has been well documented that the short-term stringent emission control targeted on power generator or heavy 52 

industry enacted by Chinese government during certain societal events, such as the 2008 Olympics Games, 2014 Asia-53 

Pacific Economic Cooperation conference and 2015 China Victory Day Parade, is an effective way to reduce emissions and 54 

improve air quality (Okuda et al., 2011; Wang et al., 2014; Tang et al., 2015; Zhang et al., 2016; Wu et al., 2020; Chu et al., 55 

2018). However, different from those stringent emission controls, the COVID-19 restrictions are inclined to affect emissions 56 

from sectors more closely to social life whose influence on emissions has still not well been assessed. Previous studies 57 

suggest that the COVID-19 restrictions have substantially reduced the China’s anthropogenic emissions from almost all 58 

sectors (Zheng et al., 2021; Huang et al., 2021; Xing et al., 2020). For example, by using a bottom-up method based on near-59 

real-time activity data, Zheng et al. (2021) reported that the emissions of NOx, SO2, CO and primary PM2.5 decreased by 36%, 60 

27%, 28% and 24% during COVID-19 restrictions, mostly due to the reductions in industry and transportation sector. Xing 61 

et al. (2020), by using a response model, estimated stronger COVID-19 shutdown effects on emissions over the North China 62 

Plain (NCP) with emissions of NOx, SO2 and primary PM2.5 dropped by 51%, 28% and 63%, respectively. Others argue that 63 

the COVID-19 restriction may mainly affect the emissions from transportation, light industry and manufacturing, while it 64 

has much smaller effects on the emissions from the power generator and heavy industry because of their non-interruptible 65 

processes (Chu et al., 2021; Hammer et al., 2021; Le et al., 2020; Zhao et al., 2020). Moreover, the residential emissions may 66 

even increase during the COVID-19 lockdown due to the increased demanding for space heating and cooking with the stay-67 

at-home orders. Therefore, Le et al. (2020) only considered the NOx reductions during COVID-19 restrictions in their 68 
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investigation of the severe haze during COVID-19 lockdown, and similarly, Hammer et al. (2021) only considered the 69 

emission reductions in the transportation sector. This indicates that there has large uncertainty in the current understanding of 70 

the effects of COVID-19 restrictions on the emissions of different species. 71 

Quantification of the emission changes of different species and different sectors during the COVID-19 lockdown is thus 72 

necessary for the comprehensive understanding of the environmental impacts of COVID-19 restrictions. In particular, 73 

although observations indeed show decreases of air pollutant concentrations during COVID-19 restrictions(Fan et al., 2020; 74 

Wang et al., 2021; He et al., 2020; Shi and Brasseur, 2020), the air quality improvement is much smaller than the expected 75 

(Shi et al., 2021; Diamond and Wood, 2020; Yan et al., 2022). Moreover, severe haze (COVID-19 haze) still occurred in 76 

northern China (Sulaymon et al., 2021; Le et al., 2020) and O3 concentrations even showed significant increases (Zhang et 77 

al., 2021; Li et al., 2020). A number of studies were conducted to explain this air quality change by analyzing the effects of 78 

emission changes, meteorological variations and secondary production (Huang et al., 2021; Le et al., 2020; Hammer et al., 79 

2021; Zhao et al., 2020; Zhao et al., 2021; Sulaymon et al., 2021; Wang et al., 2020; Li et al., 2021). However, due to the 80 

unknown emission changes during COVID-19 restrictions, the emission reduction scenarios that used to represent the 81 

COVID-19 shutdown effects varied among different studies and did not consider the spatial and temporal heterogeneity of 82 

the emission changes, leading to biases in the model simulation (Zhao et al., 2021; Li et al., 2021; Hammer et al., 2021; 83 

Zheng et al., 2021) and uncertainty in the quantification of the contributions of different factors. 84 

Pioneer studies by Zheng et al. (2021) and Forster et al. (2020) have derived multi-air pollutant emissions from social 85 

activity data using a bottom-up method, but due to the lack of detailed social activity data, large uncertainties existed in their 86 

estimates. The meteorologically and seasonally driven variability of the concentrations of air pollutants also prohibit drawing 87 

fully quantitative conclusions on the changes of emissions based on observations alone (Levelt et al., 2022). The emission 88 

inversion technique, which takes advantage of the chemical transport model (CTM) and real-time observations, provides an 89 

attractive way to estimate the sector-specific and space-based emission changes during COVID-19 restrictions (Levelt et al., 90 

2022), as shown in Zhang et al. (2020), Zhang et al. (2021), Feng et al. (2020) and Hu et al. (2022). However, these studies 91 

only inversed the emissions of single species (e.g., NOx and SO2) without insights into multiple species. In view of this 92 

discrepancy, in this study we developed a multi-air pollutant inversion system to simultaneously estimated the multi-air 93 

pollutant emissions in China, including NOx, SO2, CO, PM2.5 and PM10, during the COVID-19 restrictions using an ensemble 94 

Kalman filter (EnKF) and surface observations from the China National Environmental Monitoring Centre (CNEMC). 95 

Subsequently, the inversed emission inventory was used to quantify the contributions of emission changes versus 96 

meteorology variations to the changes in PM2.5 and O3 concentrations over the NCP region during the COVID-19 restrictions. 97 

2 Method and data 98 

We developed a high-resolution multi-air pollutant inversion system to estimate the daily emissions of NOx, SO2, CO, 99 

PM2.5 and PM10 in China during the COVID-19 restrictions. This system uses the NAQPMS (Nested Air Quality Prediction 100 
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Modelling System) model as the forecast model and the EnKF coupled with the state argumentation method as the inversion 101 

method. It has the capabilities of simultaneous inversion of multi-air pollutant emissions at high temporal (daily) and spatial 102 

