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Abstract. The unprecedented lockdown of human activities during the COVID-19 pandemic have significantly influenced the 23 

social life in China. However, understanding of the impact of this unique event on the emissions of different species is still 24 

insufficient, prohibiting the proper assessment of the environmental impacts of COVID-19 restrictions. Here we developed a 25 

multi-air pollutant inversion system to simultaneously estimate the emissions of NOx, SO2, CO, PM2.5 and PM10 in China 26 

during COVID-19 restrictions with high temporal (daily) and horizontal (15km) resolutions. Subsequently, contributions of 27 

emission changes versus meteorology variations during COVID-19 lockdown were separated and quantified. The results 28 

demonstrated that the inversion system effectively reproduced the actual emission variations of multi-air pollutants in China 29 

during different periods of COVID-19 lockdown, which indicate that the lockdown is largely a nationwide road traffic control 30 

measure with NOx emissions decreased substantially by ~40%. However, emissions of other air pollutants were found only 31 

decreased by ~10%, because power generation and heavy industrial processes were not halted during lockdown, and residential 32 

activities may actually have increased due to the stay-at-home orders. Consequently, although obvious reductions of PM2.5 33 

concentrations occurred over North China Plain (NCP) during lockdown period, the emission change only accounted for 8.6% 34 

of PM2.5 reductions, and even led to substantial increases of O3. The meteorological variation instead dominated the changes 35 

in PM2.5 concentrations over NCP, which contributed 90% of the PM2.5 reductions over most parts of NCP region. Meanwhile, 36 
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our results suggest that the local stagnant meteorological conditions together with inefficient reductions in PM2.5 emissions 37 

were the main drivers of the unexpected PM2.5 pollution in Beijing during lockdown period. These results highlighted that 38 

traffic control as a separate pollution control measure has limited effects on the coordinated control of O3 and PM2.5 39 

concentrations under current complex air pollution conditions in China. More comprehensive and balanced regulations for 40 

multiple precursors from different sectors are required to address O3 and PM2.5 pollution in China. 41 

1 Introduction 42 

A novel coronavirus disease (COVID-19) broke out in Wuhan at the end of 2019 but quickly spread across the whole 43 

China within a month. To curb the spread of the virus, strict epidemic control measures were implemented by Chinese 44 

governments to prevent large gatherings, including strict travel restriction, shutting down of non-essential industries, extended 45 

holidays, closing of schools and entertainment houses (Cheng et al., 2020). These restrictions have had a significant impact on 46 

the industrial activities and social life, as exemplified by the drop of China’s industrial output by 15-30% 47 

(https://data.stats.gov.cn/, last accessed on 22 Oct, 2022) and the dramatic decrease of traffic flow by 60–90% in major cities 48 

of China during COVID-19 epidemic (http://jiaotong.baidu.com/, last accessed on 22 Oct, 2022), which provides us a natural 49 

experiment to examine the responses of the emissions and air quality on the changes in human activities.  50 

It has been well documented that the short-term stringent emission control targeted on power generator or heavy industry 51 

enacted by Chinese government during certain societal events, such as the 2008 Olympics Games, 2014 Asia-Pacific Economic 52 

Cooperation conference and 2015 China Victory Day Parade, is an effective way to reduce emissions and improve air quality 53 

(Okuda et al., 2011; Wang et al., 2014; Tang et al., 2015; Zhang et al., 2016; Wu et al., 2020; Chu et al., 2018). However, 54 

different from those stringent emission controls, the COVID-19 restrictions are inclined to affect emissions from sectors more 55 

closely to social life whose influence on emissions has still not well been assessed. Previous studies suggest that the COVID-56 

19 restrictions have substantially reduced the China’s anthropogenic emissions from almost all sectors (Zheng et al., 2021; 57 

Huang et al., 2021; Xing et al., 2020). For example, by using a bottom-up method based on near-real-time activity data, Zheng 58 

et al. (2021) reported that the emissions of NOx, SO2, CO and primary PM2.5 decreased by 36%, 27%, 28% and 24% during 59 

COVID-19 restrictions, mostly due to the reductions in industry and transportation sector. Xing et al. (2020), by using a 60 

response model, estimated stronger COVID-19 shutdown effects on emissions over the North China Plain (NCP) with 61 

emissions of NOx, SO2 and primary PM2.5 dropped by 51%, 28% and 63%, respectively. Others argue that the COVID-19 62 

restriction may mainly affect the emissions from transportation, light industry and manufacturing, while it has much smaller 63 

effects on the emissions from the power generator and heavy industry because of their non-interruptible processes (Chu et al., 64 

2021; Hammer et al., 2021; Le et al., 2020; Zhao et al., 2020). Moreover, the residential emissions may even increase during 65 

the COVID-19 lockdown due to the increased demanding for space heating and cooking with the stay-at-home orders. 66 

Therefore, Le et al. (2020) only considered the NOx reductions during COVID-19 restrictions in their investigation of the 67 

severe haze during COVID-19 lockdown, and similarly, Hammer et al. (2021) only considered the emission reductions in the 68 
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transportation sector. This indicates that there has large uncertainty in the current understanding of the effects of COVID-19 69 

restrictions on the emissions of different species. 70 

Quantification of the emission changes of different species and different sectors during the COVID-19 lockdown is thus 71 

necessary for the comprehensive understanding of the environmental impacts of COVID-19 restrictions. In particular, although 72 

observations indeed show decreases of air pollutant concentrations during COVID-19 restrictions (Fan et al., 2020; Wang et 73 

al., 2021; He et al., 2020; Shi and Brasseur, 2020), the air quality improvement is much smaller than the expected (Shi et al., 74 

2021; Diamond and Wood, 2020; Yan et al., 2022). Moreover, severe haze still occurred in northern China (Sulaymon et al., 75 

2021; Le et al., 2020) and O3 concentrations even showed significant increases (Zhang et al., 2021; Li et al., 2020). A number 76 

of studies were conducted to explain this anomalistic air quality change by analyzing the effects of emission changes, 77 

meteorological variations and secondary production (Huang et al., 2021; Le et al., 2020; Hammer et al., 2021; Zhao et al., 78 

2020; Zhao et al., 2021; Sulaymon et al., 2021; Wang et al., 2020; Li et al., 2021). However, due to the unknown emission 79 

changes during COVID-19 restrictions, the emission reduction scenarios that used to represent the COVID-19 shutdown effects 80 

varied among different studies and did not consider the spatial and temporal heterogeneity of the emission changes, leading to 81 

biases in the model simulation (Zhao et al., 2021; Li et al., 2021; Hammer et al., 2021; Zheng et al., 2021) and uncertainty in 82 

the quantification of the contributions of different factors. 83 

Pioneer studies by Zheng et al. (2021) and Forster et al. (2020) have derived multi-air pollutant emissions from social 84 

activity data using a bottom-up method, but due to the lack of detailed social activity data, large uncertainties existed in their 85 

estimates. The meteorologically and seasonally driven variability of the concentrations of air pollutants also prohibit drawing 86 

fully quantitative conclusions on the changes of emissions based on observations alone (Levelt et al., 2022). The emission 87 

inversion technique, which takes advantage of the chemical transport model (CTM) and real-time observations, provides an 88 

attractive way to estimate the sector-specific and space-based emission changes during COVID-19 restrictions, as shown in 89 

Zhang et al. (2020), Zhang et al. (2021), Feng et al. (2020) and Hu et al. (2022). However, these studies only inversed the 90 

emissions of single species (e.g., NOx and SO2) without insights into multiple species. In view of this discrepancy, in this study 91 

we developed a multi-air pollutant inversion system to simultaneously estimated the multi-air pollutant emissions in China, 92 

including NOx, SO2, CO, PM2.5 and PM10, during the COVID-19 restrictions using an ensemble Kalman filter (EnKF) and 93 

surface observations from the China National Environmental Monitoring Centre (CNEMC). Subsequently, the inversed 94 

emission inventory was used to quantify the contributions of emission changes versus meteorology variations to the changes 95 

in PM2.5 and O3 concentrations over the NCP region during the COVID-19 restrictions. 96 

