
Response to Referee #1 (acp-2022-729) 

We Thank Reviewer for his/her constructive comments 

Responses to the Specific comments 

General comments: This work estimated multiple emissions using the EnKF with the state augmentation 

method during the COVID-19 pandemic. Then, they assessed the unbalanced emission reduction of 

different species during the restriction. The manuscript is well organized and contains detailed analysis. 

However, the authors have some issues to be clarified in the manuscript for the final publication in ACP.  

Reply: The authors appreciate the reviewer for his/her constructive and up-to-point comments. We have 

carefully considered the comments and revised the manuscript accordingly. Please refer to our responses 

for more details given below. 

 

Comment 1: Line 91 & 285 (Weak motivation): The EnKF coupled with the state augmentation used in 

this study could be a more advanced method than inversed single estimation (Zhang et al., 2020; 2021, 

Feng et al., 2020, & Hu et al., 2022) in terms of emission estimation for multiple species. However, it 

could be less cost-effective. Also, as mentioned in the manuscript (line 285), it shows a similar 

performance with the single estimation of SO2 (Hu et al., 2022). In other words, the inversed single 

estimation can be better, considering both performance and computational cost. Therefore, considering 

these issues, the authors need some more explanation or justify the use of your method to enhance the 

motivation for this work. 

Reply: Thanks for this suggestion. The EnKF coupled with the state augmentation is a commonly used 

method for the estimations of multi-species’ emissions (Miyazaki et al., 2017; Ma et al., 2019; Peng et al., 

2018). In this method, the emissions of different species are simultaneously estimated by including them 

as a part of the state vector together with the chemical concentrations using the ensemble model 

simulations and observations. The mass balanced method used in Zhang et al. (2020) and Zhang et al. 

(2021) is to adjust the model emissions based on the modeled local ratio between concentrations and 

emissions. Although it has lower computational cost than the EnKF method since it does not need to run 

an ensemble of model simulation, it has difficulties in accounting for the nonlinear relationship between 

the concentrations and emissions, thus is more commonly used in the inversions of short-lived species 

(e.g., NOx) under relatively coarse (>1°) resolution (Streets et al., 2013). The EnKF method instead can 

consider the nonlinear relationship between the emissions and concentrations (as we illustrated in our 

response to comment 2), and can be used for longer-lived species (e.g., SO2, PM2.5 and CO) at finer model 



resolutions (Streets et al., 2013). The four-dimensional variational assimilation (4DVar) method used in 

Hu et al. (2022) is an advanced inversion method similar to the EnKF method, and they have different 

strengths and weakness (Skachko et al., 2014). The 4DVar uses an adjoint model of a chemical transport 

model (CTM) to estimate the emissions, thus it requires the development and maintenance of an adjoint 

model, which is technically difficult and cumbersome for the complex CTM. The EnKF method does not 

require an adjoint model and is easily implemented. Besides, although 4DVar does not need to run an 

ensemble of simulation, it needs to solve a complex optimization problems for a large chemical model 

system, therefore, the 4DVar have comparable computational costs with the EnKF method (Skachko et 

al., 2014). Similar to our method, Feng et al. (2020) used the EnKF method to estimate the emission 

changes of NOx during COVID-19 pandemic, but they did not constrain the emissions of other species. 

Due to the chemical reactions in the atmosphere, the concentrations of different species are interrelated 

with each other. For example, the ambient PM2.5 is not only primarily emitted, a large portion of them is 

also formed secondarily through reactions with several gaseous precursors, such as NO2 and SO2. This 

means that inversed single estimation may cause biases in the inversed PM2.5 emission if the errors in 

emissions of NO2 and SO2 were not corrected synchronously. Assimilations of CO measurement also 

influences the inversion of NO2 emission due to its influence on the OH concentration in the atmosphere 

(Miyazaki and Eskes, 2013). Therefore, doing the multi-species inversion estimation can provide more 

constraints on the atmospheric chemical system than the inversed single estimation and thus can produce 

more reasonable inversion results (Miyazaki and Eskes, 2013; Peng et al., 2018). The inversion estimation 

for SO2 may be less affected by assimilations of other species due to its less dependence on other species. 