(15km) resolutions. An iteration inversion scheme was also developed in this study to address the large biases in the a priori 103 

emissions. In the following sections, we briefly introduce each component of the inversion system. 104 

2.1 Chemical transport model and its configuration 105 

The NAQPMS model was used as the forecast model to represent the atmospheric chemistry in this study, which has 106 

been used in previous inversion studies (Tang et al., 2011; Tang et al., 2013; Kong et al., 2019; Wu et al., 2020), where 107 

detailed descriptions of NAQPMS are available. The Weather Research and Forecasting Model (WRF)(Skamarock, 2008) is 108 

used to provide the meteorological inputs to the NAQPMS model. 109 

Figure 1 shows the modelling domain of this study with a high horizontal resolution of 15 km. The a priori emission 110 

inventory used in this study includes monthly anthropogenic emissions from the HTAP_v2.2 emission inventory for the base 111 

year of 2010 (Janssens-Maenhout et al., 2015), biomass burning emissions from the Global Fire Emissions Data base (GFED) 112 

version 4 (Randerson et al., 2017; Van Der Werf et al., 2010), biogenic volatile organic compound (BVOC) emissions from 113 

MEGAN-MACC (Sindelarova et al., 2014), marine volatile organic compound emissions from the POET database (Granier 114 

et al., 2005), soil NOx emissions from the Regional Emission inventory in Asia (Yan et al., 2003) and lightning NOx 115 

emissions from Price et al. (1997). Chemical top and boundary conditions were provided by the global CTM MOZART 116 

(Model for Ozone and Related Chemical Tracers) (Brasseur et al., 1998; Hauglustaine et al., 1998). We assumed no monthly 117 

variations in the a priori emission inventory and used January’s emission inventory for the whole simulation period so that 118 

the emission variation was solely derived from the surface observations. A two-week free run of NAQPMS was conducted 119 

as a spin-up time. For each day’s meteorological simulation, a 36-h free run of WRF was conducted, of which the first 12-h 120 

simulation was a spin-up run and the next 24-h simulation provided the meteorological inputs to NAQPMS. Initial and 121 

boundary conditions for the meteorological simulation were provided by the National Center for Atmospheric 122 

Research/National Center for Environment Prediction (NCAR/NCEP) 1° ×1° reanalysis data. Evaluation results for the 123 

WRF simulation are available in Text S1 in Supplement. 124 

2.2 Surface Observations 125 

The hourly concentrations of NO2, SO2, CO, PM2.5 and PM10 from CNEMC were used in this study to estimate the 126 

emissions during COVID-19. The spatial distributions of these observation sites are shown in Fig. 1, which contains 1436 127 

observation sites covering most regions of China. Before assimilation, outliers of observations were first filtered out using 128 

the automatic outlier detection method developed by Wu et al. (2018) to prevent the adverse effects of the outliers on data 129 

assimilation. Then, the hourly concentrations were averaged to the daily values for the inversions of daily emissions. 130 

The observation error is one of the key inputs to the data assimilation, which together with the background error 131 

determine the relative weights of the observation and background values on the analysis. The observation error includes 132 
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measurement error and representativeness error. The measurement error of each species was designated according to the 133 

officially released documents of the Chinese Ministry of Ecology and Environmental Protection (HJ 193-2013 and HJ 654-134 

2013, available at http://www.cnemc.cn/jcgf/dqhj/, last accessed on 22 Oct 2022), which is 5% for PM2.5 and PM10 and 2% 135 

for SO2, NO2 and CO. A representativeness error arises from the different spatial scales that the discrete observation data and 136 

model simulation represent, which was estimated based on the previous study by Li et al. (2019) and Kong et al. (2021). 137 

2.3 Inversion estimation scheme 138 

The EnKF coupled with the state augmentation method was used in this study to constrain the emissions of multiple 139 

species. EnKF is an advanced data assimilation method proposed by Evensen (1994) that features representation of the 140 

uncertainties of the model state by a stochastic ensemble of model realizations. It is easily implemented and can update the 141 

state variable by using the flow-dependent background error covariance matrix. In the state augmentation method, the 142 

emissions of different species, together with the concentrations of related species, were treated as the state variable and were 143 

updated according to the relationship between the emissions and concentrations of related species.  144 

Since the source emission data over mainland China in HTAP_v2.2 inventory is obtained from the MIX inventory (Li et 145 

al., 2017b), uncertainties of emissions of different species, including PMF, PMC, BC, OC, NOx, CO, SO2, NH3 and NMVOC 146 

(nonmethane volatile organic compounds), were obtained from Li et al. (2017b) and Streets et al. (2003), which were 147 

represented by an ensemble of perturbed emissions generated by multiplying the a priori emissions with a perturbation factor 148 

𝛽𝑖,𝑠: 149 

𝑬𝒊,𝒔 = 𝜷𝒊,𝒔 ∘ 𝑬𝒔
𝒑

, 𝑖 = 1,2, ⋯ 𝑁𝑒𝑛𝑠             (1) 150 

where 𝐸𝑖,𝑠 represents the vector of the 𝑖𝑡ℎ member of perturbed emissions for species 𝑠, 𝐸𝑠
𝑝
 represents the a priori emissions 151 

for this species, ∘ denotes the schur product and 𝑁𝑒𝑛𝑠  denotes the ensemble size. Thus, the adjustment of emissions is 152 

equivalent to the adjustment of perturbation factors. 153 

Considering that emission uncertainty is the major contributor to the uncertainties in air quality modelling, especially 154 

during the COVID-19 period when emissions changed rapidly, uncertainties in chemical variables were obtained through 155 

ensemble simulations driven by perturbed emissions. The ensemble size was chosen as 50 to maintain the balance between 156 

the filter performance and computational cost. After the ensemble simulations, emissions of multiple species were updated 157 

using a deterministic form of EnKF (DEnKF) proposed by Sakov and Oke (2008), which is formulated by 158 