2 Method and data 97 

We developed a high-resolution multi-air pollutant inversion system to estimate the daily emissions of NOx, SO2, CO, 98 

PM2.5 and PM10 in China from 1 Jan to 29 Feb 2020 when the COVID-19 pandemic was at its most serious and the effects of 99 

the COVID-19 restrictions were most profound in China. This system uses the NAQPMS (Nested Air Quality Prediction 100 
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Modelling System) model as the forecast model and the EnKF coupled with the state argumentation method as the inversion 101 

method. It has the capabilities of simultaneous inversion of multi-air pollutant emissions at high temporal (daily) and spatial 102 

(15km) resolutions. An iteration inversion scheme was also developed in this study to address the large biases in the a priori 103 

emissions. In order to better characterize the emission changes during the COVID-19 restrictions, the whole time period was 104 

divided into three periods according to different control phases of COVID-19 and the timing of the Chinese Lunar New Year: 105 

before lockdown (P1, January 1-20), lockdown (P2, January 21-February 9) and after back-to-work day (P3, February 10-29). 106 

Emission changes in different regions of China were also analyzed, including the North China Plain (NCP), Northeast China 107 

(NE), Southeast China (SE), Southwest China (SW), Northwest China (NW) and Central regions (defined in Fig. 1) to 108 

investigate the responses of emissions to the COVID-19 restrictions in different regions. In the following sections, we briefly 109 

introduce each component of the inversion system. 110 

2.1 Chemical transport model and its configuration 111 

The NAQPMS model was used as the forecast model to represent the atmospheric chemistry in this study, which has been 112 

used in previous inversion studies (Tang et al., 2011; Tang et al., 2013; Kong et al., 2019; Wu et al., 2020), where detailed 113 

descriptions of NAQPMS are available. The Weather Research and Forecasting Model (WRF)(Skamarock, 2008) is used to 114 

provide the meteorological inputs to the NAQPMS model. 115 

Figure 1 shows the modelling domain of this study with a high horizontal resolution of 15 km. The a priori emission 116 

inventory used in this study includes monthly anthropogenic emissions from the HTAP_v2.2 emission inventory for the base 117 

year of 2010 (Janssens-Maenhout et al., 2015), biomass burning emissions from the Global Fire Emissions Data base (GFED) 118 

version 4 (Randerson et al., 2017; Van Der Werf et al., 2010), biogenic volatile organic compound (BVOC) emissions from 119 

MEGAN-MACC (Sindelarova et al., 2014), marine volatile organic compound emissions from the POET database (Granier et 120 

al., 2005), soil NOx emissions from the Regional Emission inventory in Asia (Yan et al., 2003) and lightning NOx emissions 121 

from Price et al. (1997). Chemical top and boundary conditions were provided by the global CTM MOZART (Model for 122 

Ozone and Related Chemical Tracers) (Brasseur et al., 1998; Hauglustaine et al., 1998). We assumed no monthly variations in 123 

the a priori emission inventory and used January’s emission inventory for the whole simulation period so that the emission 124 

variation was solely derived from the surface observations. A two-week free run of NAQPMS was conducted as a spin-up 125 

time. For each day’s meteorological simulation, a 36-h free run of WRF was conducted, of which the first 12-h simulation was 126 

a spin-up run and the next 24-h simulation provided the meteorological inputs to NAQPMS. Initial and boundary conditions 127 

for the meteorological simulation were provided by the National Center for Atmospheric Research/National Center for 128 

Environment Prediction (NCAR/NCEP) 1° ×1° reanalysis data. Evaluation results for the WRF simulation are available in 129 

Text S1 in Supplement. 130 
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2.2 Surface Observations 131 

The hourly concentrations of NO2, SO2, CO, PM2.5 and PM10 from CNEMC were used in this study to estimate the 132 

emissions during COVID-19. The spatial distributions of these observation sites are shown in Fig. 1, which contains 1436 133 

observation sites covering most regions of China. Before assimilation, outliers of observations were first filtered out using the 134 

automatic outlier detection method developed by Wu et al. (2018) to prevent the adverse effects of the outliers on data 135 

assimilation. Then, the hourly concentrations were averaged to the daily values for the inversions of daily emissions. 136 

The observation error is one of the key inputs to the data assimilation, which together with the background error determine 137 

the relative weights of the observation and background values on the analysis. The observation error includes measurement 138 

error and representativeness error. The measurement error of each species was designated according to the officially released 139 

documents of the Chinese Ministry of Ecology and Environmental Protection (HJ 193-2013 and HJ 654-2013, available at 140 

http://www.cnemc.cn/jcgf/dqhj/, last accessed on 22 Oct 2022), which is 5% for PM2.5 and PM10 and 2% for SO2, NO2 and 141 

CO. A representativeness error arises from the different spatial scales that the discrete observation data and model simulation 142 

represent, which was estimated based on the previous study by Li et al. (2019) and Kong et al. (2021). It should be noted that 143 

the NO2 measurement from CNEMC is made by the chemiluminescent analyser with a molybdenum converter. Due to the 144 

interference of HNO3, PAN and alkyl nitrates (AN), the NO2 concentrations can be overestimated (Dunlea et al., 2007; Lamsal 145 

et al., 2008) that may lead to spurious decreases in NOx emissions during the lockdown period. Previous studies usually use 146 

chemical transport model to simulate NOx, HNO3, PAN and AN to produce correction factors (CFs) for the NO2 measurements 147 

(Cooper et al., 2020; He et al., 2022) using the following relationship proposed by Lamsal et al. (2008): 148 

𝐶𝐹 =
[𝑁𝑂2]

[𝑁𝑂2]+0.95[𝑃𝐴𝑁]+0.35[𝐻𝑁𝑂3]+∑[𝐴𝑁]
          (1) 149 

but the calculation of CF could be affected by the simulation errors in the model caused by uncertainties in emission inventory 150 

or other error sources, which may contaminate the observations. Therefore, similar to Feng et al. (2020), we did not correct 151 

the NO2 measurement in our inversion of NOx emissions since there were large uncertainties in the NOx emissions during the 152 

COVID-19 pandemic that possibly led to erroneous CF. Since the EnKF considered the errors in observations through the use 153 

of observation error covariance matrix, the chemiluminescence monitor interference to NO2 measurement were treated as the 154 

observation error during the assimilation. A sensitivity inversion experiment was also conducted based on the corrected NO2 155 

measurement using CF, which suggests that the chemiluminescence monitor interference only have small impacts on the 156 

inversed NOx emission in terms of magnitude and its variation during COVID-19 pandemic. Detailed results of the sensitivity 157 

experiment are available in Text S2 in Supplement. 158 

2.3 Inversion estimation scheme 159 

The EnKF coupled with the state augmentation method was used in this study to constrain the emissions of multiple 160 

species. EnKF is an advanced data assimilation method proposed by Evensen (1994) that features representation of the 161 

uncertainties of the model state by a stochastic ensemble of model realizations. Different from the mass balance method used 162 
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in Zhang et al. (2020) and Zhang et al. (2021) that has difficulties in accounting for nonlinear relationship between emissions 163 

and concentrations and is more suitable for short-lived species (e.g. NOx) under relatively coarse (>1°) resolutions (Streets et 164 

al., 2013), the EnKF can consider the indirect relationship between emissions and concentrations caused by complex physical 165 

and chemical processes in the atmosphere through the use of flow-dependent background error covariance produced by 166 

ensemble CTM forecasts (Evensen, 2009; Miyazaki et al., 2012). Compared with the four-dimensional variational assimilation 167 

method used in Hu et al. (2022), the EnKF method has comparable computational cost (Skachko et al., 2014) but is more easily 168 

implemented without the need to develop complicated adjoint models for complex CTMs. The state augmentation method is 169 

a commonly used parameter estimation method (Tandeo et al., 2020), in which the emissions of multi species are treated as 170 

state variable and are simultaneously updated according to the relationship between the emissions and concentrations of related 171 

species. Due to the chemical reactions in the atmosphere, the concentrations of different species are interrelated with each 172 

other. For example, the ambient PM2.5 is not only primarily emitted, but also formed secondarily through reactions with several 173 

gaseous precursors, such as NO2 and SO2. This means that the estimations of PM2.5 emission by single inversed estimation 174 

method could be biased if the errors in NO2 and SO2 emissions were not corrected synchronously. Therefore, it is beneficial 175 

to do the multi-species inversion estimation which can provide more constraints on the atmospheric chemical system and lead 176 

to more reasonable inversion results. Meanwhile, the use of EnKF method coupled with the state augmentation method allows 177 

the estimations of multi-species emissions almost without additional computational cost. 178 