As a result, our inversion results showed a similar performance with the single estimation of SO2 in Hu 

et al. (2022). Besides, the emissions of different species were perturbed simultaneously in our method, 

thus the ensemble simulation only needs to be performed once. The computational cost only increased 

slightly in the analysis step. Therefore, the multi-species’ inversion method used in our study has its 

strength over the inversed single estimation method used in previous studies. Following the suggestions 

of reviewers, we give more explanation for the use of our method in the revised manuscript (please see 

lines 161–178) 

 

Comment 2: Line 126: The authors need to clarify how to consider the non-linearity between NOx 

emission (for estimation) and NO2 concentration (of observation). Additionally, in-situ NO2 observation 

may be based on the commercial chemiluminescent instrument. While the instrument system converts 

NO2 to NO through a molybdenum converter, other species, such as peroxyacetyl nitrates (PANs) and 



HNO3, are also simultaneously converted to NO. The other species account for a large portion of the 

converted NO molecules. For example, Dunlea et al. (2007) showed the interference in the 

chemiluminescence detection accounting for up to 50% of ambient NO2. In other words, the observed 

NO2 is almost equivalent to ambient NOy. Also, PAN is thermally sensitive (and it is also related to the 

temperature shown in Figure 10). The rapid decrease in NOx emission is strongly linked to this issue. 

Therefore, the authors also need to explain how to treat these issues in your calculation. 

Reply: Thanks for this important comment. In EnKF method, the relationship between the concentrations 

and emissions of related species was determined by the background error correlations, which is estimated 

from the ensemble model simulations. Since the chemistry transport model used in our study is a nonlinear 

model which considers the physical and chemical processes in the atmosphere, the ensemble simulation 

is able to represent the nonlinear evolution of the error correlations. This allows the nonlinear 

relationships between NO2 concentrations and NOx emissions to being considered through the use of 

background error covariance produced by ensemble simulations (Evensen, 2009; Miyazaki et al., 2012). 

Following the suggestions of reviewer, we have clarified this in the revised manuscript (please see lines 

165–167). 

As the reviewer mentioned, the NO2 measurement made by CNEMC is based on the chemiluminescent 

analyser with a molybdenum converter. We agree with the reviewer that the interference of HNO3, PAN 

and alkyl nitrates (AN) can lead to an overestimation of NO2 (Dunlea et al., 2007; Lamsal et al., 2008) 

and may lead to spurious decreases of NOx emissions. Due to the lack of synchronous observations of 

HNO3, PAN and AN, it is hard to directly correct such overestimations in the NO2 measurements. Previous 

studies (Cooper et al., 2020; He et al., 2022) usually use chemical transport model to simulate NOx, HNO3, 

PAN and AN to produce correction factors (CFs) for the NO2 measurements using the following 

relationship proposed by Lamsal et al. (2008): 

𝐶𝐹 =
[ேைమ]

[ேைమ]ା଴.ଽହ[௉஺ே]ା଴.ଷହ[ுேைయ]ା∑[஺ே]
                (R1) 

but the calculation of CF could be affected by the simulation errors in the model caused by uncertainties 

in emission inventory or other error sources, which may contaminate the observations. Therefore, similar 

to Feng et al. (2020), we did not correct the NO2 measurement in our inversion of NOx emissions since 

there were large uncertainties in the NOx emissions during the COVID-19 pandemic that possibly led to 

erroneous CF. Instead, the EnKF is capable of considering the errors in the observations during the 

assimilation through the use of observation error covariance matrix. The interference in the 

chemiluminescence detection to the NO2 measurement was thus treated as a kind of observation error in 



our study. According to our estimates, the total observation error of NO2 measurements was about 6–10 

μg/mଷ. To investigate whether our settings of observation error can fully cover the errors induced by the 

chemiluminescence monitor interference, we calculated the CF according to Eq. (R1) based on the 

simulated NO2, HNO3, PAN and AN using the inversed emission inventory to alleviate the effects of 

emission uncertainty on the CF calculations. Figure R1 shows the calculated CFs for NO2 measurements 

over different regions of China during COVID-19 pandemic, which generally ranged from 0.75 to 0.99. 

