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Abstract. Inverse modeling is a widely used top-down method to infer greenhouse gas (GHG) emissions and their spa-

tial distribution based on atmospheric observations. The errors associated with inverse modeling have multiple sources,

such as observations and a-priori emission estimates, but they are often dominated by the transport model error. Here,

we utilize the Lagrangian Particle Dispersion Model (LPDM) FLEXPART, driven by the meteorological fields of the regional

numerical weather prediction model COSMO. The main source of errors in LPDMs is the turbulence diffusion parameter-5

ization and the meteorological fields. The latter are outputs of an Eulerian model. Recently, we introduced an improved

parameterization scheme of the turbulence diffusion in FLEXPART, which significantly improves FLEXPART-COSMO sim-

ulations at 1 km resolution. We exploit F-gases measurements from two extended field campaigns on the Swiss Plateau

(in Beromünster and Sottens) and we conduct both high- (1 km) and low-resolution (7 km) FLEXPART transport simula-

tions that are then used in a Bayesian analytical inversion to estimate spatial emission distributions. Our results for four10

F-gases (HFC-134a, HFC-125, HFC-32, SF6) indicate that both high-resolution inversions and a dense measurement net-

work significantly improve the ability to estimate spatial distribution of the emissions. Furthermore, the total emission

estimates from the high-resolution inversions (351±44 Mg yr−1 for HFC-134a, 101±21 Mg yr−1 for HFC-125, 50±8 Mg yr−1

for HFC-32, 9.0±1.1 Mg yr−1 for SF6) are significantly higher compared to the low-resolution inversions (20-40 % increase)

and result in total a-posteriori emission estimates that are closer to national inventory values as reported to the UNFCCC15

(10-20 % difference between high-resolution inversion estimates and inventory values compared to 30-40 % difference be-

tween the low-resolution inversion estimates and inventory values). Specifically, we attribute these improvements to a

better representation of the atmospheric flow in complex terrain in the high-resolution model, partly induced by the more

realistic topography. We further conduct numerous sensitivity inversions, varying different parameters and variables of our
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Bayesian inversion framework to explore the whole range of uncertainty in the inversion errors (e.g., inversion grid, spatial20

distribution of a-priori emissions, covariance parameters like baseline uncertainty and spatial correlation length, tempo-

ral resolution of the assimilated observations, observation network, seasonality of emissions). From the above-mentioned

parameters, we find that the uncertainty of the mole fraction baseline and the spatial distribution of the a-priori emissions

have the largest impact on the a-posteriori total emission estimates and their spatial distribution. This study is a step to-

wards mitigating the errors associated with the transport models and better characterizing the uncertainty inherent in the25

inversion error. Improvements in the latter will facilitate the validation and standardization of the national GHG emission

inventories and support policymakers.

1 Introduction

Monitoring greenhouse gas (GHG) emissions into the atmosphere is critical in order to justify whether they conform to our

endeavor of limiting the average global temperature increase below 2◦C from pre-industrial levels. Bottom-up methods30

quantify GHG emissions from statistical data, by employing activity data and emission factors for the relevant emission

processes, without cross-validating the results against actual atmospheric observations (Leip et al., 2018). Depending on

the emitting process, bottom-up methods may be afflicted by large uncertainties, especially when spatially-resolved emis-

sions are considered on sub-national scales, and when the emitting processes are not well understood or are more complex

than what can be described through an emission factor approach or emission process models (Leip et al., 2018). Top-down35

methods employ atmospheric observations to infer the total surface fluxes and their spatial distribution. With the increas-

ing observational network coverage, high-resolution satellite observations, and the increasing accuracy of atmospheric

transport models, top-down methods have become a powerful tool for estimating the emissions of GHGs and validating

bottom-up inventories from the global to the local scale (Nisbet and Weiss, 2010; Weiss and Prinn, 2011; Leip et al., 2018;

Jacob et al., 2022).40

Atmospheric inverse modeling is a widely applied top-down emission estimation method (Bergamaschi et al., 2018),

combining observations of atmospheric compounds, atmospheric transport models, a-priori estimates of the surface

emission fluxes, and inversion frameworks to deduce the most likely state of the surface-emission fluxes for the compound

of interest. Atmospheric transport models are utilized in inversions to link the tracer’s sources and the observed mole frac-

tions at a receptor. These models advect and disperse the tracer from the source to the receptor and are either based on or45

part of numerical weather prediction (NWP) models, such as COSMO-GHG (Jähn et al., 2020) and WRF-chem (Grell et al.,

2005), or on Lagrangian particle dispersion models (LPDMs) offline coupled with NWP models (NWP meteorological fields

drive LPDMs), such as FLEXible PARTicle Dispersion Model (FLEXPART, Stohl et al., 2005) (used in this study), Stochastic

Time-Inverted Lagrangian Transport (STILT, ?)
:::::::::::::::::::
(STILT, Lin et al., 2003), Hybrid Single Particle Lagrangian Integrated Trajec-

tory (HYSPLIT, Stein et al., 2015a), Numerical Atmospheric-dispersion Modelling Environment (NAME, Jones et al., 2007),50

and others. The big advantage of LPDMs over Eulerian models is their straightforward applicability in both forward and

backward in-time simulations (Seibert and Frank, 2004; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(Lin et al., 2003; Seibert and Frank, 2004; Thomson and Wilson, 2012)
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, with the backward mode allowing the direct calculation of source-receptor relationships (Seibert and Frank, 2004). Source-

receptor relationships provide the influence of an emission source on the observed values at the receptor site. Thus, they

provide a direct link between mole fractions and emissions, required for inverse modeling, something that is harder to55

deduce in Eulerian models.
::
In

::::::::
contrast,

:::::::
deriving

:
a
::::::::::::::
source-receptor

::::::::::
relationship

:::::
from

::
an

::::::::
Eulerian

::::::
model

:::::
either

:::::::
requires

:::
an

::::::
adjoint

::::::
version

::
of

:::
the

:::::::
model,

:
a
:::::::::::::::
finite-differences

::::::::
approach

::::::::
including

::::::::
multiple

::::::::
perturbed

:::::::
forward

::::::::::
simulations

:::
or

:::::::::
employing

::::::::
ensemble

::::::::
methods

::::::::::::::::::::::::::
(e.g., Brasseur and Jacob, 2017)

:
,
::
all

::
of

:::::
which

:::::
come

::
at

:
a
::::::
higher

:::::::::::::
computational

::::
cost

::::::::
especially

::
in

:::::::::
situations

::::
with

:::::
small

:::::::
amounts

::
of
::::::::::::

observational
:::::
data.