Appropriate estimation of the uncertainty in emissions and chemical concentrations is important for the performance of 179 

inversion estimation using EnKF. Since the source emission data over mainland China in HTAP_v2.2 inventory is obtained 180 

from the MIX inventory (Li et al., 2017b) , the uncertainties of emissions of different species, including PMF, PMC, BC, OC, 181 

NOx, CO, SO2, NH3 and NMVOC (nonmethane volatile organic compounds), were obtained from Li et al. (2017b) and Streets 182 

et al. (2003), which were represented by an ensemble of perturbed emissions generated by multiplying the a priori emissions 183 

with a perturbation factor 𝛽𝑖,𝑠: 184 

𝑬𝒊,𝒔 = 𝜷𝒊,𝒔 ∘ 𝑬𝒔
𝒑

, 𝑖 = 1,2, ⋯ 𝑁𝑒𝑛𝑠             (2) 185 

where 𝐸𝑖,𝑠 represents the vector of the 𝑖𝑡ℎ member of perturbed emissions for species 𝑠, 𝐸𝑠
𝑝
 represents the a priori emissions 186 

for this species, ∘ denotes the schur product and 𝑁𝑒𝑛𝑠 denotes the ensemble size. In this way, the adjustment of emissions is 187 

equivalent to the adjustment of perturbation factors. 188 

In terms of the uncertainty in chemical concentrations, considering that emission uncertainty is the major contributor to 189 

the uncertainties in air quality modelling, especially during the COVID-19 period when emissions changed rapidly, 190 

uncertainties in chemical variables were obtained through ensemble simulations driven by perturbed emissions. The ensemble 191 

size was chosen as 50 to maintain the balance between the filter performance and computational cost. After the ensemble 192 

simulations, emissions of multiple species were updated using a deterministic form of EnKF (DEnKF) proposed by Sakov and 193 

Oke (2008), which is formulated by 194 

𝒙𝒂̅̅ ̅ = 𝒙𝒃̅̅ ̅ + 𝐏𝐞
𝐛𝐇T(𝐇𝐏𝐞

𝐛𝐇𝐓 + 𝐑)
−1

(𝒚𝒐 − 𝐇𝒙𝒃̅̅ ̅)         (3) 195 
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𝒙𝒃̅̅ ̅ =
1

𝑁
∑ 𝒙𝒊

𝒃𝑁
𝑖=1 ; 𝑿𝒊

𝒃 = 𝒙𝒊
𝒃 − 𝒙𝒃̅̅ ̅           (4) 196 

𝐏𝐞
𝐛 =

1

𝑁−1
∑ 𝑿𝒊

𝒃(𝑿𝒊
𝒃)

T𝑁
𝑖=1             (5) 197 

where  𝒙 denotes the state variables; 𝑏  the background state (a priori); 𝑎  the analysis state (posteriori); 𝐏𝐞
𝐛  the ensemble-198 

estimated background error covariance matrix and 𝑁 the ensemble size. 𝒚𝒐 represents the vector of observations with an error 199 

covariance matrix of R. 𝐇 is the linear observational operator that maps the m-dimensional state vector 𝒙 to a p- (number of 200 

observations) dimensional observational vector ( 𝐇𝒙𝒃̅̅ ̅ ). The state variables were defined as follows according to state 201 

augmentation method during the assimilation: 202 

𝒙𝒊 = [𝒄𝒊, 𝜷𝒊]
𝑻, 𝑖 = 1,2, ⋯ 𝑁𝑒𝑛𝑠           (6) 203 

𝒄𝒊 = [𝑷𝑴𝟐.𝟓, 𝑷𝑴𝟏𝟎−𝟐.𝟓, 𝑵𝑶𝟐, 𝑺𝑶𝟐, 𝑪𝑶]𝒊           (7) 204 

𝜷𝑖 = [𝜷𝑷𝑴𝑭, 𝜷𝑩𝑪, 𝜷𝑶𝑪, 𝜷𝑷𝑴𝑪, 𝜷𝑵𝑶𝒙
, 𝜷𝑺𝑶𝟐

, 𝜷𝑪𝑶]
𝒊
          (8) 205 

where 𝒙𝑖 represents the 𝑖𝑡ℎ member of the assimilated state variable, which consists of the fields of chemical variables 𝒄𝑖 and 206 

emission perturbation factors 𝜷𝑖. Detailed descriptions of the model state variables are summarized in Table 1. The use of 207 

PM10-2.5 (PM10 minus PM2.5) values was aimed to avoid the potential cross-correlations between PM2.5 and PM10 (Peng et al., 208 

2018; Ma et al., 2019). Moreover, to prevent spurious correlations between non- or weakly related variables, similar to Ma et 209 

al. (2019) and Miyazaki et al. (2012), state variable localization was used during assimilation, with observations of one 210 

particular species only used in the updates of the same species’ emission rate. Corresponding relationship between the chemical 211 

observations and adjusted emissions is summarized in Table 1. The PM2.5 observations were one exception and were used to 212 

update the emissions of PMF (fine mode unspeciated aerosol), BC (black carbon) and OC (organic carbon) since the 213 

observations of speciated PM2.5 were not available in this study. The lack of speciated PM2.5 observations may lead to 214 

uncertainties in the estimated emissions of PMF, BC and OC. Therefore, we only analyzed the emissions of PM2.5, which were 215 

the sum of the emissions of these three species. Similarly, only PM10 emissions were analyzed in this study, which includes 216 

the emissions of PM2.5 and PMC (coarse mode unspeciated aerosol).  217 

Due to the strict control measures implemented during the last decades, the emissions in China decreased dramatically 218 

from 2010 to 2020, especially for SO2. Thus, there are large biases in the a priori estimates of emissions in China (Zheng et 219 

al., 2018), which would lead to incomplete adjustments of the a priori emissions and degrade the performance of assimilation. 220 

Therefore, an iteration inversion scheme was developed in this study to address the large biases of SO2 emissions. As illustrated 221 

in Fig. 2, the main idea of the iteration inversion scheme is to update the ensemble mean of the state variable using the inversion 222 

results of the 𝑘𝑡ℎ iteration and corresponding simulations. The state variable used in the (𝑘 + 1)𝑡ℎ inversions is written as 223 

follows: 224 

𝒙𝒊
𝒌+𝟏 = [𝒄𝒌 + 𝒄𝒊

𝒆 − 𝒄�̅�, 𝜷𝒌 + 𝜷𝒊
𝒆 − 𝜷𝒆̅̅̅̅ ]

𝑻
          (9) 225 
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where 𝒄𝒌 represents the simulation results using the inversed emissions of the 𝑘𝑡ℎ iteration, 𝒄𝒊
𝒆 represents the 𝑖𝑡ℎ member of 226 

ensemble simulations with an ensemble mean of 𝒄�̅� , 𝜷𝒌  represents the perturbation factors of the 𝑘𝑡ℎ  iteration, and 227 

𝜷𝒊
𝒆 represents the 𝑖𝑡ℎ member of the ensemble of perturbation factors with a mean value of 𝜷𝒆̅̅̅̅ .  228 