The CF values over NCP, NE, NW and Central were generally stable throughout the COVID-19 pandemic, 

all larger than 0.9, suggesting that chemiluminescence monitor interference only has slight effects on the 

NO2 measurement. Over the SE and SW regions, there was a drop of CF values during the lockdown 

period, followed by an increase after the lockdown. This indicates that the decline of NO2 concentrations 

during lockdown period may be larger in these two regions.  

 

Figure R1: Time series of calculated CFs for NO2 measurements over (a) NCP, (b) NE, (c) SE, (d) SW, (e) NW and (f) Central region 

during COVID-19 pandemic. The averaged CF values during different stages of COVID-19 pandemic are also labeled. 

As shown in Figure R2, the overestimations were generally lower than 3 𝜇𝑔/𝑚ଷ over different 

regions of China throughout the COVID-19 pandemic, which is smaller than the observation errors we 

assigned in the assimilation, suggesting that the observation error caused by the chemiluminescence 

monitor interference were contained in the assimilation. In order to quantify the influences of 

chemiluminescence monitor interference on the inversed NOx emission, an additional inversion 



experiment was conducted based on the corrected NO2 measurement using the calculated CF. The results 

suggest the chemiluminescence monitor interference in the NO2 observations had weak impacts on the 

inversed NOx emissions as seen in Fig. R3 and Fig. R4, which display the comparisons of the inversed 

NOx emission with and without correction in respect of the magnitude and change ratio during different 

stage of COVID-19 pandemic. The differences in the magnitude of inversed NOx emissions caused by 

correction were about 2–7% over the NCP, NE, NW and Central, and were about 10–13% over the SE 

and SW. Differences in the emission reductions of NOx were also small, which was about 0.3 to 4.1 

percentage points. Consistent with the reviewer, the result suggests that the chemiluminescence monitor 

interference is a potential factor that influence the inversion of NOx emission, which is a limitation of 

current work. However, it might not significantly influence our inversion results and the main conclusions. 

Considering this, we added a discussion about the effects of chemiluminescence monitor interference to 

inform the potential reader in the revised manuscript (please see lines 143–158) and supplement (please 

see lines 15–39 and Figure S16–S19).  

 
Figure R2: the difference of NO2 measurement before and after the corrections of chemiluminescence monitor interference over (a) 

NCP, (b) NE, (c) SE, (d) SW, (e) NW and (f) Central during the COVID-19 period. 



 
Figure R3 Comparisons of inversed NOx emissions with (blue) and without (red) correction of NO2 measurement over different 

regions of China during different period of COVID-19 pandemic. 

 
Figure R4 Comparisons of the calculated emission change of NOx emissions based on the inversion results with (blue) and without 

(red) correction of NO2 measurement over different regions of China. 

 

Comment 3: Line 90: Levelt et al. (2022) is not related to the emission inversion technique. The authors 

had better discard this paper in the manuscript. 

Reply: We feel sorry for this inappropriate citation. We have removed this paper in the revised manuscript.  



 

Comment 4: Line 105: Anthropogenic and other emission inventories used in the simulations during the 

COVID-19 pandemic are based on 2010 or relatively long ago. These emission rates could be significantly 

higher than those during the COVID-19 pandemic. The higher emission rates are significantly related to 

the concentration of atmospheric species like O3. Therefore, the authors need to justify the uses of such 

emission inventories in the simulations 

Reply: Thanks for this important comment. We agree with the reviewer that a prior emission inventory 

used in our study is significantly higher than those during the COVID-19 pandemic due to the restrict 

emission control policy over the past decades. However, due to the lack of updated activity data and 

emission factors, the latest bottom-up anthropogenic emission inventory in China that were available is 

for the base year 2018, which could be also higher than those during COVID-19 pandemic. Considering 

this, we have developed the iteration emission inversion technique to address this issue. According to the 

inversion results, the iteration emission inversion significantly reduced the large biases in the a priori 

emission inventory and is able to reproduce the emission levels during the COVID-19 pandemic. 

Therefore, we did not update the a priori emission inventory to more recent emission inventory during 

the assimilation.  