Errors in the inverse modeling estimates are introduced by errors in the atmospheric observations, in the estimate of the60

a-priori, and in the error covariance matrices, but are strongly driven by errors due to transport and representativeness in-

herent in the transport model (Bergamaschi et al., 2018; Karion et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Lin and Gerbig, 2005; Lauvaux et al., 2009; Bergamaschi et al., 2018; Karion et al., 2019)

. The main sources of transport model errors are the representation of boundary layer dynamics, vertical mixing, and the

horizontal and vertical resolution of the models (Karion et al., 2019). Some of these errors come from the NWP models

driving the LPDMs, and others, from the LPDMs themselves. Hence, differences in the simulated mole fractions at the re-65

ceptor sites can occur either when different NWP models are used to drive the LPDM or when different LPDMs are used

for the advection and the dispersion of the tracers. Along with increasing transport model resolution, the model topog-

raphy converges to the real topography, leading to a better representation of terrain-induced flow, especially in complex

terrain(e.g., Schmidli et al., 2018). .
::::::::::
Specifically

:::
for

:::
the

::::::
Alpine

::::::::::
topography

::::::::::::
encountered

::
in

::::::::::
Switzerland

::
it

:::::
could

:::
be

::::::
shown

:::
that

::::::
valley

::::
wind

::::::::
systems

::
of

:::
the

::::::
major

::::::
Alpine

::::::
valleys

:::
like

:::::::
Rhone,

::::::
Rhine,

::::
and

::::::
Ticino,

::::::
which

::::
have

::::::
typical

::::::
valley

:::::
width

::
of

::
470

::
to

:
8
:::
km

:::::
and,

::::::
hence,

::::::
cannot

:::
be

::::::::::
sufficiently

:::::::
resolved

::
at
::

7
:::
km

::::::
model

::::::::::
resolution,

:::
are

:::::
much

::::::
better

::::::::
captured

::
at

::
1

:::
km

::::::
model

::::::::
resolution

:::::::::::::::::::
(Schmidli et al., 2018)

:
.
:::::
Other

:::::::
smaller

:::::
scale

::::::
valleys

:::::::
remain

:::
too

:::::::
narrow

::
to

:::
be

::::::::
properly

::::::::
resolved

::::
even

:::
at

:
1
::::

km

:::::::::
resolution.

:::::::
Another

:::::::::
important

:::::::
feature

::
of

:::
the

:::::
Swiss

::::::::::
topography

::
is
:::
the

::::
flow

::::::::::
channeling

::::::::
between

::::
Alps

::::
and

::::
Jura

::::::::::
mountains.

::::
With

::
a

:::::::
distance

::::::::
between

:::::
those

::::
two

:::::::::
mountain

::::::
chains

::
of

:::::::::::::
approximately

::
50

::::
km

:::
this

::::::::::
channeling

::
is
::::::::
generally

::::::::
resolved

::
at

::
7

:::
km

:::::::
already. Thus, transitioning from low- to high-resolution NWP models to drive the LPDMs should directly reduce the75

representation and transport model errors.

The inversions conducted in this study focus on some of the most important (by CO2-equivalent emissions) synthetic

GHGs released in Switzerland (three hydrofluorocarbons (HFCs) and SF6). HFCs are not directly part of the energy sys-

tem (like CO2 from fossil fuel use) nor the agricultural system (like CH4 and N2O), since their emissions only stem from

direct anthropogenic production and usage. Even if they do not play a significant role in the energy system now, they are80

::::::::::
increasingly used in heat pumps and air conditioners. Thus, a potential decline of fossil fuels will

:::
fuel

:::
use

:::
for

:::::::
heating

::::
may

possibly see increased emissions from refrigerantsHFCs
::::
used

::
as

:::::::::
refrigerant. Hence, we should tackle them with low-GWP

alternatives to decrease their impact. HFCs were introduced to replace chlorine and bromine-containing ozone-depleting

substances. The latter have been regulated by the Montreal Protocol, which was very successful in preventing further dam-

age to the ozone layer (Engel et al., 2018). Next to their role as refrigerants, HFCs are utilized on a large scale as foam blowing85

agents, aerosol propellants, solvents and as fire suppressants. HFCs do not deplete the stratospheric ozone layer, but some

of them have very significant GWP a
::::
very

:::::::::
significant

::::::
global

::::::::
warming

::::::::
potential

:::::
(GWP)

:
of up to 14,000 on a 100-year perspec-
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tive. Their abundance in the atmosphere has been continuously increasing due to their widespread usage (Velders et al.,

2022), and if their emissions were left uncontrolled, their impact on global surface warming would be, according to pro-

jections, 0.3–0.5 ◦C by the end of the century (Velders et al., 2022). The members of the Montreal Protocol agreed through90

the Kigali amendment in 2016 to regulate the emissions of HFCs and gradually reduce their emissions and phase down

the substances with the highest GWPs by 2040. Bottom-up estimates of synthetic GHG emissions are connected to large

uncertainties in the leakage rates of these compounds from various applications (e.g., refrigeration, foam blowing). Thus,

continuous atmospheric monitoring and top-down emission estimation is necessary to validate the bottom-up national

inventories and assess whether the GHG emissions are in line with the new regulations now in effect in most developed95

countries (Velders et al., 2022).

In this study, we use the LPDM FLEXPART-COSMO (Henne et al., 2016; Pisso et al., 2019), driven by operational meteo-

rological analysis fields created by MeteoSwiss with the regional NWP model COSMO. The main focus of this study is the

comparison of inversions using COSMO at two different spatial resolutions (7 km × 7 km and 1 km × 1 km). In previous

studies (Henne et al., 2016; Bergamaschi et al., 2022) FLEXPART-COSMO was successfully operated at 7 km × 7 km spatial100

resolution. Recently, we introduced a new turbulence scheme for FLEXPART-COSMO (Katharopoulos et al., 2022), which

makes high resolution, 1 km × 1 km, FLEXPART-COSMO simulations more realistic. Operating FLEXPART-COSMO-1 with

FLEXPART’s default turbulence scheme leads to an overestimation of turbulence and, hence, excessive tracer dispersion.