Using this method, the problems of large biases in the a priori emissions were well addressed as exemplified in Fig. 3 for 229 

SO2 emissions. It can be clearly seen that due to the large positive biases in the a priori SO2 emissions, the model still has large 230 

positive biases (NMB = 30.9–220.5%) and errors (RMSE = 8.7–23.0 μg/m3) in simulated SO2 concentration over all regions 231 

of China even after assimilation (first iteration). However, the biases and errors continued to decrease with the increasing of 232 

iteration times till the fourth iteration in which there were no significant improvement in SO2 simulations compared to those 233 

in third iteration. These results suggested that the iteration inversion method used in this study can well constrain the a priori 234 

emission with large biases and, in this application, conducting three iteration is enough for constraining the emission. Besides 235 

SO2 emissions, the iteration inversion scheme was also applied to the emissions of other species. Meanwhile, to reduce the 236 

influences of random model errors (e.g., errors in meteorological inputs) on the estimation of the variation in emissions, a 15-237 

day running average was performed on our daily inversion results after the inversion estimation.  238 

2.4 Quantification of the effects of emission changes and meteorological variations 239 

In previous studies, the meteorological-induced (MI) changes were usually determined by the CTM with a fixed emission 240 

input setting and a varying meteorological input. Then, the difference between the MI changes and total changes in air pollutant 241 

concentrations is defined as emission-induced (EI) changes. Another approach to estimate EI changes is to perform simulations 242 

with a fixed meteorological input setting and varying emission inputs. Then, the MI changes are defined as the difference 243 

between EI changes and total changes in air pollutant concentrations. Due to the nonlinear effects of atmospheric chemical 244 

systems, these two methods yield different results. Thus, both methods were used in this study to account for the nonlinear 245 

effects. The averaged results of these two methods are used to represent the impacts of emission changes and meteorological 246 

variation on the air quality changes during the COVID-19 restrictions. In total, three scenario experiments were designed based 247 

on our inversion results (Table 2). The first scenario simulation used the varying meteorological and emission inputs from the 248 

P1 to P2 period, which represents the real-world scenario and is used to estimate the total changes in air pollutant concentrations 249 

induced by emissions and meteorological changes from the P1 to P2 period (BASE scenario). The second scenario experiment 250 

used the varying meteorological inputs but replaced the emissions during the P2 period with those during the P1 period, which 251 

was used to estimate the MI changes using the first method (MET change scenario). The third scenario experiment used the 252 

varying emissions input and replaced the meteorological input during the P2 period with that during the P1 period, which was 253 

used to estimate the EI changes using the second method (EMIS change scenario). Based on the first method, the MI and EI 254 

changes can be estimated as follows: 255 

𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜       (10) 256 

𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜     (11) 257 
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where 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  represents the MI changes estimated based on the results from the MET change scenario, 258 

𝑐𝑜𝑛𝑐𝑝1,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and 𝑐𝑜𝑛𝑐𝑝2,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 represent the averaged concentrations of air pollutants during the P1 259 

and P2 periods under the MET change scenario, 𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 represents the EI changes estimated based on the results 260 

from the MET change scenario, and 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 , 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  respectively represent the averaged 261 

concentrations of air pollutants during the P1 and P2 periods under the BASE scenario. Similarly, the MI and EI changes 262 

estimated based on the second method are formulated as follows: 263 

𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜       (12) 264 

𝑀𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜    (13) 265 

Then, the estimations from these two methods are averaged to estimate the contributions of meteorological change and 266 

emission change to the changes in PM2.5 and O3 concentrations during the COVID-19 lockdown: 267 

𝑀𝐼 = (𝑀𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)/2        (14) 268 

𝐸𝐼 = (𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + 𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)/2        (15) 269 

𝑐𝑜𝑛𝑡𝑟𝑖𝑚𝑒𝑡=
MI

MI+EI
×100            (16) 270 

contriemis=
EI

MI+EI
×100             (17) 271 

where 𝑐𝑜𝑛𝑡𝑟𝑖𝑚𝑒𝑡  and 𝑐𝑜𝑛𝑡𝑟𝑖𝑒𝑚𝑖𝑠  represent the relative contributions (%) of the meteorological variations and emission 272 

changes to the changes in air pollutant concentrations. Detailed definition of each notation used in the calculation of MI and 273 

EI is given in Table 3. 274 

3 Results 275 

3.1 Validation of the inversion results 276 

We firstly validate our inversion system by using a cross-validation method, in which 20% of observation sites were 277 

withheld from the emission inversion and used as the validation datasets. Figure S1–6 showed the concentrations of different 278 

air pollutants in China from 1st Jan to 29th Feb 2020 obtained from observations at validation sites and simulations using a 279 

priori and a posteriori emission. Commonly used statistical evaluation indices, including correlation coefficient (R), mean bias 280 

error (MBE), normalized mean bias (NMB) and root of mean square error (RMSE) are summarized in Table S1. The validation 281 

results suggest that the posteriori simulation agreed well with the observed concentrations for all species. The large biases in 282 

the a priori simulation of PM2.5, PM10, SO2 and CO were almost completely removed in the a posteriori simulation with NMB 283 

about -3.9–15.7% for PM2.5, -3.1–11.6% for PM10, -12.6–5.3% for NO2, -9.5–6.2% for SO2 and -10–7.6% for CO (Table S1). 284 

RMSE values were also significantly reduced in the a posteriori simulation which were 9.1–32.2μg/m3 for PM2.5, 12.6–285 

42.4μg/m3 for PM10, 5.1–12.3μg/m3 for NO2, 1.2–5.6μg/m3 for SO2 and 0.10–0.46mg/m3 for CO. Moreover, the inversion 286 

emission considerably improved the fit to the observed time evolution of air pollutants’ concentrations. The R values were 287 
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improved for all species in the a posteriori simulation that were up to 0.74–0.94 for PM2.5, 0.63 – 0.92 for PM10, 0.76–0.94 for 288 

NO2, 0.23–0.79 for SO2 and 0.63–0.92 for CO. These results suggest that our inversion results have excellent performance in 289 

representing the magnitude and variation of these species’ emission in China during COVID-19 restrictions. Model 290 

performance in simulating O3 concentration is relatively poor compared to other species although improvement was 291 

remarkable in NCP, NE and SE regions. This would be due to the use of outdated emission inventory for base year 2010 and 292 

that the emission of non-mental volatile organic compounds (NMVOC), another important precursor for O3, were not 293 

constrained in this study. As shown in fig. S7, the NMVOC emissions for base year 2010 were generally lower than those for 294 

2018 except over the SW regions. Considering the increasing trend of NMVOC emissions in China (Li et al., 2019), the 295 

underestimates of NMVOC emissions for base year 2020 could be larger. This is in line with the negative biases in the 296 

simulated O3 concentrations over these regions. 297 

3.2 Emission changes of multi-species during COVID-19 restrictions 298 

3.2.1 Unbalanced emission changes between NOx and other species 299 

The control of COVID-19 began on 23rd January when the Chinese government declared the first level of national 300 

responses to public health emergencies, one day before the 2020 Chinese New Year Eve. Figure 4 shows the time evolution 301 

of the normalized emission anomaly for different species in China from 1st January to 29th February. The temporal variation 302 

in the emission varied largely between NOx and other species. Due to the combined effects of the Spring Festival and COVID-303 

19 lockdown, NOx emissions decreased continuously at the beginning of January until approximately one week after the 304 

implementation of the COVID-19 lockdown, with estimated decreases in NOx emissions of up to 42.5% from the P1 to P2 305 

period (Table 4). Subsequently, the NOx emissions stabilized with small fluctuations until the official back-to-work day when 306 

the NOx emissions began to increase due to easing of the control measures and the resumption of business. According to 307 

inversion estimation, NOx emissions recovered by 3.9% during the P3 period. These results indicate that the temporal variation 308 

in our estimated NOx emissions agreed well with the timing of the Spring Festival and different control stages of COVID-19. 309 