To test the influences of the choice of a priori emission inventory on the inversion estimation, a new 

inversion run was conducted based on the a priori emission inventory for base year 2018. This new 

emission inventory is comprised of the anthropogenic emissions obtained from HTAPv3 (Crippa et al., 

2023), the biogenic, soil and oceanic emissions obtained from the CAMS global emission inventory 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview, 

last access: March 15, 2023) and biomass burning emissions obtained from the Global Fire Assimilation 

System (GFAS)(Kaiser et al., 2012). The detailed steps of the new inversion estimation were same as 

those elucidated in Sect.2. Figure R5–7 show the comparisons of inversion results based on the a priori 

emissions for base 2010 with those based on the a priori emissions for 2018. The results suggest that the 

inversion results based on the 2010 and 2018 inventory were broadly close to each other, while the 

inversion results based on 2018 inventory were relatively higher than those based on 2010 inventory, 

reflecting the uncertainty in our inversion results caused by the choice of the a priori emission inventory. 

Figure R8 and R9 show the temporal variations of the multi-species’ emissions during COVID-19 

pandemic at the national and regional scales derived from the inversion results based on 2018 inventory, 

which consistently showed that the NOx emissions decreased much larger than other species. In all, the 

sensitivity experiment demonstrates that the choice of a priori emission inventory may not obviously 



influence the main conclusion of our study, but can lead to uncertainty in the magnitude of the inversion 

results which is a limitation of current work. Therefore, a discussion about the influence of a priori 

emission inventory has been added to the revised manuscript (please see lines 492–505) and supplement 

(please see Figure S20–S24) to inform the potential readers.  

 

 
Figure R5: Comparisons of the inversion estimated total emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5 and (e) PM10 before 

lockdown using the a priori emission inventory for base year 2010 (read) with those using the a priori emission inventory for base 

2018 (blue). 

 
Figure R6: Same as Fig.R5 but for the p2 period (lockdown period). 

 



 
Figure R7: Same as Fig. R5 but for the P3 period (after back-to-work day). 

 

 

 

Figure R8: Time series of normalized emission anomalies estimated by inversion results for different species in China from 1st 

January to 29th February 2020 using the a priori emission inventory for 2018. 



 
Figure R9: Time series of normalized emission anomalies estimated by inversion results for different species over (a) NCP region, 

(b) NE region, (c) SE region, (d) SW region, (e) NW region and (f) Central region from 1st January to 29th February 2020 using the 

a priori emissions for 2018. 

Comment 5: Line 138: The explanation of EI and MI (from both MET and EMIS change scenarios) is 

rather complicated. The authors need to clarify it. Tabulating or illustrating the scenarios or cases makes 

it easier for the readers to understand them. 

Reply: Thanks for this suggestion. We have added two tables in the revised manuscript to illustrate the 

different scenarios and the meaning of different items in the calculation of EI and MI (please see Table 2 

and Table 3 in the revised manuscript): 

Table R1 configuration of simulation scenarios 

Scenarios Meteorology input Emission input Purpose 

BASE scenario varied meteorological condition 

from pre lockdown to lockdown 

period 

varied emission from pre-

lockdown to lockdown period 

To estimate the total changes of air 

pollutant concentrations induced by 

emission and meteorological change 

MET change scenario varied meteorological condition 

from pre-lockdown to lockdown 

period 

constant emissions during pre-

lockdown and lockdown period 

To estimate the impacts of 

meteorological changes on the air 

pollutants 

EMIS change scenario constant meteorological during 

pre-lockdown and lockdown 

period 

varied emission from pre-

lockdown to lockdown period 

To estimate the impacts of emission 

changes on the air pollutants 



 

Table R2 descriptions of different items used in the calculation of meteorological-induced and emission-induced 

changes of air pollutant concentrations 

notation Description 

𝑀𝐼 meteorological-induced changes of air pollutant concentrations 

𝐸𝐼 emission-induced changes of air pollutant concentrations 

𝑀𝐼ொ் ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ meteorological-induced changes of air pollutant concentrations calculated by the MET change 

scenario 

𝐸𝐼ொ் ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ emission-induced changes of air pollutant concentrations calculated by total changes minus 