𝒙𝒂̅̅ ̅ = 𝒙𝒃̅̅ ̅ + 𝐏𝐞
𝐛𝐇T(𝐇𝐏𝐞

𝐛𝐇𝐓 + 𝐑)
−1

(𝒚𝒐 − 𝐇𝒙𝒃̅̅ ̅)         (2) 159 

𝒙𝒃̅̅ ̅ =
1

𝑁
∑ 𝒙𝒊

𝒃𝑁
𝑖=1 ; 𝑿𝒊

𝒃 = 𝒙𝒊
𝒃 − 𝒙𝒃̅̅ ̅           (3) 160 

𝐏𝐞
𝐛 =

1

𝑁−1
∑ 𝑿𝒊

𝒃(𝑿𝒊
𝒃)

T𝑁
𝑖=1             (4) 161 

where 𝒙 denotes the state variables; 𝑏 the background state (a priori); 𝑎 the analysis state (posteriori); 𝐏𝐞
𝐛  the ensemble-162 

estimated background error covariance matrix and 𝑁 the ensemble size. 𝒚𝒐 represents the vector of observations with an 163 
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error covariance matrix of R. 𝐇 is the linear observational operator that maps the m-dimensional state vector 𝒙 to a p- 164 

(number of observations) dimensional observational vector (𝐇𝒙𝒃̅̅ ̅). The state variables were defined as follows according to 165 

state augmentation method during the assimilation: 166 

𝒙𝒊 = [𝒄𝒊, 𝜷𝒊]
𝑻, 𝑖 = 1,2, ⋯ 𝑁𝑒𝑛𝑠           (5) 167 

𝒄𝒊 = [𝑷𝑴𝟐.𝟓, 𝑷𝑴𝟏𝟎−𝟐.𝟓, 𝑵𝑶𝟐, 𝑺𝑶𝟐, 𝑪𝑶]𝒊           (6) 168 

𝜷𝑖 = [𝜷𝑷𝑴𝑭, 𝜷𝑩𝑪, 𝜷𝑶𝑪, 𝜷𝑷𝑴𝑪, 𝜷𝑵𝑶𝒙
, 𝜷𝑺𝑶𝟐

, 𝜷𝑪𝑶]
𝒊
          (7) 169 

where 𝒙𝑖 represents the 𝑖𝑡ℎ member of the assimilated state variable, which consists of the fields of chemical variables 𝒄𝑖 170 

and emission perturbation factors 𝜷𝑖. Detailed descriptions of the model state variables are summarized in Table 1. The use 171 

of PM10-2.5 (PM10 minus PM2.5) values aims to avoid the potential cross-correlations between PM2.5 and PM10 (Peng et al., 172 

2018; Ma et al., 2019). Moreover, to prevent spurious correlations between non- or weakly related variables, similar to Ma et 173 

al. (2019) and Miyazaki et al. (2012), state variable localization was used during assimilation, with observations of one 174 

particular species only allowing us to update the emissions of the same species. The corresponding relationship between the 175 

chemical observations and adjusted emissions is summarized in Table 1. The PM2.5 observations were one exception and 176 

were used to update the emissions of PMF (fine mode unspeciated aerosol), BC (black carbon) and OC (organic carbon) 177 

since the observations of speciated PM2.5 were not available in this study. The lack of speciated PM2.5 observations may lead 178 

to uncertainties in the estimated emissions of PMF, BC and OC. Therefore, we only analyzed the emissions of PM2.5, which 179 

were the sum of the emissions of these three species. Similarly, only PM10 emissions were analyzed in this study, which 180 

includes the emissions of PM2.5 and PMC (coarse mode unspeciated aerosol).  181 

Due to the strict control measures implemented during the last decades, the emissions in China decreased dramatically 182 

from 2010 to 2020, especially for SO2. Thus, there are large biases in the a priori estimates of emissions in China (Zheng et 183 

al., 2018), which would lead to incomplete adjustments of a priori emissions and degrade the performance of assimilation. 184 

Therefore, an iteration inversion scheme was developed in this study to address the large biases of SO2 emissions. As 185 

illustrated in Fig. 2, the main idea of the iteration inversion scheme is to update the ensemble mean of the state variable using 186 

the inversion results of the 𝑘𝑡ℎ iteration and corresponding simulations. The state variable used in the (𝑘 + 1)𝑡ℎ inversions 187 

is written as follows: 188 

𝒙𝒊
𝒌+𝟏 = [𝒄𝒌 + 𝒄𝒊

𝒆 − 𝒄𝒆̅, 𝜷𝒌 + 𝜷𝒊
𝒆 − 𝜷𝒆̅̅̅̅ ]

𝑻
          (8) 189 

where 𝒄𝒌 represents the simulation results using the inversed emissions of the 𝑘𝑡ℎ iteration, 𝒄𝒊
𝒆 represents the 𝑖𝑡ℎ member of 190 

ensemble simulations with an ensemble mean of 𝒄𝒆̅ , 𝜷𝒌  represents the perturbation factors of the 𝑘𝑡ℎ  iteration, and 191 

𝜷𝒊
𝒆 represents the 𝑖𝑡ℎ member of the ensemble of perturbation factors with a mean value of 𝜷𝒆̅̅̅̅ .  192 