However, for other species (i.e., PM2.5, PM10, SO2 and CO), although their emissions generally decreased from 1st January to 310 

the end of the 2020 Spring Festival holiday, they showed much smaller reductions than the NOx emissions. The emission 311 

reduction for these species was only approximately 7.9-12.1% (Table 4). This is consistent with the inversion results by Hu et 312 

al. (2022) who found that SO2 emissions in China decreased only by 9.2% during COVID-19 lockdown. In addition, the 313 

emissions of these species quickly rebounded to their normal level just one week after the end of the Spring Festival holiday. 314 

As estimated by our inversion results, the SO2 emissions recovered by 7.2% during the P3 period, which was only 2.5% lower 315 

than that during the P1 period. The PM2.5 and PM10 emissions during the P3 period were 3.3% and 43.6% higher, respectively, 316 

than those during the P1 period. 317 

Similar results were found in different regions of China (Fig. 5 and Table 5), where the NOx emissions decreased much 318 

more than other species. In addition, unlike the uniform decreases in NOx emissions in different regions of China (~40%), 319 
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there was apparent spatial heterogeneity in the emission changes in PM2.5, PM10, SO2 and CO (Table 5 and Fig. 6). For example, 320 

from the P1 to P2 period, the PM2.5 emissions decreased by over 20% in the Central region but only by 8.8% in the NE region. 321 

The PM2.5 emissions even increased by 5.5% in the NCP region. This may be due to the increased emissions from industry 322 

and fireworks according to the field measurements conducted by previous studies (Li et al., 2022; Ma et al., 2022; Zuo et al., 323 

2022; Dai et al., 2020). Based on the measurement of stable Cu and Si isotopic signature and distinctive metal ratios in Beijing 324 

and Hebei, Zuo et al. (2022) analyzed the variations in the PM2.5 sources during the COVID-19 pandemic, who reported that 325 

the primary PM2.5 emissions did not decrease in Beijing and Hebei, and that the PM-associated industrial emissions may 326 

actually increase during the lockdown period. The increased industrial heat sources detected by Li et al. (2022) based on VIIRS 327 

active fire data also supported the increased industrial emissions over the NCP region during lockdown period. Meanwhile, 328 

consistent with the field measurements in Beijing and Tianjin conducted by Ma et al. (2022) and Dai et al. (2020), substantial 329 

high levels of potassium (K+) and magnesium (Mg2+) ion were found over the NCP region during the Spring Festival according 330 

to the aerosol chemical composition measurements obtained from CNEMC (Fig. S8). Since K+ and Mg2+ are two important 331 

fingerprints of the firework emissions, the high levels of K+ and Mg2+ suggest that the emissions from fireworks during Spring 332 

Festival were also a potential contributor to the increased of PM2.5 emissions over the NCP region. In contrast, the SW and 333 

central regions exhibited relatively larger emission reductions for these species (Fig. 5 and Table 5) by 12.6–25.9% and 10.6–334 

23.7%, respectively. The emission rebound during the P3 period was more prominent in the SE, central and SW regions (Fig. 335 

5 and Fig. 7), where emissions recovered by 6.0–16.4% for NOx, 7.5–19.8% for SO2, 7.4–13.1% for CO, 12.3–47.7% for PM2.5 336 

and 28.6–135.9% for PM10 (Table 5). This result is consistent with the earlier degradation of the response level to the COVID-337 

19 virus (from the first level to the second or third level) over these regions (Table S2). In contrast, there were decreases in 338 

emissions in the NCP, NE and NW regions. PM2.5 emissions were reduced by 9.9% in the NCP region and by 19.2% in the 339 

NE region from the P2 to P3 period (Table 5). Moreover, we found that the PM10 emissions surged in the NW and central 340 

regions, where the PM10 emissions during the P3 period were almost two times larger than those during the P2 period (Table 341 

5). However, this finding may be related to the enhanced dust emissions over these two regions rather than the effects of 342 

returning to work according to the decreased PM2.5/PM10 ratios during the P3 period. According to Fig.S9, the PM2.5/PM10 343 

ratio was relatively stable during the P1 and P2 period, but it decreased substantially during the P3 period, from 0.81 to 0.48 344 

over the NW region and from 0.77 to 0.53 over the Central region. A lower PM2.5/PM10 ratio commonly suggests that the PM10 345 

is more likely to be attributed to natural sources such as dust (Wang et al., 2015; Fan et al., 2021). Moreover, the NW and 346 

Central region are typical source areas of dust in China, therefore the increasing of PM10 emissions over NW and Central 347 

regions may be mainly related to the enhanced dust emissions. This demonstrates the necessity to consider changes in natural 348 

emissions during COVID-19 restrictions. Thus, to reduce the effects of natural emissions on our findings, the same analysis 349 

was performed for the emissions over southeast China (Fig. S10) where emissions were dominated by anthropogenic sources, 350 

which shows consistent results with the findings above (Fig. S11 and Table S3). 351 
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3.2.3 Explanations for the emission changes during COVID-19 restrictions 352 

Two explanations may help clarify the unbalanced emission changes between NOx and other species. First, the COVID-353 

19 lockdown policy has led to dramatic decreases in transportation activities throughout China; however, as shown in Fig. 4, 354 

the relative contributions of the transportation sector to the emissions of SO2 (2.4%), CO (18.5%), PM2.5 (6.1%) and PM10 355 

(4.7%) are much smaller than those for NOx emissions (34.3%) (Zheng et al., 2018; Li et al., 2017a). Thus, the reduction in 356 

traffic activities can only substantially decrease NOx emissions. Reductions in CO emissions (-10.6%) were relatively larger 357 

than those for SO2 (-9.7%) and PM2.5 (-7.9%) emissions, which is consistent with the relatively larger contributions of the 358 

transportation sector to CO emissions. However, the differences in the percentage decreases in emissions of CO, SO2 and PM2.5 359 

is not as significant as the differences in their transportation share (18% versus 2% and 6%). This may be on the one hand due 360 

to the uncertainty in the estimated relative contributions of different sectors to the total emissions of CO, SO2 and PM2.5, on 361 

the other hand were possibly due to the uncertainty in the emission inversions, especially considering that the decreasing trend 362 

of CO, SO2 and PM2.5 were not significant. Also, other factors beyond transportation may have influenced the reductions of 363 

anthropogenic emissions during P2 period. For example, the PM10 emissions showed the largest reductions among these four 364 

species, which is related in part to the reduced dust emissions due to shutting down of construction sites during the lockdown 365 

period (Li et al., 2020). Second, as shown in Fig. 4, the industrial and residential sectors are the major contributors to the 366 

anthropogenic emissions of SO2, CO, PM2.5 and PM10 in China, together contributing 77.6%, 78.3%, 86.5% and 86.3%, 367 

respectively, to their total emissions. The much smaller reductions of these species’ emissions were thus in line with the fact 368 

that there were no intentional restrictions on heavy industry during the COVID-19 restrictions. A large number of non-369 

interruptible processes, such as steel, glass, coke, refractory, petrochemical, electric power, and especially heating, cannot be 370 

stopped during the COVID-19 lockdown. According to statistical data from the National Bureau of Statistics of China (Fig. 371 

S12), the industrial and power sectors did not show similar reductions in their activity levels as those seen in the transportation 372 

sector. Power generation and steel production even showed increases in many provinces, which corresponds well with the 373 

emission increases over these regions. In addition, since people were required to stay at home, residential emissions were likely 374 

increased due to the increased energy consumption for heating or cooking. Therefore, our inversion results supported the views 375 

that the emissions of species related to industrial and residential activities did not decline much during the lockdown period, 376 

and that the COVID-19 lockdown policy was largely a traffic control measure with small influences on other sectors. 377 