𝑀𝐼ொ் ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢  

𝐸𝐼ாெூௌ ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ emission-induced changes of air pollutant concentrations calculated by the EMIS change 

scenario 

𝑀𝐼ாெூௌ ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ meteorological-induced changes of air pollutant concentrations calculated by total changes 

minus 𝐸𝐼ாெூௌ ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ 

𝑐𝑜𝑛𝑐௣ଵ,஻஺ௌா ௦௖௘௡௔௥௜௢ averaged concentrations of air pollutants during P1 period under the BASE scenario 

𝑐𝑜𝑛𝑐௣ଶ,஻஺ௌா ௦௖௘௡௔௥௜௢ averaged concentrations of air pollutants during P2 period under the BASE scenario 

𝑐𝑜𝑛𝑐௣ଵ,ொ் ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢  averaged concentrations of air pollutants during P1 period (pre-lockdown) under the MET 

change scenario  

𝑐𝑜𝑛𝑐௣ଶ,ொ் ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ averaged concentrations of air pollutants during P2 period (lockdown) under the MET change 

scenario 

𝑐𝑜𝑛𝑐௣ଵ,ாெூௌ ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢ averaged concentrations of air pollutants during P1 period under the EMIS change scenario 

𝑐𝑜𝑛𝑐௣ଶ,ாெூௌ ௖௛௔௡௚௘ ௦௖௘௡௔௥௜௢  averaged concentrations of air pollutants during P2 period under the EMIS change scenario 

𝑐𝑜𝑛𝑡𝑟𝑖௠௘௧ relative contributions (%) of the meteorological variations to the changes in air pollutant 

concentrations 

contriemis relative contributions (%) of the emission changes to the changes in air pollutant 

concentrations 

 

Comment 6: Line 218: The authors need to define P1, P2, and P3 on Line 218, not on Line 247. Also, 

the authors need to add some lines for P1, P2, and P3 on the x-axis of Figure 4. 

Reply: Thank you so much for your careful check. We have changed the position where the P1, P2 and 

P3 were defined in the revised manuscript (please see lines 104–106) and some lines for P1, P2 and P3 

were also added on the x-axis of Figure 4 and Figure 5. 



 

Comment 7: Line 268: The performance in the O3 simulation is relatively poor. As mentioned in the 

manuscript, the lower performance is related to VOC emission. Since the VOC emission used in the 

simulations is made for 2010, there are some time gaps. Therefore, the authors need to compare the VOC 

emission rates with the recent or 2019 database and then make an additional explanation of (expected) 

ozone concentrations. 

Reply: Thanks for this comment. Following the suggestions of reviewer, we have compared the NMVOC 

emissions for base year 2010 with the NOVOC emissions for base year 2018. To prevent the inconsistency 

between different inventory, the anthropogenic part of NMVOC emissions were obtained from the 

HTAP_v3 inventory(Crippa et al., 2023), which is an updated version of the anthropogenic emission 

inventory (HTAP_v2.2) we used in our study. The biogenic part was obtained from the CAMS biogenic 

emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) driven 

by ERA-Interim meteorological fields (Granier, C. et al., 2019). The NMVOC emissions from wildfires 

and biomass burning was obtained from the Global Fire Assimilation System (GFAS)(Kaiser et al., 2012). 

Figure R5 shows the comparisons of NMVOC emissions for base year 2010 with those for base year 2018 

over different regions of China. It shows that the NMVOC emissions for base year 2010 were generally 

lower than those for 2018 except over the SW regions. Considering the increasing trend of NMVOC 

emissions in China (Li et al., 2019), the underestimates of NMVOC emissions for base year 2020 due to 

the use of old emission inventory may be larger. This is in line with the negative biases in the simulated 

O3 concentrations over these regions. Following the suggestion of reviewer, we have clarified it in the 

revised manuscript (please see lines 294–297). 



 
Figure R5 comparisons of the NMVOC emissions for base year 2010 with those for 2018 over different regions of China. 

Comment 8: Line 289 & 303 – 304: The authors need to explain what causes increases in PM10 during 

the P3 in Figure 4, Figure 5e, and 5f. The authors explained these are related to the sandstorm. However, 

the concentration of PM10 during the P3 period was rather low in the NW and Central regions. 