Applied to methane observations in Switzerland, FLEXPART-COSMO-1 with the new turbulence scheme outperforms the

low-resolution FLEXPART-COSMO-7 by producing more realistic peak concentration amplitudes and correlation with the105

observations (Katharopoulos et al., 2022).

Newly available synthetic gas observations, collected as part of the Swiss National Science Foundation (SNSF) project

IHALOME (Innovation in Halocarbon Measurements and Emission Validation), from the Swiss Plateau at the Beromün-

ster and Sottens tall towers, complemented with observations from the Advanced Global Atmospheric Gases Experiment

(AGAGE) network (Prinn et al., 2018), allow us to localize and quantify the emissions in Switzerland and in neighboring110

countries. Before IHALOME, F-gas emissions in Switzerland had to be inferred from measurements at the Jungfraujoch

station, which has a comparatively low sensitivity to emissions over the Swiss Plateau due to its remote location and high

altitude in the Swiss Alps (FOEN, 2022). F-gases measurements from AGAGE sites have been repeatedly used in the past for

inverse modeling studies to estimate European emissions on the continental and/or national scale (e.g., Manning et al.,

2003; Stohl et al., 2010; Brunner et al., 2012; Ganesan et al., 2014; Lunt et al., 2015; Brunner et al., 2017; Rust et al., 2022;115

Manning et al., 2021). In Rust et al. (2022) the observations from only Beromünster combined with low-resolution (7 km)

transport simulations were used to infer the total Swiss emissions for 29 halocarbons. Here, we utilize both high- and low-

resolution transport simulations and observations from both campaigns in Beromünster and Sottens. The first question

that our study assesses is whether the high-resolution simulations can enhance the capability of the inversion method to

localize emissions. The second question is whether the combination of high-resolution inverse modeling with a denser120

measurement network further helps in the estimation and localization of emissions on the national scale.
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The inversion system employed in this study is an analytical Bayesian inversion system (Brasseur and Jacob, 2017) cou-

pled with a maximum likelihood optimization method (Michalak et al., 2005) in order to obtain objective estimates for the

parameters of the covariance matrices. This method was shown to underestimate the uncertainty of the emissions (e.g.,

Berchet et al., 2015) due to the Gaussian errors assumption. To explore how different inversion setups impact the national125

total a-posteriori emissions and their spatial distribution and uncertainty, we further conducted a series of sensitivity in-

versions where we varied different parameters and aspects of our inversion problem.

The manuscript is organized as follows: Sect. 2 describes the observational sites and measurements, the different ver-

sions of FLEXPART utilizing inputs from different NWPs, the inversion framework, and the different sensitivity inversions

conducted to explore the range of uncertainty for the posterior state vector. In Sect. 3 we present the inversion results for130

the main HFCs and SF6 for the different model resolutions, different combinations of observational data and additional

sensitivity inversions. Finally, in Sect. 4 we discuss our findings and conclusions.

2 Methods

2.1 Measurement sites

The details of the observational sites used, such as their coordinates, their altitude, the air inlet height above ground, and135

the height of each site in the different transport model versions (Sect. 2.4), are summarized in Table 1. Their location can

be seen in Fig. 1. Since the main goal of this study is to quantify the differences between low- (7 km) and high-resolution

inversions (1 km) in Switzerland, the observational sites chosen should be sensitive to Swiss emissions. Most of the Swiss

F-gas emissions can be expected to originate from the region called the Swiss Plateau. It is located north of the Alps, cov-

ering about 1/3 of the area of Switzerland, and including about 2/3 of the population of Switzerland. The biggest cities of140

Switzerland are located in this region and most of the industrial activity takes place here as well.

The Beromünster (BRM) tall tower site (Table 1) is located in the middle of the Swiss Plateau on a hill with an elevation

of about 800 m a.s.l.. GHG measurements at the tower were established in 2012 (Berhanu et al., 2015; Oney et al., 2015)

and since 2016 the site is part of the Swiss air quality observing network (NABEL). The area surrounding Beromünster is

mainly rural, and used for agricultural activities. BRM is sensitive to emissions from most of the Swiss Plateau, as can be145

seen in Fig. 2. The closest city to Beromünster is Lucerne (urban area population of 220 000), located 20 km south of the

site, whereas the Zurich urban area (approximately 1.3 million) is 40 km to the east. The measurements on the site were

taken at a tall tower with height 217 m a.g.l., at a sample inlet height of 212 m a.g.l.

The Sottens (SOT, Table 1) tall tower is located in the Western
:::::::
western part of the Swiss Plateau in the canton of Vaud at

an altitude of about 800 m a.s.l. The area surrounding SOT is also rural. Measurements in SOT are sensitive to emissions150

from the west and center parts of the Swiss Plateau as well as from the deep Alpine Rhone valley (canton of Valais, Fig. 2).

The closest larger city is Lausanne (urban area population of 430 000), located 20 km south-west of the site, while Geneva

is about 80 km west south-west of the site (urban area population of 500 000). The measurements on the tall tower were

taken at an inlet height of 120 m a.g.l.
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The Jungfraujoch (JFJ, Table 1) site is a high-altitude observatory located in the Bernese Alps on the boundary between155

the cantons of Valais and Bern. The observatory is located at a steep mountain saddle connecting two major mountains

(Jungfrau, 4158 m a.s.l. and Mönch, 4099 m a.s.l.). JFJ is part of the AGAGE network and has been measuring halocarbons

since 2000. Although JFJ is representative of lower free tropospheric conditions in the winter, it frequently receives fresh

boundary layer pollution during the summer months, both from the Swiss Plateau and from the South of the Alps, but also

from more distant sources throughout Central Europe (Henne et al., 2010; Herrmann et al., 2015).160

Two additional sites were used in the inversions conducted within this study: Mace Head (MHD) and Tacolneston (TAC),

Table 1. MHD is located in County Galway on the west coast of Ireland. Its exposure to the North Atlantic Ocean makes it

an ideal location for background observations due to the dominating westerly flow. TAC is located 150 km to the northeast

of London on east coast of England in south Norfolk. Its location is optimal to constrain emissions from the UK and partly

from the Benelux region, which is one of the regions with the highest emission density in Europe (Manning et al., 2021).165

These sites were also used in a previous study to constrain Swiss halocarbon emissions (Rust et al., 2022). Adding these

sites outside Switzerland allows the inversion to constrain larger-scale European emissions. Leaving these unconstrained

by observations may have led to biased estimates for the Swiss domain.