Using this method, the biases of a priori emissions were well addressed as exemplified in Fig. 3 for SO2 emissions. Due 193 

to the large positive biases in the a priori SO2 emissions, the model still has large positive biases (NMB = 30.9–220.5%) and 194 

errors (RMSE = 8.7–23.0 μg/m3) in simulating SO2 concentration over all regions of China even after the assimilation (first 195 

iteration). The biases and errors continued to decrease with the increasing of iteration times till the fourth iteration in which 196 
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there were no significant improvement in SO2 simulations compared to those in third iteration. These results suggested that 197 

the iteration inversion method used in this study can well constrain the a priori emission with large biases and, in this 198 

application, conducting three iteration is enough for constraining the emission. Besides SO2 emissions, the iteration inversion 199 

scheme was also applied to the emissions of other species. 200 

To reduce the influences of random model errors (e.g., errors in meteorological inputs) on the estimation of the 201 

variation in emissions, a 15-day running average was performed on our daily inversion results after the inversion estimation. 202 

It should be noted that the COVID-19 restrictions were initiated during the Spring Festival of China, which would also 203 

influence the air pollutant emissions in China. However, the inversion method used in this study did not differentiate the 204 

contributions of the Spring Festival from the COVID-19 restrictions. Similarly, the effects of natural emission changes were 205 

not differentiated in this study, which would lead to uncertainty in quantifying the effects of the COVID-19 restrictions on 206 

air pollutant emissions. 207 

2.4 Quantification of the effects of emission changes and meteorological variations 208 

In previous studies, the meteorological-induced (MI) changes were usually determined by the CTM with a fixed 209 

emission input setting and a varying meteorological input. Then, the difference between the MI changes and total changes in 210 

air pollutant concentrations is defined as emission-induced (EI) changes. Another approach to estimate EI changes is to 211 

perform simulations with a fixed meteorological input setting and varying emission inputs. Then, the MI changes are defined 212 

as the difference between EI changes and total changes in air pollutant concentrations. Due to the nonlinear effects of 213 

atmospheric chemical systems, these two methods yield different results. Thus, both methods were used in this study to 214 

account for the nonlinear effects. The averaged results of these two methods are used to represent the impacts of emission 215 

changes and meteorological variation on the air quality changes during the COVID-19 restrictions. In total, three scenario 216 

experiments were designed based on our inversion results. The first scenario simulation used the varying meteorological and 217 

emission inputs from the P1 to P2 period, which represents the real-world scenario and is used to estimate the total changes 218 

in air pollutant concentrations induced by emissions and meteorological changes from the P1 to P2 period (BASE scenario). 219 

The second scenario experiment used the varying meteorological inputs but replaced the emissions during the P2 period with 220 

those during the P1 period, which was used to estimate the MI changes using the first method (MET change scenario). The 221 

third scenario experiment used the varying emissions input and replaced the meteorological input during the P2 period with 222 

that during the P1 period, which was used to estimate the EI changes using the second method (EMIS change scenario). 223 

Based on the first method, the MI and EI changes can be estimated as follows: 224 

𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜       (9) 225 

𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜     (10) 226 

where 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  represents the MI changes estimated based on the results from the MET change scenario, 227 

𝑐𝑜𝑛𝑐𝑝1,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and 𝑐𝑜𝑛𝑐𝑝2,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 represent the averaged concentrations of air pollutants during the 228 
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P1 and P2 periods under the MET change scenario, 𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 represents the EI changes estimated based on the 229 

results from the MET change scenario, and 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 , 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  respectively represent the averaged 230 

concentrations of air pollutants during the P1 and P2 periods under the BASE scenario. Similarly, the MI and EI changes 231 

estimated based on the second method are formulated as follows: 232 

𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜       (11) 233 

𝑀𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜    (12) 234 

Then, the estimations from these two methods are averaged to estimate the contributions of meteorological change and 235 

emission change to the changes in PM2.5 and O3 concentrations during the COVID-19 lockdown: 236 

𝑀𝐼 = (𝑀𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)/2        (13) 237 

𝐸𝐼 = (𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)/2        (14) 238 

𝑐𝑜𝑛𝑡𝑟𝑖𝑚𝑒𝑡=
MI

MI+EI
×100            (15) 239 

contriemis=
EI

MI+EI
×100             (16) 240 

where 𝑐𝑜𝑛𝑡𝑟𝑖𝑚𝑒𝑡  and 𝑐𝑜𝑛𝑡𝑟𝑖𝑒𝑚𝑖𝑠  represent the relative contributions (%) of the meteorological variations and emission 241 

changes to the changes in air pollutant concentrations. 242 

3 Results 243 

We estimated the multi-air pollutant emissions from 1 Jan to 29 Feb 2020 when the pandemic was at its most serious, 244 

and the effects of the COVID-19 restrictions were most profound in China. According to different control phases of COVID-245 

19 and the timing of the Chinese Lunar New Year, the whole time period was divided into three periods: before lockdown 246 

(P1, January 1-20), lockdown (P2, January 21-February 9) and after back-to-work day (P3, February 10-29) to better 247 

characterize the emission changes during the COVID-19 restrictions. Additionally, we analyzed the emission changes in 248 

different regions of China, including the North China Plain (NCP), Northeast China (NE), Southeast China (SE), Southwest 249 

China (SW), Northwest China (NW) and Central regions (defined in Fig. 1) to investigate the responses of emissions to the 250 