3.3 Investigation of air quality change over the NCP region during COVID-19 restrictions 378 

Using the inversion results, we reassessed the environmental impacts of the COVID-19 restrictions on the air pollution 379 

over NCP region. The NCP region was chosen because it is the key target region of air pollution control in China and where 380 

unexpected severe haze occurred. A major caveat in previous studies that explored the impacts of COVID-19 lockdowns on 381 

air quality is the uncertainty in the emission changes during COVID-19 restrictions. The inversion results enable us give a 382 

more reliable assessment of the environmental impacts of COVID-19 restrictions. Figure 8 shows the observed changes in 383 
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PM2.5 and O3 concentrations over the NCP region from the P1 to P2 period. The observations showed consistent reductions in 384 

PM2.5 concentrations over the NCP region (by 13.6 μg/m3). However, substantial increases in PM2.5 concentrations were 385 

observed in the Beijing area (by 31.2 μg/m3). In contrast to the widespread reductions in PM2.5 concentrations, the O3 386 

concentrations significantly increased over the whole NCP region (by 28.3 μg/m3) and the Beijing area (by 16.8 μg/m3). The 387 

simulations based on our inversion results reproduced the observed changes in PM2.5 and O3 concentrations over the NCP 388 

region well, although the O3 concentrations were underestimated in all regions (Fig. S6) and the changes in PM2.5 and O3 389 

concentrations were slightly overestimated by 1.6 and 2.6 μg/m3 in the simulation (Fig. 8). 390 

As detailed in the Sect 2.4, the simulated changes in air pollutant concentrations before and after lockdown were 391 

decomposed into meteorological-induced (MI) changes and emission-induced (EI) changes through two different scenarios to 392 

account for the nonlinearity of the atmospheric chemical system. According to Fig. S13, the differences in calculated MI and 393 

EI based on different scenarios were small for PM2.5 concentrations, which were about 2 μg/m3 in this application, while they 394 

were relatively larger for O3, which were around 5 μg/m3 over the Beijing and NCP region (Fig. S14). In addition, the sign of 395 

calculated MI using different scenarios were opposite although both suggested weak contributions of meteorological variation 396 

to the changes of O3 concentrations. This suggests that the calculated MI and EI changes of O3 concentrations could be more 397 

sensitive to the used scenarios, which may be associated with the stronger chemical nonlinearity of the O3 concentrations. 398 

Figure 9 shows the mean results of the calculated MI and EI changes using the two different scenarios. It shows that the 399 

meteorological variation dominated the changes in PM2.5 concentrations over the NCP region, which contributed 90% of the 400 

PM2.5 reductions over most parts of the NCP region. Moreover, this variation made significant contributions (57.9%) to the 401 

increases in PM2.5 concentrations over the Beijing area. This finding suggested that meteorological variations played an 402 

irreplaceable role in the occurrence of the unexpected PM2.5 pollution around the Beijing area. Compared with the 403 

meteorological conditions before lockdown (Fig. 10), there were increases in relative humidity over northern China, which 404 

facilitated the reactions for aerosol formation and growth. Wind speed also decreased over the Beijing area accompanied by 405 

an anomalous south wind, which facilitated aerosol accumulation and the transportation of air pollutants from the polluted 406 

industrial regions of the Hebei Province to Beijing. The increases in boundary layer height from the P1 to P2 period were also 407 

much smaller in the Beijing area than in other areas of the NCP. Thus, the Beijing area has exhibited distinct meteorological 408 

variations from other areas of the NCP region, which correspond well to the different changes in PM2.5 concentrations over the 409 

Beijing area. 410 

The emission changes contributed slightly to the PM2.5 reductions over the NCP region (8.6%). This is because, on the 411 

one hand, the large reductions in NOx emissions (by 44.4%) only reduced nitrate by approximately 10–30% due to the nonlinear 412 

effects of chemical reactions (Fig. 11), and on the other hand, the emissions of primary PM2.5 and its precursors from other 413 

sectors changed little during the COVID-19 restrictions (Table 5). The emission changes contributed more to the increased 414 

PM2.5 concentrations over the Beijing area (42.1%). This is mainly associated with the increases in primary PM2.5 emissions 415 

around the Beijing area, as seen in Fig. 6, possibly due to the increased emissions from the industry as we mentioned before 416 

(Zuo et al., 2022) and the increased firework emissions during the Spring Festival as shown by the rapid increases in 417 
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concentrations of K+ and Mg2+ measured by CNEMC (Fig. S15). Therefore, our results suggested that the unexpected PM2.5 418 

pollution during lockdown period was mainly driven by unfavorable meteorological conditions together with small changes 419 

or even increases in primary PM2.5 emissions. This finding is in line with previous results of Le et al. (2020) but different from 420 

those of Huang et al. (2021), who suggested that enhanced secondary aerosol formation was the main driver of severe haze 421 

during the COVID-19 restrictions. To investigate it, we further analyzed the changes in the concentrations of secondary 422 

inorganic aerosols (SIAs). First, we evaluated our model results against the observed SIA concentrations, which showed that 423 

the model results using our inversion emissions well reproduced the observed concentrations of SIAs over the NCP region 424 

(Fig. 12) with mean bias (MB) ranging from -5.14 to 5.45 μg/m3 and correlation coefficient (R) ranging from 0.59 to 0.80. The 425 

observed increases in SIA concentrations over the Beijing area, especially for sulfate concentrations, were also captured in our 426 

simulations (Fig. 11), although underestimation occurred due to the uncertainty in simulating SIA concentrations. Through 427 

sensitivity experiments, we found that the increases in SIA concentrations were still driven by meteorological variations (Fig. 428 

13). In fact, the emission reductions only led to a 10% decrease in SIA concentrations over the NCP region. This finding 429 

suggests that the enhanced secondary aerosol formation was likely mainly driven by the unfavorable meteorological conditions 430 

associated with higher temperature and relative humidity instead of the emission reductions during the lockdown period. This 431 

is in line with the observation evidences from Ma, T et al (2022) who emphasized that the increased temperature and relative 432 

humidity promoted the formation of secondary pollutants during the COVID-19 restrictions. 433 

In terms of O3 concentrations, the emission changes subsequently became the dominant contributor to the O3 increases 434 

by more than 100% in the Beijing area and by 96.0% over the NCP region. This result is mainly because the lockdown period 435 

occurred in midwinter when photochemical O3 formation was minimal; thus, the large increase in O3 is expected solely from 436 

the effect of the reduced titration reaction associated with the large reductions in NOx emissions. Although the higher 437 

temperature and slower wind speed during the lockdown period were favorable for the increases in O3 concentrations, their 438 

contributions were much smaller than those of emission changes (Fig. 9). These results suggested that control measures, such 439 

as COVID-19 restrictions, were inefficient for air pollution mitigation in China considering the high economic cost of the 440 

COVID-19 restrictions. 441 

We also compared our results with previous studies that differentiated the contributions of meteorology and emission to 442 

the PM2.5 and O3 concentrations. Before comparisons, it should be noted that it is difficult to directly compare our results with 443 

previous studies due the altered definition of meteorological contribution, different reference period that used to quantify the 444 

meteorological contributions and different targeted region. For example, in Song et al. (2021), the reference period used to 445 

determine the meteorological contribution is the corresponding period of COVID-19 pandemic in 2019. Le et al. (2020) used 446 

the multiyear climatology as the reference period. In Wang et al. (2020) and Sulaymon et al. (2021), the MI changes of PM2.5 447 

concentrations were defined as the difference between the modeled concentrations in high-pollution days and those in low-448 

pollution days under hypothetical emission reduction scenario. Zhao et al. (2020) used a similar reference period to ours to 449 

determine the MI changes but they used the outdated emission inventory. Table 6 summarized the results from the selected 450 

studies over Beijing and Beijing-Tianjin-Hebei region. Note that some studies only provided the relative changes in the 451 
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modeled PM2.5 concentrations. It shows that due to the uncertainties in emission changes during COVID-19 pandemic, the EI 452 

changes estimated by Zhao et al. (2020) were possibly overestimated compared to our studies (55% versus 24.7%). Both 453 