Two more AGAGE sites were employed in sensitivity inversions to explore any further impact of additional observations

on Swiss emissions: Monte Cimone (CMN) and Taunus Observatory (TOB), Table 1. CMN is a high-altitude observatory on170

the highest peak of the Northern Apennines in Italy. Its remote location, high altitude, and large distance from big cities and

hence major emission sources, make it representative of the free troposphere and background values in South Europe and

the North Mediterranean basin, but it can also occasionally receive pollution events from the Po Valley (Bonasoni et al.,

2000). TOB is located on the second highest peak in the Taunus mountain region in central Germany. Its close proximity

to major emission sources (Frankfurt and Mainz), and its location in central Europe make the site well suited for European175

air pollution studies.

2.2 Observational data

In this study, we used observational data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125),

difluoromethane (HFC-32), and sulfur hexafluoride (SF6), which together with 1,1,1-trifluoroethane (HFC-143a, not re-

liably measured from BRM and SOT) account for more than 80% of total Swiss halocarbon emissions in terms of CO2-180

equivalents (Reimann et al., 2021). The observational data come from two extended measurement campaigns at BRM and

SOT, conducted within the project IHALOME (Rust et al., 2022), and from the AGAGE monitoring network (Prinn et al.,

2018). The measurement campaigns at BRM and SOT were performed to explore the impact of a denser measurement

network on the Swiss national emission estimates by top-down methods. Semi-continuous air samples were taken with

a frequency of approximately two ambient air measurements within three hours using a Medusa pre-concentration unit,185

coupled to gas chromatography and mass spectrometry (Miller et al., 2008). In total, about 60 fully calibrated halocarbons

were measured with atmospheric abundances in the dry-air mole fraction range of parts-per-quadrillion (femtomol mol−1)

to parts-per-trillion (picomol mol−1 (Rust et al., 2022)). Measurements of HFC-143a suffered from instrumental problems
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Table 1. Details of the observational sites used in the study, including location, altitude, and the height of the model topography in the

different FLEXPART model versions.

Station ID Longitude Latitude Altitude COSMO-7 height COSMO-1 height IFS height Inlet height

(◦E) (◦N) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m)

Beromünster BRM 8.1755 47.1896 797 615 718 - 212

Sottens SOT 6.7364 46.6559 776 718 764 - 120

Jungfraujoch JFJ 7.9851 46.5475 3580 2653 3354 - 2

Tacolneston TAC 1.1386 52.5177 56 - - 44 185

MaceHead MHD -9.8995 53.3258 8 - - 8 2

Taunus Observatory TOB 8.4473 50.2225 825 427 517 - 8

Monte Cimone CMN 10.7007 44.1935 2165 1228 1774 - 13

Figure 1. Measurement locations (black crosses) of sites used in the inversions and COSMO and IFS model domains (polygons) as used as

input to FLEXPART (a). Swiss measurement locations (black crosses) and major cities (red circles) on top of topographic relief including

major rivers and lakes (Swiss coordinate system, LV03) (b).

and were therefore not used in the present analysis. Measurements at MHD and TAC were also performed with a Medusa-

GCM instrument, while those at TOB and CMN with different preconcentration-GC/MS instruments (Schuck et al., 2018;190

Maione et al., 2013). The measurements used in the present study are based on fully intercalibrated reference standards.

The measurements are based on the Scripps Institution of Oceanography (SIO) primary calibration scales SIO-05 for HFC-

134a and SF6, SIO-14 for HFC-125, and SIO-07 for HFC-32.
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Figure 2. Simulated total surface sensitivity (footprints) for Beromünster, (a) and (b), and for Sottens, (c) and (d), for the duration of the

measurement campaigns (01 09 2019–31 08 2020
::::::::::::::::::
2019-09-01–2020-08-31 for BRM and 05 03 2021–24 10 2021

:::::::::::::::::
2021-03-05–2021-10-24

:
for

SOT) as obtained from the FLEXPART-COSMO-7, (a) and (c), and FLEXPART-COSMO-1, (b) and (d). The surface sensitivity is given as

particle residence time per air density. The locations of the sites are indicated with a black crosses, major cities with black circles.
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The observational data employed for the inversions cover the period from August 2019 to October 2021. Data from TAC,

MHD, and JFJ were used for the whole period, while BRM and SOT data were available only during the field campaigns.195

The campaign in BRM lasted from August 2019 to September 2020, and in SOT from March 2021 to October 2021. There

was no temporal overlap because the same instrument had to be used at both locations. CMN and TOB observations were

employed in sensitivity inversions for the BRM campaign period only. Measurements from TOB come from flask samples,

which are collected weekly for offline analysis.

2.3 Baseline200

To run our inversions, 24-hourly (3-hourly for sensitivity inversion) aggregates
:::::
mean

:::::
values

:
were produced from the avail-

able observations of the above-mentioned sites. To correctly infer regional emissions from a limited model domain, ac-

curate knowledge of the so-called background (or baseline) mole fraction of a compound is needed. An observed mole

fraction of a compound can be decomposed into a baseline fraction, yo,b , and the contribution due to recent emissions, as

targeted by the regional simulation, yo,p205

yo = yo,b + yo,p . (1)

An underestimation of the baseline will magnify an emission event, whereas an overestimation will reduce the intensity

of an emission event. We estimate our baseline mole fractions by using the robust extraction of the baseline signal (REBS)

method (Ruckstuhl et al., 2012). The REBS method is an iterative filter, which assumes that the mean of the baseline can

be approximated by a smooth curve and its uncertainty distribution can be given by a Gaussian distribution with a con-210

stant (in time) standard deviation. The smooth curve is estimated by piece-wise local weighted linear regressions. The first

weight function acts to decrease the impact of observations in proportion to their distance from the point of the time se-

ries that is to be estimated, t0. The second reduces the influence of the data according to their distance from the expected

value of the baseline. In each iteration, an updated estimate of the baseline value and the baseline standard deviation is

calculated, and the method usually converges after 5-10 iterations. For our baseline estimates, a tuning factor of b = 3.5,215

a temporal window width of 60 days, and a maximum of 10 iterations were used. In our inversions, we used the baseline

estimated from JFJ for all Swiss sites, the one estimated for MHD for the sites on the British Isles and TOB, and the one

estimated for CMN for CMN itself. This selection is motivated by the fact that the REBS method works best for sites that

are mostly sampling background, whereas for typical continental boundary layer sites (like BRM, SOT, TAC) only a few

‘pure’ background observations exist throughout the year and, hence, REBS-estimated baselines tend to overestimate true220

baselines. All baselines were updated as part of the emission inversion step, individually for each site.