Reply: Thanks for this suggestion. The PM2.5/PM10 ratio was used to investigate the causes of the 

increases in PM10 emission in the revised manuscript, which is an indicator of the potential sources of 

particular matter. A lower PM2.5/PM10 ratio usually indicates significant contributions from natural 

sources such as dust (Wang et al., 2015; Fan et al., 2021). As we can see from Fig.R6, the PM2.5/PM10 

ratio was stable during the P1 and P2 period, but it decreased substantially during the P3 period, from 

0.81 to 0.48 over the NW region and from 0.77 to 0.53 over the Central region, which suggests larger 

contributions of dust emissions to the PM10 concentrations during the P3 period. Moreover, the NW and 

Central region are typical source areas of dust in China, therefore the increasing of PM10 emissions over 

NW and Central regions may be mainly related to the enhanced dust emissions. following the suggestion 

of reviewer, we added more explanations to the increased PM10 emissions over the NW and Central region 

in the revised manuscript (please see lines 342–348). 



 
Figure R6 timeseries of PM2.5/PM10 ratio during COVID-19 pandemic over (a) NW and (b) Central region 

 

Comment 9: Line 295: The explanation is not sufficient for the PM2.5 emission increase in the NCP 

region. The observation done by Dai et al. (2020) was carried out at a single site in Tianjin. 

Reply: Thanks for this important comment. We conducted a more detailed analysis on the possible causes 

of the PM2.5 emission increases in the NCP region through literature review and analysis of the PM2.5 

compositions. Previous researches suggested that the increases of PM2.5 emissions over the NCP region 

may be due to the increased emissions from industry and fireworks (Dai et al., 2020; Li et al., 2021; Ma 

et al., 2022; Zuo et al., 2022). Based on the measurement of stable Cu and Si isotopic signature and 

distinctive metal ratios in Beijing and Hebei, Zuo et al. (2022) analyzed the variations in the PM2.5 sources 

in Beijing and Hebei during the COVID-19 pandemic, which provides evidences that the primary PM2.5 

emissions did not decrease in Beijing and Hebei, and that the PM-associated industrial emissions may 

instead increase during the lockdown period. The increased industrial heat sources detected by Li et al. 

(2022) based on VIIRS active fire data also supported the increased industrial emissions over the NCP 

region during lockdown period. Figure R7 shows the variations of the concentrations of potassium (K+) 

and magnesium (Mg2+) ion, two important fingerprints of the firework emissions, over the NCP region 

during COVID-19 pandemic. Measurement of K+ and Mg2+ over the NCP region were obtained from 

China National Environmental Monitoring Center (CNEMC) with site distribution shown in Fig. 11. 

Substantial increases of K+ and Mg2+ concentrations could be observed during the Spring Festival over 



the NCP region, which indicates larger contributions of firework emissions to the PM2.5 concentrations 

during the lockdown period. this is consistent with the field measurements in Beijing and Tianjin 

conducted by Ma et al. (2022) and Dai et al. (2020). These results suggested that the increased industrial 

PM2.5 emissions, together with firework emissions may contribute to the increased PM2.5 emissions over 

NCP region, which compensated the emission reductions from the traffic emissions. Based on this 

analysis, we have added more detailed discussions about the possible reason for the increases of PM2.5 

emissions over the NCP region in the revised manuscript (please see lines 322–333) and supplement 

(please see Figure S15). 

 
Figure R7: Timeseries of averaged concentrations of potassium and magnesium ion during COVID-19 pandemic over the NCP 

region. 

Comment 10: Line 340: The authors also need to mention that the O3 is under-simulated in all regions 

(refer to Figure S6). 

Reply: Thanks for this comment. The underestimations of the O3 have been pointed out in the revised 

manuscript (please see lines 389). 

 

Minor comments: 

Comment 11: Line 32: measurement -- > measure or measures 

Reply: Done. 

 

Comment 12: Line 33: remove ‘both’. 



 

Reply: Done. 

 

Comment 13: Line 261. It is probably Table S1, not Table S4 

Reply: Done. 

 

Comment 13: Lines 277 and 280: The authors need to confirm the numbers in these lines (and Table 2). 

Reply: Thanks a lot for your careful check. We have corrected the wrong number in lines 277 and 280. 

Please see lines 305 and 308 in the revised manuscript. 
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