Sulaymon et al. (2021) and Wang et al. (2020) suggested negative EI changes during COVID-19 period in Beijing. This 454 

because they presumed that the emissions were largely reduced during COVID-19 lockdown which may deviate from the real 455 

changes of emissions according to our inversion results. Meanwhile, although they used same method and reference period, 456 

their results differed largely (-2.7 versus -13.4 𝜇𝑔/𝑚3) due to the different emission reduction scenario they assumed. Le et 457 

al. (2020) only considered the emission reductions of NOx in their sensitivity simulations without considerations of other 458 

species, therefore their calculated EI changes may be underestimated compared to our results (almost 0% versus 24.7%). 459 

However, the calculated MI changes were consistent between our study and Le et al. (2020). In terms of O3, the calculated EI 460 

changes by our study were also higher than that calculated by Zhao et al. (2020) in Beijing (85.7% versus 70%). These results 461 

suggested that the EI and MI changes calculated by our study could be more reasonable, considering that the emissions of 462 

different species were well constrained which could better represent the temporal variation and spatial heterogeneity of 463 

emission changes during COVID-19.  464 

4 Conclusions and discussions 465 

The COVID-19 pandemic is an unprecedented event that significantly influenced the social activity and associated 466 

emissions of air pollutants. Our results provide a quantitative assessment of the influences of COVID-19 restrictions on multi-467 

air pollutant emissions in China. Otherwise, understanding of the relationship between air quality and human activities may 468 

be biased. The inversion results provide important evidences that the COVID-19 lockdown policy was largely a traffic control 469 

measure with substantially reducing impacts on NOx emissions but much smaller influences on the emissions of other species 470 

and other sectors. Traffic control has widely been considered to be the normal protocol in implementing regulations in many 471 

cities of China, but its effectiveness on air pollution control is still disputed (Han and Naeher, 2006; Zhang et al., 2007; Chen 472 

et al., 2021; Cai and Xie, 2011; Chowdhury et al., 2017; Li et al., 2017c). Thus, the COVID-19 restrictions provided us with a 473 

real nationwide traffic control scenario to investigate the effectiveness of traffic control on the mitigation of air pollution in 474 

China. The results suggested that traffic control as a separate pollution control measure has limited effects on the coordinated 475 

control of high concentrations of O3 and PM2.5 under the current air pollution conditions in China. In this case, the PM2.5 476 

concentrations were slightly reduced, while leading to substantial increases in O3 concentrations. Severe haze was also not 477 

avoided during the COVID-19 restrictions due to unbalanced emission changes from other sectors and unfavorable 478 

meteorological conditions. China is now facing major challenges in both controlling PM2.5 and controlling emerging O3 479 

pollution. The tragic COVID-19 pandemic has revealed the limitation of the road traffic control measure in the coordinated 480 

control of PM2.5 and O3. More comprehensive regulations for multiple precursors from different sectors are required in the 481 

future to address O3 and PM2.5 pollution in China. 482 
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Finally, there are certain limitations that should be aware of in our inversion work. Firstly, the COVID-19 restrictions 483 

were initiated during the Spring Festival of China which would also influence the air pollutant emissions in China. However, 484 

the inversion method used in this study did not differentiate the contributions of the Spring Festival from the COVID-19 485 

restrictions. Similarly, the effects of natural emission changes were not differentiated in this study, which would lead to 486 

uncertainty in quantifying the effects of the COVID-19 restrictions on air pollutant emissions. Secondly, the overestimations 487 

of NO2 measurement induced by chemiluminescence monitor interference were not directly corrected in our study due to the 488 

lack of synchronous observations of HNO3, PAN and AN, thus the estimated NOx emissions could be slightly overestimated 489 

according to the sensitivity run with corrected NO2 measurement using CFs (Fig. S16–18). Meanwhile, the sensitivity results 490 

suggest that the inversed NOx emissions may even drop faster if the NO2 measurement were corrected over the SE and SW 491 

regions (Fig. S19). Thirdly, the use of outdated emission inventory as the a priori emission would also be a potential limitation 492 

in our work although the iteration inversion method was used. A sensitivity inversion run was thus conducted based on the a 493 

priori emission for a more recent year of 2018 to test the influence of the a priori emission inventory. This new emission 494 

inventory is comprised of the anthropogenic emissions obtained from HTAPv3 (Crippa et al., 2023), the biogenic, soil and 495 

oceanic emissions obtained from the CAMS global emission inventory 496 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview, last access: March 497 

15, 2023) and the biomass burning emissions obtained from the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012). 498 

Detailed steps of the new inversion estimation were same as those elucidated in Sect.2. The results suggest that the inversion 499 

results based on the 2010 and 2018 inventory were broadly close to each other, while the inversion results based on 2018 500 

inventory were relatively higher than those based on 2010 inventory, reflecting the uncertainty in our inversion results caused 501 

by the choice of a priori emission inventory (Fig. S20–22). However, the sensitivity run consistently showed that the NOx 502 

emissions decreased much larger than other species (Fig. S23–24). This suggests that the choice of a priori emission inventory 503 

may not obviously influence the main conclusion of our study, but can lead to uncertainty in the magnitude of the inversion 504 

results which should be aware of by potential readers.  505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
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Tables 517 

Table 1. Corresponding relationship between the chemical observations and adjusted emissions 518 

Species Descriptions Observations that used for inversions of this 

species 

BC black carbon PM2.5 

OC organic carbon PM2.5 

PMF fine mode unspeciated aerosol PM2.5 

PMC coarse mode unspeciated aerosol PM10 – PM2.5 

NOx nitrogen oxide NO2 

SO2 sulfur dioxide SO2 

CO carbon monoxide CO 

 519 

Table 2. Configuration of simulation scenarios 520 

Scenarios Meteorology input Emission input Purpose 

BASE 

scenario 

varied meteorological condition 

from pre lockdown to lockdown 

period 

varied emission from pre-

lockdown to lockdown period 

To estimate the total changes of 

air pollutant concentrations 

induced by emission and 

meteorological change 

MET 

change 

scenario 

varied meteorological condition 

from pre-lockdown to 

lockdown period 

constant emissions during pre-

lockdown and lockdown period 

To estimate the impacts of 

meteorological changes on the 

air pollutants 

EMIS 

change 

scenario 

constant meteorological during 

pre-lockdown and lockdown 

period 

varied emission from pre-

lockdown to lockdown period 

To estimate the impacts of 

emission changes on the air 

pollutants 

 521 

 522 

 523 

 524 

 525 

 526 

 527 
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 528 

Table 3. Descriptions of different items used in the calculation of meteorological-induced and emission-induced changes of air 529 
pollutant concentrations 530 

notation description 

𝑀𝐼 meteorological-induced changes in air pollutant concentrations 

𝐸𝐼 emission-induced changes in air pollutant concentrations 

𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 meteorological-induced changes in air pollutant concentrations calculated by the 

MET change scenario 

𝐸𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  emission-induced changes in air pollutant concentrations calculated by total 

changes minus 𝑀𝐼𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜   

𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 emission-induced changes in air pollutant concentrations calculated by the EMIS 

change scenario 

𝑀𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 meteorological-induced changes in air pollutant concentrations calculated by total 

changes minus 𝐸𝐼𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

𝑐𝑜𝑛𝑐𝑝1,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 averaged concentrations of air pollutants during P1 period under the BASE scenario 

𝑐𝑜𝑛𝑐𝑝2,𝐵𝐴𝑆𝐸 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 averaged concentrations of air pollutants during P2 period under the BASE scenario 