:::::
Other

::::::::
statistical

::::::::
methods

::
for

::::::::
baseline

:::::::::
estimation

::::
have

:::::
been

::::::
applied

::
to

::::::::::
greenhouse

:::
gas

:::::::::::
observations

::::::::::::::::::::::::::::::::::::::::
(e.g., Thoning et al., 1989; El Yazidi et al., 2018)

:::::
some

:
of
::::::
which

:::
use

:::::::::
additional

::::::::
transport

::::::
model

::::::::::
information

::::::::::
(trajectories

::
or

::::::::::
footprints)

::
to

:::::
select

::::::::::
background

::::::
sectors

::::::::::::::::::::
(O’Doherty et al., 2001)

.
::::::::::

Differences
::::::::

between
:::::::::
estimated

::::::::::
background

::::::::::
conditions

:::
are

::::
often

:::::
small

:::
or

::::::
limited

::
to

::::::
certain

::::::
events

:::
or

:::::::::
situations.

:::::
There

::
is

::
no

:::::::::
consensus

::::::
which

::
of

:::::
these

::::::::
methods

:
is
:::::
most

::::::
robust

:::::
under

:::
all

::::::::::::
circumstances.

:
225
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2.4 Transport models

The inversion system utilized for this study is comprised of an atmospheric transport model, which relates the spatial

emissions, x, of the compound of interest to the mole fractions measured at the receptor site, yo, via a linear mapping

yo = H x. Here, the LPDM FLEXPART (Pisso et al., 2019) was driven by the meteorological fields from two Eulerian NWP

models: the limited-area NWP model COSMO, and the Integrated Forecasting System (IFS) of the European Centre for230

Medium-range Weather Forecasts (ECMWF). Simulations with IFS were used to extend FLEXPART-COSMO simulations

beyond the COSMO model domain (Katharopoulos et al., 2022).

2.4.1 COSMO & IFS models

COSMO is a non-hydrostatic limited-area atmospheric model. It was initially designed for operational NWP by the German

weather service (DWD) and it is still used by several national weather services including MeteoSwiss (Baldauf et al., 2011).235

Its final version was released on December 15, 2021, while a transition to the ICON (ICOsahedral Nonhydrostatic) model is

considered for most of the meteorological services using COSMO, including MeteoSwiss (envisaged for 2023). MeteoSwiss

has been operating COSMO at three different spatial resolutions: COSMO-7 with a grid spacing of 6.6 km (from 2002-02-01

to 2020-10-29), COSMO-2 with a grid spacing of 2.2 km (from 2008-02-19 to 2023) and COSMO-1 with a grid spacing of 1.1

km (from 2015-09-30 to present) (Schmidli et al., 2018; Klasa et al., 2018; Leuenberger et al., 2020). The domain for the low-240

and the high-resolution model versions can be seen in Fig. 1. The low-resolution model domain covers parts of central and

western Europe (-10◦ to 20◦ E and 38◦ to 55◦ N; Fig. 1). The higher-resolution operational domain of MeteoSwiss COSMO-1

focuses on Switzerland and the Alps and has a considerably smaller extent (approximately from 0◦ to 17◦ E and 43◦ to 50◦

N; Fig. 1). Operational COSMO is driven by initial and boundary conditions from ECMWF IFS. COSMO analysis fields are

available from MeteoSwiss at a temporal resolution of 1 hour at all spatial resolutions mentioned above.245

High resolution (HRES) IFS is the operational global NWP model of ECMWF. The HRES IFS is using an octahedral reduced

Gaussian grid, translating to a resolution from 8 km at the equator to 10 km at 70◦ N and 70◦ S before decreasing again

towards the poles (Malardel et al., 2016). The output fields are available at a temporal resolution of 1 hour. Here we use

two different configurations of IFS output to drive FLEXPART for times before 2021-01-01 and after. For the first period,

3-hourly IFS fields at 0.2◦ x 0.2◦ resolution for the Alpine area (4◦ to 16◦ E and 39◦ to 51◦ N; IFS-Alps) and 1◦ x 1◦ elsewhere250

were used, whereas afterwards hourly data at 0.1◦ x 0.1◦ resolution (-15◦ to 31◦ E to 36◦ to 61◦ N; IFS-EU) and 3-hourly

global fields at 0.5◦ x 0.5◦ resolution were used.

2.5 FLEXPART LPDM

2.4.1
:::::::::
FLEXPART

::::::
LPDM

FLEXPART has been initially designed for estimating the mesoscale and synoptic dispersion of radio-nuclei from point255

sources, such as releases during a nuclear accident like Chernobyl. Nowadays, FLEXPART (Stohl et al., 2005; Pisso et al.,

2019), and other LPDMs (Jones et al., 2007),
:::
like

:::::
STILT,

::::::
NAME,

::::
and

::::::::
HYSPLIT

:::::::::::::::::::::::::::::::::::::::::::
(Lin et al., 2003; Jones et al., 2007; Stein et al., 2015b)

10



,
:

are utilized for a large variety of tracer transport problems, simulating the transport, diffusion, conversion, and deposition

of various compounds ranging from inert GHGs to aerosol particles.

One of FLEXPART’s major applications is in inverse modeling studies for the estimation of regional/continental-scale260

emissions of atmospheric compounds (Fang and Michalak, 2015; Henne et al., 2016; Brunner et al., 2012; Stohl et al., 2010).

This is due to FLEXPART’s ability for both forward and backward in-time simulations. For backward simulations, particle

trajectories are integrated backward in time, using a negative time step. The final product is an estimate of the sensitivity of

a concentration measured at the receptor yi to an emission source xi , called the source-receptor relationship (Seibert and

Frank, 2004). Source-receptor relationships derived from FLEXPART are linear since all atmospheric processes considered265

during the transport of the tracers are linear (advection, diffusion, convective mixing). The compounds we are interested

in possess very long atmospheric lifetimes (5 years or more), so for the regional scale transport (less than 10 days) we can

assume these to be inert. Thus, linear relationships, mi ,l , in units of s m3 kg−1 mol mol−1 with i referring to different grid

cells, and l referring to different receptors, can be easily derived from FLEXPART. If the spatial distribution of emissions Ei

is multiplied by source sensitivities, mi ,l , the product yields the mixing ratio increment, yl , of the tracer at the receptor site,270

l , resulting from emissions in the considered domain and time window

yl =
∑

i
mi ,l Ei , (2)

to which the baseline concentration yb,l needs to be added to obtain the absolute mixing ratio. In our case, yb,l was esti-

mated from observations using the REBS method (Sect. 2.3).