COVID-19 restrictions in different regions. 251 

3.1 Validation of the inversion results 252 

We firstly validate our inversion system by using a cross-validation, in which 20% of observation sites were withheld 253 

from the emission inversion and used as the validation datasets. Figure S1–6 showed the concentrations of different air 254 

pollutants in China from 1st Jan to 29th Feb 2020 obtained from observations at validation sites and simulations using a priori 255 

and a posteriori emission. Commonly used statistical evaluation indices, including correlation coefficient (R), mean bias 256 

error (MBE), normalized mean bias (NMB) and root of mean square error (RMSE) are summarized in Table S1. The 257 

validation results suggest that the posteriori simulation agreed well with the observed concentrations for all species. The 258 
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large biases in the a priori simulation of PM2.5, PM10, SO2 and CO were almost completely removed in the a posteriori 259 

simulation with NMB about -3.9–15.7% for PM2.5, -3.1–11.6% for PM10, -12.6–5.3% for NO2, -9.5–6.2% for SO2 and -10–260 

7.6% for CO (Table S4). RMSE values were also significantly reduced in the a posteriori simulation which were 9.1–261 

32.2μg/m3 for PM2.5, 12.6–42.4μg/m3 for PM10, 5.1–12.3μg/m3 for NO2, 1.2–5.6μg/m3 for SO2 and 0.10–0.46mg/m3 for 262 

CO. Moreover, the inversion emission considerably improved the fit to the observed time evolution of air pollutants’ 263 

concentrations. The R values were improved for all species in the a posteriori simulation that were up to 0.74–0.94 for PM2.5, 264 

0.63 – 0.92 for PM10, 0.76–0.94 for NO2, 0.23–0.79 for SO2 and 0.63–0.92 for CO. These results suggest that our inversion 265 

results have excellent performance in representing the magnitude and variation of these species’ emission in China during 266 

COVID-19 restrictions. Model performance in simulating O3 concentration is relatively poor compared to other species 267 

although improvement was remarkable in NCP, NE and SE regions. This would be due to that the emission of volatile 268 

organic compounds, another important precursor for O3, were not constrained in this study. 269 

3.2 Emission changes of multi-species during COVID-19 restrictions 270 

3.2.1 Unbalanced emission changes between NOx and other species 271 

The control of COVID-19 began on 23rd January when the Chinese government declared the first level of national 272 

responses to public health emergencies, one day before the 2020 Chinese New Year Eve. Figure 4 shows the time evolution 273 

of the normalized emission anomaly for different species in China from 1st January to 29th February. The temporal variation 274 

in the emission varied largely between NOx and other species. Due to the combined effects of the Spring Festival and 275 

COVID-19 lockdown, NOx emissions decreased continuously at the beginning of January until approximately one week after 276 

the implementation of the COVID-19 lockdown, with estimated decreases in NOx emissions of up to 46.7% from the P1 to 277 

P2 period (Table 2). Subsequently, the NOx emissions stabilized with small fluctuations until the official back-to-work day 278 

when the NOx emissions began to increase due to easing of the control measures and the resumption of business. According 279 

to inversion estimation, NOx emissions recovered by 6.5% during the P3 period. These results indicate that the temporal 280 

variation in our estimated NOx emissions agreed well with the timing of the Spring Festival and different control stages of 281 

COVID-19. However, for other species (i.e., PM2.5, PM10, SO2 and CO), although their emissions generally decreased from 282 

1st January to the end of the 2020 Spring Festival holiday, they showed much smaller reductions than the NOx emissions. 283 

The emission reduction for these species was only approximately 7.9-12.1% (Table 2). This is consistent with the inversion 284 

results by Hu et al. (2022) who found that SO2 emissions in China decreased only by 9.2% during COVID-19 lockdown. In 285 

addition, the emissions of these species quickly rebounded to their normal level just one week after the end of the Spring 286 

Festival holiday. As estimated by our inversion results, the SO2 emissions recovered by 7.2% during the P3 period, which 287 

was only 2.5% lower than that during the P1 period. The PM2.5 and PM10 emissions during the P3 period were 3.3% and 43.6% 288 

higher, respectively, than those during the P1 period. 289 
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Similar results were found in different regions of China (Fig. 5 and Table 3), where the NOx emissions decreased much 290 

more than other species. In addition, unlike the uniform decreases in NOx emissions in different regions of China (~45%), 291 

there was apparent spatial heterogeneity in the emission changes in PM2.5, PM10, SO2 and CO (Table 3 and Fig. 6). For 292 

example, from the P1 to P2 period, the PM2.5 emissions decreased by over 20% in the Central region but only by 8.8% in the 293 

NE region. The PM2.5 emissions even increased by 5.5% in the NCP region, possible due to the increased emissions from 294 

heating and fireworks (Dai et al., 2020). The SW and central regions exhibited relatively larger emission reductions for these 295 

species (Fig. 5 and Table 3) by 12.6–25.9% and 10.6–23.7%, respectively. The emission rebound during the P3 period was 296 

more prominent in the SE, central and SW regions (Fig. 5 and Fig. 7), where emissions recovered by 6.0–16.4% for NOx, 297 

7.5–19.8% for SO2, 7.4–13.1% for CO, 12.3–47.7% for PM2.5 and 28.6–135.9% for PM10 (Table 3). This result is consistent 298 

with the earlier degradation of the response level to the COVID-19 virus (from the first level to the second or third level) 299 

over these regions (Table S2). In contrast, there were decreases in emissions in the NCP, NE and NW regions. PM2.5 300 

emissions were reduced by 9.9% in the NCP region and by 19.2% in the NE region from the P2 to P3 period (Table 3). 301 