𝑐𝑜𝑛𝑐𝑝1,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  averaged concentrations of air pollutants during P1 period under the MET change 

scenario  

𝑐𝑜𝑛𝑐𝑝2,𝑀𝐸𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 averaged concentrations of air pollutants during P2 period under the MET change 

scenario 

𝑐𝑜𝑛𝑐𝑝1,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 averaged concentrations of air pollutants during P1 period under the EMIS change 

scenario 

𝑐𝑜𝑛𝑐𝑝2,𝐸𝑀𝐼𝑆 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  averaged concentrations of air pollutants during P2 period under the EMIS change 

scenario 

𝑐𝑜𝑛𝑡𝑟𝑖𝑚𝑒𝑡 relative contributions of the meteorological variations to the changes in air pollutant 

concentrations 

contriemis relative contributions of the emission changes to the changes in air pollutant 

concentrations 

 531 

 532 

 533 

 534 

 535 
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Table 4. Inversion estimated emissions of different air pollutants in China and their changes between different periods during 536 
COVID-19. 537 

 NOx SO2 CO PM2.5 PM10 

P1 (Gg/day) 72.9 23.8 1160.2 44.5 75.5 

P2 (Gg/day) 41.9 21.5 1037.4 40.9 66.4 

P3 (Gg/day) 44.8 23.2 1078.2 45.9 108.4 

(P2-P1)/P1 -42.5% -9.7% -10.6% -7.9% -12.1% 

(P3-P2)/P1 3.9% 7.2% 3.6% 11.2% 55.7% 

(P3-P1)/P1 -38.6% -2.5% -7.0% 3.3% 43.6% 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 
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Table 5. Inversion estimated emission changes of different air pollutants over different regions in China between different periods 561 
during COVID-19 restrictions 562 

 NOx PM2.5 PM10 SO2 CO 

NCP      

(P2-P1)/P1 -44.4% 5.5% 2.8% -1.6% -4.3% 

(P3-P2)/P1 -0.8% -9.9% 31.8% -5.9% -10.0% 

(P3-P1)/P1 -45.2% -4.3% 34.7% -7.5% -14.3% 

NE      

(P2-P1)/P1 -41.8% -8.8% -3.5% -3.2% -10.9% 

(P3-P2)/P1 -6.0% -19.2% 23.7% -2.9% -6.6% 

(P3-P1)/P1 -47.8% -28.0% 20.2% -6.1% -17.5% 

SE      

(P2-P1)/P1 -41.4% -9.5% -24.4% -19.4% -3.5% 

(P3-P2)/P1 10.2% 12.3% 28.6% 19.8% 13.1% 

(P3-P1)/P1 -31.2% 2.8% 4.2% 0.3% 9.7% 

SW      

(P2-P1)/P1 -43.5% -12.6% -25.9% -17.5% -23.8% 

(P3-P2)/P1 6.0% 47.7% 33.1% 7.5% 7.4% 

(P3-P1)/P1 -37.5% 35.1% 7.2% -10.0% -16.4% 

NW      

(P2-P1)/P1 -38.5% -4.0% -8.3% 14.2% -2.6% 

(P3-P2)/P1 -21.1% 4.9% 145.3% -4.1% -7.2% 

(P3-P1)/P1 -59.6% 0.9% 136.9% 10.1% -9.8% 

Central      

(P2-P1)/P1 -43.8% -23.7% -15.7% -10.6% -17.4% 

(P3-P2)/P1 16.4% 24.4% 135.9% 18.5% 8.4% 

(P3-P1)/P1 -27.4% 0.7% 120.3% 7.9% -9.0% 

 563 

 564 

 565 
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Table 6. Calculated MI and EI changes in PM2.5 concentrations during COVID-19 pandemic by previous studies 566 

 
MI 

changes 

EI 

changes 
Region Reference period Method Reference 

1 
26.79 μg/

m3 

-21.84 

μg/m3 
Beijing 

January 23-March 10, 

2019 versus January 

23-March 10, 2020 

observation-based wind-

decomposition method 

Song et al. 

(2021) 

2 
Around 20 

μg/m3 

-2.7 μg/

m3 
Beijing 

January 01 to 

February 29, 2020 

CTM with hypothetical 

emission reduction scenario 

Sulaymon 

et al. (2021) 

3 
Around 45 

μg/m3 

-13.4 μg/

m3 
Beijing 

January 01 to 

February 29, 2020 

CTM with hypothetical 

emission reduction scenario 

Wang et al. 

(2020) 

4 31.3% 
Around 

0% 

Beijing-

Tianjin-

Hebei 

January 01 to 

February 13, 2020 

CTM sensitivity simulations 

using different emission rates 

and multiyear climatology 

Le et al. 

(2020) 

5 
Around 

5% 

Around 

55% 
Beijing 

January 16-22, 2020 

versus January 26 to 

February 1, 2020 

CTM with fixed emission 

inventory for 2017 

Zhao et al. 

(2020) 

6 

17.5 μg/

m3 

(34.0%) 

12.7 μg/

m3 

(24.7%) 

Beijing 

January 1-20, 2020 

versus January 21 to 

February 9, 2020 

CTM with inversion emission 

inventory 
This study 

 567 
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Figures 568 

 569 

Figure 1: Modeling domain of the ensemble simulation overlay the distributions of observation sites from CNEMC. Different colours 570 
denote the different regions in mainland of China, namely North China Plain (NCP), Northeast China (NE), Southwest China (SW), 571 
Southeast China (SE), Northwest China (NW) and Central. 572 
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 573 

Figure 2: Illustration of the iteration inversion scheme used in this study. 574 

 575 
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 576 

Figure 3: Comparisons of the observed and simulated mean SO2 concentrations using emissions of different iteration time at 577 
validation sites over (a) NCP region, (b) NE region, (c) SE region, (d) SW region, (e) NW region and (f) Central region. 578 

 579 

 580 
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 581 
 582 

Figure 4: (a) Time series of normalized emission anomalies estimated by inversion results for different species in China from 1st 583 
January to 29th February 2020, and (b-f) Relative contributions of different sectors to the total anthropogenic emissions of NOx, 584 
PM2.5, PM10, CO and SO2 obtained from Zheng et al. (2018). The normalized emission anomaly is calculated by the emission anomaly 585 
divided by the average emissions during the whole period. 586 
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 587 
Figure 5: Time series of normalized emission anomalies estimated by inversion results for different species over (a) NCP region, (b) 588 
NE region, (c) SE region, (d) SW region, (e) NW region and (f) Central region from 1st January to 29th February 2020.  589 
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 590 

Figure 6: The inversion estimated emission changes of (a) NOx, (b) SO2, (c) CO, (d) PM2.5 and (e) PM10 in China from P1 to P2 period. 591 
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 592 

Figure 7: The inversion estimated emission changes of (a) NOx, (b) SO2, (c) CO, (d) PM2.5 and (e) PM10 in China from P2 to P3 period. 593 

 594 
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 595 

Figure 8: Changes in the observed and simulated concentrations of (a, c) PM2.5 and (b, d) O3 over the NCP region from the pre 596 
lockdown period (P1) to the lockdown period (P2). 597 
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 598 

Figure 9: Contributions of the meteorological variations and emission changes to the changes in (a, b) PM2.5 and (c, d) O3 599 
concentrations over Beijing and the NCP region from the pre lockdown period (P1) to the lockdown period (P2). 600 
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 601 

Figure 10: Changes in the (a) relative humidity, (b) temperature, (c) wind speed, (d) precipitation and (e) boundary layer height 602 
over the NCP region from P1 to P2 period obtained from WRF simulations. 603 

 604 

 605 

 606 

 607 
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 608 

Figure 11: Relative changes in the simulated and observed concentrations of (a) ANO3, (b) ASO4, (c) ANH4 over NCP region from 609 
P1 to P2 period.  610 

 611 
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 612 

Figure 12: Time series of observed and simulated concentrations of ANO3, ASO4 and ANH4 in (a-c) Beijing, (b-f) Tianjin, (g-i) Heibei, 613 
(j-l) Henan and (m-o) Shangdong province from 1st January to 29th February 2020. 614 

 615 

 616 
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 617 

Figure 13: Meteorology-induced (MI) changes in the concentrations of (a) ANO3, (b) ASO4 and (c) ANH4, as well as Emission-618 
induced (EI) changes in the concentrations of (d) ANO3, (e) ASO4 and (f) ANH4. 619 

 620 
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