Here, we utilize two versions of FLEXPART in backward mode; FLEXPART-COSMO and FLEXPART-IFS. FLEXPART-COSMO275

is a version of FLEXPART adapted to the COSMO model (Henne et al., 2016). The meteorological fields driving FLEXPART

are directly used in the hybrid-z coordinate system of COSMO with no additional interpolation. FLEXPART-IFS interpolates

the meteorological fields from the hybrid pressure coordinate system of ECMWF-IFS to a terrain-following z-based system

(Stohl et al., 2005). The meteorological fields employed in FLEXPART simulations are some of the driving NWP’s prognostic

variables (winds, temperature, pressure, etc.) and accumulated fluxes (precipitation, surface heat, momentum, moisture).280

FLEXPART-COSMO is employed at two different spatial resolutions, 7 km and 1 km (Sect. 2.4). When we refer to spatial

resolution, we always mean the resolution of the driving NWP, here COSMO, and not the LPDM. In the Lagrangian frame-

work, there is no discretization of space and the frame of reference is centered on each particle following its trajectory in

the space-time continuum.

Receptor-oriented FLEXPART simulations were carried out by releasing 50’000 particles at each different receptor con-285

tinuously over 3-hour periods. Particles were then traced back for 8 days for FLEXPART-COSMO-7 and for 4 and 8 days for

FLEXPART-COSMO-1 coupled (see below) to FLEXPART-IFS, respectively. Source sensitivities were stored on two different

output domains for FLEXPART-COSMO simulations: a larger domain (main, 0.16◦ × 0.12◦ horizontal resolution) covering

a similar area as the COSMO-7 simulations and a smaller and finer domain (nest, 0.02◦ × 0.015◦ horizontal resolution)

11



focusing on Switzerland. For simulations with FLEXPART-IFS, the output grid was at a lower horizontal resolution grid for290

the whole of Europe (0.1◦ × 0.1◦).

If FLEXPART is driven only by COSMO-1 fields, source sensitivities can only be produced for the limited COSMO-1 do-

main, and any European contributions from larger distances (as from the COSMO-7 domain) would be neglected. To ac-

count for this limitation, we offline nest FLEXPART-COSMO-1 to FLEXPART-IFS in order to continue the integration of the

particles in Europe, once they leave the COSMO-1 domain (Katharopoulos et al., 2022).295

Particle transport in FLEXPART is modelled by a simple zero acceleration scheme,

X (t +d t ) = X (t )+u(X , t )d t , (3)

u(X , t ) = ug (X , t )+u′(X , t )+um (X , t ), (4)

where X is the particle’s position, u is the wind vector at the particle’s location comprised of three components. The term

ug is the average wind vector at the particle location (in our case taken from the COSMO model), u′ is the fluctuation from300

the mean wind representing the turbulence in the atmosphere (modeled as a stochastic Markov chain process), and um

represents additional mesoscale wind variations (Stohl et al., 2005).

For simulations with FLEXPART-COSMO-7, we use the original turbulence parameterization of FLEXPART, the Hanna

turbulence scheme (Stohl et al., 2005), while for FLEXPART-COSMO-1 we utilize the novel scheme introduced by Katharopou-

los et al. (2022). We recently showed that since the Hanna scheme is developed to parameterize the whole turbulence spec-305

trum, and COSMO-1 wind fields explicitly resolve part of the turbulence spectrum –eddies of the size of the model grid and

bigger can be represented by the wind fields– that leads to duplication of parts of the turbulence spectrum in the model,

and as a result, to increased diffusion.

2.5 Inversion framework

As we have already mentioned, FLEXPART was utilized in the backward mode to produce source sensitivities, M , which310

translate spatial emissions, x , to mole fractions, y , at the receptor site

y = M x . (5)

The state vector x , x = (x1, ..., xk )T , contained K elements, which correspond to the sum of the total number of grid cells,

NE , in our inversion grid and the total number of baseline nodes, NB , to be optimized by the inversion. The baseline nodes

are baseline factors at discrete time intervals, since we do not optimize the baseline at every time step to reduce the size of315

the matrix, M , and also avoid ending up with an under-determined system of equations. Here, the time interval between

our baseline nodes was set to τb = 30 days. The estimation of the a-priori baseline is described in Sect. 2.3. The rectangular

matrix M (size L×K ) is a column block matrix with two blocks, ME and MB , representing the sensitivity of the observations

to emissions for each grid cell and the baseline mole fractions, respectively. The mole fractions at the receptor sites are the
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product of the sensitivity matrix with the state vector, and its length is equal to the number of observations at all receptor320

sites, y = (y1, ..., yL)T .

If we would use the complete output grid of our transport model as the inversion grid, then the size of our sensitivity

matrix would be too large to be computationally manageable and the solution probably would be under-determined de-

pending on the spatial correlation lengths. Fine grids with negligible source sensitivities and very low a-priori emissions

are also more prone to be assigned negative emissions in typical dipole patterns since we assume Gaussian distributed er-325

rors. To reduce the size of the inversion problem, an irregularly sized inversion grid is introduced that assigns finer (lower)

grid cells in areas with larger (smaller) average source sensitivities (Henne et al., 2016). The number of
:::::::
reduced

:::::::::
resolution

:::
grid

::::::
serves

:::
two

:::::::::
purposes.

:::
On

:::
the

::::
one

:::::
hand,

:
it
:::::::
reduces

:::
the

::::::::
number

::
of

::::
state

::::::
vector

::::::::
elements,

::::::::
removing

::::::
many

::::::::
elements

::::
with

::::
very

::::
little

:::::::::
sensitivity.

:::
On

:::
the

:::::
other

:::::
hand,

::
it
:::::
helps

::
to

:::::::
smooth

:::
out

:::::::::
transport

:::::
model

::::::
errors,

::::::
which

::::
tend

::
to

:::::
grow

::::
with

::::::::
distance

::::
from

:::
the

:::::
point

::
of

:::::::::::
observation.