Moreover, we found that the PM10 emissions surged in the NW and central regions, where the PM10 emissions during the P3 302 

period were almost two times larger than those during the P2 period (Table 3). However, this finding may be related to the 303 

enhanced sandstorms over these two regions rather than the effects of returning to work, which demonstrates the necessity to 304 

consider changes in natural emissions during COVID-19 restrictions. Thus, to reduce the effects of natural emissions on our 305 

findings, the same analysis was performed for the emissions over east China (Fig. S7) where emissions were dominated by 306 

anthropogenic sources, which shows consistent results with the findings above (Fig. S8 and Table S3). 307 

3.2.3 Explanations for the emission changes during COVID-19 restrictions 308 

Two explanations may help clarify the unbalanced emission changes between NOx and other species. First, the COVID-309 

19 lockdown policy has led to dramatic decreases in transportation activities throughout China; however, as shown in Fig. 4, 310 

the relative contributions of the transportation sector to the emissions of SO2 (2.4%), CO (18.5%), PM2.5 (6.1%) and PM10 311 

(4.7%) are much smaller than those for NOx emissions (34.3%) (Zheng et al., 2018; Li et al., 2017a). Thus, the reduction in 312 

traffic activities can only substantially decrease NOx emissions. Reductions in CO emissions were relatively larger than those 313 

for SO2 and PM2.5 emissions, which is consistent with the relatively larger contributions of the transportation sector to CO 314 

emissions. PM10 emissions showed the largest reductions among these four species, which is related in part to the reduced 315 

dust emissions due to shutting down of construction sites during the lockdown period (Li et al., 2020). Second, as shown in 316 

Fig. 4, the industrial and residential sectors are the major contributors to the anthropogenic emissions of SO2, CO, PM2.5 and 317 

PM10 in China, together contributing 77.6%, 78.3%, 86.5% and 86.3%, respectively, to their total emissions. The much 318 

smaller reductions of these species’ emissions were thus in line with the fact that there were no intentional restrictions on 319 

heavy industry during the COVID-19 restrictions. A large number of non-interruptible processes, such as steel, glass, coke, 320 

refractory, petrochemical, electric power, and especially heating, cannot be stopped during the COVID-19 lockdown. 321 

According to statistical data from the National Bureau of Statistics of China (Fig. S9), the industrial and power sectors did 322 
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not show similar reductions in their activity levels as those seen in the transportation sector. Power generation and steel 323 

production even showed increases in many provinces, which corresponds well with the emission increases over these regions. 324 

In addition, since people were required to stay at home, residential emissions were likely increased due to the increased 325 

energy consumption for heating or cooking. Therefore, our inversion results supported the views that the emissions of 326 

species related to industrial and residential activities did not decline much during the lockdown period, and that the COVID-327 

19 lockdown policy was largely a traffic control measure with small influences on other sectors. 328 

3.3 Investigation of air quality change over the NCP region during COVID-19 restrictions 329 

Using the inversion results, we reassessed the environmental impacts of the COVID-19 restrictions on the air pollution 330 

over NCP region. The NCP region was chosen because it is the key target region of air pollution control in China and where 331 

unexpected COVID-19 haze occurred. A major caveat in previous studies that explored the impacts of COVID-19 332 

lockdowns on air quality is the uncertainty in the emission changes during COVID-19 restrictions. The inversion results 333 

enable us give a more reliable assessment of the environmental impacts of COVID-19 restrictions. Figure 8 shows the 334 

observed changes in PM2.5 and O3 concentrations over the NCP region from the P1 to P2 period. The observations showed 335 

consistent reductions in PM2.5 concentrations over the NCP region (by 13.6 μg/m3). However, substantial increases in PM2.5 336 

concentrations were observed in the Beijing area (by 31.2 μg/m3). In contrast to the widespread reductions in PM2.5 337 

concentrations, the O3 concentrations significantly increased over the whole NCP region (by 28.3 μg/m3) and the Beijing 338 

area (by 16.8 μg/m3). The simulations based on our inversion results reproduced the observed changes in PM2.5 and O3 339 

concentrations over the NCP region well, although the increases in O3 concentrations were relatively overestimated in the 340 

simulation (Fig. 7-8). 341 

As detailed in the Sect 2.4, the simulated changes in air pollutant concentrations before and after lockdown were 342 

decomposed into meteorological-induced (MI) changes and emission-induced (EI) changes through two different scenarios 343 

to account for the nonlinearity of the atmospheric chemical system. The meteorological variation dominated the changes in 344 

PM2.5 concentrations over the NCP region (Fig. 9), which contributed 90% of the PM2.5 reductions over most parts of the 345 

NCP region. Moreover, this variation made significant contributions (57.9%) to the increases in PM2.5 concentrations over 346 

the Beijing area. This finding suggested that meteorological variations played an irreplaceable role in the occurrence of 347 

COVID-19 haze around the Beijing area. Compared with the meteorological conditions before lockdown (Fig. 10), there 348 

were increases in relative humidity over northern China, which facilitated the reactions for aerosol formation and growth. 349 

Wind speed also decreased over the Beijing area accompanied by an anomalous south wind, which facilitated aerosol 350 

accumulation and the transportation of air pollutants from the polluted industrial regions of the Hebei Province to Beijing. 351 