:::
The

::::::::
number

::
of grid cells in our inversions varies from 1000–2500 depending on the number330

of observations available for different inversions.

Bayesian inverse modeling is employed to statistically optimize the estimates of the variables of interest, x , by constrain-

ing them with the observational data, y 0 (top-down constraint), and with the prior estimate of the variables of interest, xb

(bottom-up constraint). Gaussian distributed errors are always assumed between the observations and the simulated mole

fractions and between the a-priori and the a-posteriori emissions,335

P (x) = 1p
2π|B |e−

1
2 (x−xb )T B−1(x−xb ), (6)

P (y 0|x) = 1p
2π|R |e−

1
2 (y 0−M x)T R−1(y 0−M x), (7)

where B is the a-priori error covariance matrix, and R is the observational error covariance matrix. The construction

of these matrices is discussed in Sect. 2.5.1. By applying Bayes theorem, P (x |y) ≈ P (y |x)P (x), we obtain the a-posteriori

Gaussian probability distribution function for the error of the emissions. The cost function, Equation 8, is the negative340

logarithm of P (x |y). We minimize the cost function to find the value of the state of the emissions, x, that minimizes the

observational and a-priori error

J (x) = (y 0 −M x)T R−1(y 0 −M x)+ (x −xb )T B−1(x −xb ). (8)

The minimization problem can be solved analytically, since the sensitivity matrix, M x , is a linear mapping, x ∈ RK →
M x ∈RL . Major advantages of the analytical approach are 1) the complete characterization of the a-posteriori error (Brasseur345

and Jacob, 2017) as part of the solution, and 2) that it can be fast and well suited for a plethora of sensitivity inversions. The

minimization of the cost function yields the solution,

x̂ = xb +G(y −M xb ), (9)
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where G is the gain matrix,

G = B M T (MB M T +R)−1, (10)350

giving the sensitivity of the optimal state to the observations. In the analytical inversion, the a-posterior
::::::::::
a-posteriori

error covariance matrix can be directly calculated as,

Ŝ = B −B MG , (11)

describing the uncertainty of the posterior estimate.

2.5.1 Covariance matrices355

Our design of the error covariance matrices, B and R , follows a maximum likelihood approach for which initial estimates

of the matrices are needed (Henne et al., 2016). Both covariance matrices are symmetric block matrices. The observational

error covariance matrix, R = [ϵoϵ
T
o ], contains contributions from the instrument error, ϵI , the representation error, ϵR , and

the model error, ϵM . These errors are assumed to be uncorrelated, so the covariance matrix can be calculated as the sum

of squares of the individual covariance matrices for each source of error, ϵo
2 = ϵI

2 +ϵR
2 +ϵM

2.360

The block matrix R is a row block matrix, containing a number of blocks equal to the number of different receptors.

Diagonal elements of R are estimated as follows:

Ri ,i = ϵ2
I +α+βχ2

p,i . (12)

Representation and model errors are considered as a single error, increasing linearly with a-priori-simulated mixing ratios,

χpi :::
χp,i . The factors α and β are determined by the log-likelihood approach. For each block matrix representing an indi-365

vidual receptor, temporal correlation in the error is added to the covariance matrix by setting the non-diagonal entries to

Ri , j = e
− Ti , j

τ0
√

Ri ,i

√
R j , j i ̸= j . (13)

The factor Ti , j is the time difference between measurements, and τ0 is the temporal correlation length, here set to a very

small value of 0.01 days, meaning that there is very low
::
we

:::::::
assume

::::::
almost

::::
zero auto-correlation between the daily average370

observations as used in the inversion. Error
::::::::::::::
(independence)

:::::::
between

:::::
daily

:::::::
average

:::::::::::::::::
observation/model

:::::
errors.

:::::::::
Although

:::
this

::::
may

:::::::::::::
underestimate

:::
the

::::
true

:::::
error

::::::::::
correlation

::
in

:::::
some

:::::::::
situations,

:::
in

:::
our

::::::::::
experience

:
it
::::::

allows
:::::::::
capturing

:::::::::::
pronounced

::::::::
pollution

::::::
events

::::
more

::::::::::
realistically

::
in

:::
the

:::::::::::
a-posteriori

::::::::::
simulations.

:::::::::::
Additionally,

:::::
error correlation between different sites is

neglected.

The matrix B consists of two block matrices. The first corresponds to the emissions, B E , and the second to the base-375

line, B B . The diagonal elements of matrix B E are proportional (factor fE ) to the a-priori emissions, while the off-diagonal

elements are spatially correlated. The correlation fades as an exponential function of their distance, di , j , scaled by a corre-

lation length scale, L,

B E
i ,i =

(
fE xb,i

)2 (14)
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380

B E
i , j = e−

di , j
L

√
B E

i ,i

√
B E

j , j i ̸= j . (15)

The diagonal values of block matrix B B are proportional (factor fb) to the baseline error, while the non-diagonal elements

are set to be correlated in time. The correlation fades as an exponential function of the time difference between baseline

nodes, Ti , j , scaled by a temporal correlation length, τb

B B
i ,i =

(
fbσb

)2 (16)385

B B
i ,i = e

− Ti , j
τb

√
B B

i ,i

√
B B

j , j i ̸= j . (17)

2.5.2 Maximum likelihood

Accurate knowledge of the a-priori and observational error covariance matrices, B and R , is, in general, unavailable and

often ’expert judgments’ are used to estimate or set the parameters describing the matrices. Similarly, our initial values of390

the covariance matrices are a mix of expert judgment and methods used in the literature (Henne et al., 2016). To overcome

the partial subjectivity of the construction of the covariance matrices, we employ a maximum likelihood optimization

step (Michalak et al., 2005). The parameters that we optimize in the maximum likelihood optimization are the correlation

length, L, the factor fE , which gives the variance of the emissions at each grid cell relative to the prior emissions, and

the temporal correlation length of the baseline, τB . Additionally, for each different receptor, the factors fb , α, and β are395

optimized. The maximum likelihood estimate of the covariance parameters is obtained by minimizing Eq. 18 with respect

to the covariance parameters (Michalak et al., 2005),

Lθ =
1

2
ln|MB M T +R |+ 1

2
(y −H xb )T (MB M T +R)−1(y −M xb ). (18)