The increases in boundary layer height from the P1 to P2 period were also much smaller in the Beijing area than in other 352 

areas of the NCP. Thus, the Beijing area has exhibited distinct meteorological variations from other areas of the NCP region, 353 

which correspond well to the different changes in PM2.5 concentrations over the Beijing area. 354 
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The emission changes contributed slightly to the PM2.5 reductions over the NCP region (8.6%). This is because, on the 355 

one hand, the large reductions in NOx emissions (by 44.4%) only reduced nitrate by approximately 10–30% due to the 356 

nonlinear effects of chemical reactions (Fig. 11), and on the other hand, the emissions of primary PM2.5 and its precursors 357 

from other sectors changed little during the COVID-19 restrictions (Table 3). The emission changes contributed more to the 358 

increased PM2.5 concentrations over the Beijing area (42.1%). This is mainly associated with the increases in primary PM2.5 359 

emissions around the Beijing area, as seen in Fig. 6, possibly due to the increased emissions from firework during the Spring 360 

Festival over the rural area of Beijing (Dai et al., 2020). Therefore, our results suggested that the unexpected COVID-19 361 

haze was mainly driven by unfavorable meteorological conditions together with small changes or even increases in primary 362 

PM2.5 emissions. This finding is in line with previous results of Le et al. (2020) but different from those of Huang et al. 363 

(2021), who suggested that enhanced secondary aerosol formation was the main driver of severe haze during the COVID-19 364 

restrictions. To investigate it, we further analyzed the changes in the concentrations of secondary inorganic aerosols (SIAs). 365 

First, we evaluated our model results against the observed SIA concentrations, which showed that the model results using 366 

our inversion emissions well reproduced the observed concentrations of SIAs over the NCP region (Fig. 12) with mean bias 367 

(MB) ranging from -5.14 to 5.45 μg/m3 and correlation coefficient (R) ranging from 0.59 to 0.80. The observed increases in 368 

SIA concentrations over the Beijing area, especially for sulfate concentrations, were also captured in our simulations (Fig. 369 

11), although underestimation occurred due to the uncertainty in simulating SIA concentrations. Through sensitivity 370 

experiments, we found that the increases in SIA concentrations were still driven by meteorological variations (Fig. 13). In 371 

fact, the emission reductions only led to a 10% decrease in SIA concentrations over the NCP region. This finding suggests 372 

that the enhanced secondary aerosol formation was likely mainly driven by the unfavorable meteorological conditions 373 

associated with higher temperature and relative humidity instead of the emission reductions during the lockdown period. 374 

This is in line with the observation evidences from Ma, T et al (2022) who emphasized that the increased temperature and 375 

relative humidity promoted the formation of secondary pollutants during the COVID-19 restrictions. 376 

In terms of O3 concentrations, the emission changes subsequently became the dominant contributor to the O3 increases 377 

by more than 100% in the Beijing area and by 96.0% over the NCP region. This result is mainly because the lockdown 378 

period occurred in midwinter when photochemical O3 formation was minimal; thus, the large increase in O3 is expected 379 

solely from the effect of the reduced titration reaction associated with the large reductions in NOx emissions. Although the 380 

higher temperature and slower wind speed during the lockdown period were favorable for the increases in O3 concentrations, 381 

their contributions were much smaller than those of emission changes (Fig. 9). These results suggested that control measures, 382 

such as COVID-19 restrictions, were inefficient for air pollution mitigation in China considering the high economic cost of 383 

the COVID-19 restrictions. 384 
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4 Conclusions 385 

The COVID-19 pandemic is an unprecedented event that significantly influenced the social activity and associated 386 

emissions of air pollutants. Our results provide a quantitative assessment of the influences of COVID-19 restrictions on 387 

multi-air pollutant emissions in China. Otherwise, understanding of the relationship between air quality and human activities 388 

may be biased. The inversion results provide important evidences that the COVID-19 lockdown policy was largely a traffic 389 

control measure with substantially reducing impacts on NOx emissions but much smaller influences on the emissions of other 390 

species and other sectors. Traffic control has widely been considered to be the normal protocol in implementing regulations 391 

in many cities of China, but its effectiveness on air pollution control is still disputed (Han and Naeher, 2006; Zhang et al., 392 

2007; Chen et al., 2021; Cai and Xie, 2011; Chowdhury et al., 2017; Li et al., 2017c). Thus, the COVID-19 restrictions 393 

provided us with a real nationwide traffic control scenario to investigate the effectiveness of traffic control on the mitigation 394 

of air pollution in China. The results suggested that traffic control as a separate pollution control measure has limited effects 395 

on the coordinated control of high concentrations of O3 and PM2.5 under the current air pollution conditions in China. In this 396 

case, the PM2.5 concentrations were slightly reduced, while leading to substantial increases in O3 concentrations. Severe haze 397 

was also not avoided during the COVID-19 restrictions due to unbalanced emission changes from other sectors and 398 

unfavorable meteorological conditions. China is now facing major challenges in both controlling PM2.5 and controlling 399 

emerging O3 pollution. The tragic COVID-19 pandemic has revealed the limitation of the road traffic control measure in the 400 

coordinated control of PM2.5 and O3. More comprehensive regulations for multiple precursors from different sectors are 401 

required in the future to address O3 and PM2.5 pollution in China. 402 
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Tables 416 

Table 1. Corresponding relationship between the chemical observations and adjusted emissions 417 

Species Descriptions Observations that used for inversions of this 

species 

BC black carbon PM2.5 

OC organic carbon PM2.5 

PMF fine mode unspeciated aerosol PM2.5 

PMC coarse mode unspeciated aerosol PM10 – PM2.5 

NOx nitrogen oxide NO2 

SO2 sulfur dioxide SO2 

CO carbon monoxide CO 

 418 

 419 

Table 2. Inversion estimated emissions of different air pollutants in China and their changes between different periods during 420 
COVID-19. 421 

 NOx SO2 CO PM2.5 PM10 

P1 (Gg/day) 72.9 23.8 1160.2 44.5 75.5 

P2 (Gg/day) 41.9 21.5 1037.4 40.9 66.4 

P3 (Gg/day) 44.8 23.2 1078.2 45.9 108.4 

(P2-P1)/P1 -42.5% -9.7% -10.6% -7.9% -12.1% 

(P3-P2)/P1 3.9% 7.2% 3.6% 11.2% 55.7% 

(P3-P1)/P1 -38.6% -2.5% -7.0% 3.3% 43.6% 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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Table 3. Inversion estimated emission changes of different air pollutants over different regions in China between different periods 430 
during COVID-19 restrictions 431 

 NOx PM2.5 PM10 SO2 CO 

NCP      

(P2-P1)/P1 -44.4% 5.5% 2.8% -1.6% -4.3% 

(P3-P2)/P1 -0.8% -9.9% 31.8% -5.9% -10.0% 

(P3-P1)/P1 -45.2% -4.3% 34.7% -7.5% -14.3% 

NE      

(P2-P1)/P1 -41.8% -8.8% -3.5% -3.2% -10.9% 

(P3-P2)/P1 -6.0% -19.2% 23.7% -2.9% -6.6% 

(P3-P1)/P1 -47.8% -28.0% 20.2% -6.1% -17.5% 

SE      

(P2-P1)/P1 -41.4% -9.5% -24.4% -19.4% -3.5% 

(P3-P2)/P1 10.2% 12.3% 28.6% 19.8% 13.1% 

(P3-P1)/P1 -31.2% 2.8% 4.2% 0.3% 9.7% 

SW      

(P2-P1)/P1 -43.5% -12.6% -25.9% -17.5% -23.8% 

(P3-P2)/P1 6.0% 47.7% 33.1% 7.5% 7.4% 

(P3-P1)/P1 -37.5% 35.1% 7.2% -10.0% -16.4% 

NW      

(P2-P1)/P1 -38.5% -4.0% -8.3% 14.2% -2.6% 

(P3-P2)/P1 -21.1% 4.9% 145.3% -4.1% -7.2% 

(P3-P1)/P1 -59.6% 0.9% 136.9% 10.1% -9.8% 

Central      

(P2-P1)/P1 -43.8% -23.7% -15.7% -10.6% -17.4% 

(P3-P2)/P1 16.4% 24.4% 135.9% 18.5% 8.4% 

(P3-P1)/P1 -27.4% 0.7% 120.3% 7.9% -9.0% 
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Figures 432 

 433 

Figure 1: Modeling domain of the ensemble simulation overlay the distributions of observation sites from CNEMC. Different 434 
colours denote the different regions in mainland of China, namely North China Plain (NCP), Northeast China (NE), Southwest 435 
China (SW), Southeast China (SE), Northwest China (NW) and Central. 436 
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 437 

Figure 2: Illustration of the iteration inversion scheme used in this study. 438 

 439 
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 440 

Figure 3: Comparisons of the observed and simulated mean SO2 concentrations using emissions of different iteration time at 441 
validation sites over (a) NCP region, (b) NE region, (c) SE region, (d) SW region, (e) NW region and (f) Central region. 442 

 443 
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 444 
Figure 4: (a) Time series of normalized emission anomalies estimated by inversion results for different species in China from 1st 445 
January to 29th February 2020, and (b-f) Relative contributions of different sectors to the total anthropogenic emissions of NOx, 446 
PM2.5, PM10, CO and SO2 obtained from Zheng et al. (2018). The normalized emission anomaly is calculated by the emission 447 
anomaly divided by the average emissions during the whole period. 448 
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 449 
Figure 5: Time series of normalized emission anomalies estimated by inversion results for different species over (a) NCP region, (b) 450 
NE region, (c) SE region, (d) SW region, (e) NW region and (f) Central region from 1st January to 29th February 2020.  451 
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 452 

Figure 6: The inversion estimated emission changes of (a) NOx, (b) SO2, (c) CO, (d) PM2.5 and (e) PM10 in China from P1 to P2 453 
period. 454 
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 455 

Figure 7: The inversion estimated emission changes of (a) NOx, (b) SO2, (c) CO, (d) PM2.5 and (e) PM10 in China from P2 to P3 456 
period. 457 

 458 
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 459 

Figure 8: Changes in the observed and simulated concentrations of (a, c) PM2.5 and (b, d) O3 over the NCP region from the pre 460 
lockdown period (P1) to the lockdown period (P2). 461 
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 462 

Figure 9: Contributions of the meteorological variations and emission changes to the changes in (a, b) PM2.5 and (c, d) O3 463 
concentrations over Beijing and the NCP region from the pre lockdown period (P1) to the lockdown period (P2). 464 
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 465 

Figure 10: Changes in the (a) relative humidity, (b) temperature, (c) wind speed, (d) precipitation and (e) boundary layer height 466 
over the NCP region from P1 to P2 period obtained from WRF simulations. 467 

 468 

 469 

 470 
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 472 

Figure 11: Relative changes in the simulated and observed concentrations of (a) ANO3, (b) ASO4, (c) ANH4 over NCP region from 473 
P1 to P2 period.  474 
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 476 

Figure 12: Time series of observed and simulated concentrations of ANO3, ASO4 and ANH4 in (a-c) Beijing, (b-f) Tianjin, (g-i) 477 
Heibei, (j-l) Henan and (m-o) Shangdong province from 1st January to 29th February 2020. 478 

 479 

 480 
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 481 

Figure 13: Meteorology-induced (MI) changes in the concentrations of (a) ANO3, (b) ASO4 and (c) ANH4, as well as Emission-482 
induced (EI) changes in the concentrations of (d) ANO3, (e) ASO4 and (f) ANH4. 483 

 484 
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