2.6 Sensitivity tests

The main focus of this study is to assess the impact of high-resolution FLEXPART-COSMO-1 simulations on the emission400

estimates of halocarbons. The transport model resolution is one of the factors which can influence the total inverse emis-

sion estimates, their spatial distribution, and their uncertainty. The kind of analytical inversion used here to optimize the

emissions was shown to likely underestimate the uncertainty of the a-posteriori state vector (e.g., Berchet et al., 2015). To

capture the whole range of uncertainty of our a-posteriori, we conducted additional sensitivity tests (Table 2), in which

we vary different parameters and aspects of our inversion (transport model, inversion grid, spatial distribution of a-priori405

emissions, optimization of different covariance parameters during the maximum likelihood estimation step, temporal res-

olution of the assimilated observations, sensitivity of the inversion to the inclusion of observations from additional sites,

seasonality of emissions). In the following, our BASE inversion (Table 2) corresponds to inversions for which BRM, SOT,
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and JFJ are employed as the observational sites in Switzerland. TAC and MHD are used in this setup as additional non-

Swiss observational sites. Furthermore, the maximum likelihood step is calculated for all covariance parameters except L410

and fb , which are fixed to specific values for each compound. The observations are aggregated over 24-hour intervals and

the irregular grid size is increased to approximately 2000 grid cells, compared to the inversions with fewer cells in Rust et al.

(2022). This setup is used for comparisons across inversions with different transport model resolutions for the same tracer

(BASE1 and BASE7, Table 2). All the different sensitivity tests described in the following sections are summarized in Table

2.415

2.6.1 Transport model

Two versions of FLEXPART are used in this study, FLEXPART-COSMO-7, and FLEXPART-COSMO-1. Fig. 2 depicts the foot-

prints or source sensitivities for the two different setups and for the two different observational sites used on the Swiss

Plateau, BRM, and SOT. The footprints of the two models exhibit similar distributions on the Swiss Plateau, but they dif-

fer significantly in the Alpine region. The higher resolution model, FLEXPART-COSMO-1, is able to depict the flow in the420

Alpine valleys because of the better representation of the topography. On the Swiss Plateau, both models present their high-

est sensitivities close to the receptors, and their sensitivities decay close to the Swiss borders. The highest values of SOT

footprints for the high-resolution model are focused on the region around SOT, while the low-resolution model extends

the high sensitivities towards the canton of Valais, Geneva, and the middle of the Swiss Plateau.

2.6.2 Spatial distribution of a-priori emissions425

We conducted inversions using three different spatial distributions of the a-priori emissions, xb , in order to test the sen-

sitivity of the a-posteriori estimated vector and its uncertainty to different a-priori choices (Table 2). Please note that in-

dependent of the spatial distribution of the emissions, the probability distribution of each element of the state vector xb

always follows a Gaussian distribution in all our analytical inversions. The a-priori emissions for individual countries were

taken from the annual national inventory reports (NIR) to the United Nations Framework Convention on Climate Change430

(UNFCCC) for the reference year 2018 as reported in April 2020.

For some widely-used substances, such as HFC_134a, we expect that the usage and, hence, the emissions, mostly fol-

low proxies like population and traffic (HFC-134a in mobile air conditioning). For other compounds, such as SF6, used

as insulator gas in high-voltage installations, the choice of the a-priori is not as obvious since their emissions may be

more dominated by individual emission hot spots.
:::::::::::

Nevertheless,
:
a
:::::::::::::::
population-based

:::::::
a-priori

::
is

::::::::
generally

::::
still

::::::::::
meaningful435

:::::::::::::
(Hu et al., 2023).

:
For these substances, using different a-priori fields allows for illustrating how strongly the inverse solu-

tion is guided by the a-priori, and reveals if the higher resolution transport model inhibits a larger potential to localize

emissions independent of the a-priori.

The different a-priori fields used in this study consist of a population-based a-priori, a uniform-per-country a-priori, and

an elevation-dependent a-priori. In the population-based a-priori, an emission factor represents the average emissions for440

each person in the country, and the emissions are given by the emission factor multiplied by the number of residents in
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Figure 3. Different a-priori spatial emission distributions –presented in the irregular grid– utilized in the inversions. Population-based

a-priori can be seen in (a), elevation-dependent a-priori in (b), and uniformly distributed emissions per country in (c).

each grid cell. In the uniform-per-country case, the emissions are distributed uniformly in the whole country, while in the

elevation-dependent a-priori, the emissions are distributed uniformly per country below an elevation threshold of 1000

m, whereas above that threshold the emissions were set to 5 % of the low elevation value. Above the elevation threshold,

population densities are usually low in the Alps and very few industrial installations are present, suggesting very limited445

emissions of the current substances of interest. The spatial distribution of the different a-priori emissions can be seen in

Fig. 3.

2.6.3 Covariance parameters and baseline uncertainty

As already mentioned, the parameters optimized in the maximum likelihood optimization are the correlation length, L,

the factor fE , which scales the variance of the emissions at each grid cell, the temporal correlation length, τB , and for450

each different receptor, the factors fb , σM , and σR . The factor fb scales the uncertainty of the baseline. The maximum
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likelihood method (Sect. 2.5.2) was employed for all the parameters except the correlation length, L, and the uncertainty

scaling factor, fb , since they significantly alter the emission estimates. The latter two parameters were set to fixed values

for each different compound, so the low- and high-resolution inversions are comparable (Table 2).

2.6.4 Inversion grid455

As already mentioned in Sect. 2.4.1, the output grid size of the inversion varies with respect to source sensitivities. In re-

gions with low sensitivity, FLEXPART’s output grid cells are aggregated to form bigger grid cells. We conducted sensitivity

inversions to assess whether different grids with a varied number of cells result in different spatial distributions and to-

tal emissions in Switzerland (Table 2). This is of special importance since two of the anticipated emission hot spots in

Switzerland (cities of Zurich and Lausanne) are not very distant from the observational sites at BRM and SOT, respectively.460

2.6.5 Observational sites

The sensitivity of total Swiss emissions and their spatial distribution to additional observation sites inside and outside

Switzerland was further explored. Long-term halocarbon observations are only available from the AGAGE network. We

further employed data for Switzerland from the two field campaigns in Beromünster (2019-2020), and in Sottens (2021).

The sensitivity of the emissions to the inclusion of observations from Beromünster or Sottens, or from both sites, was465

further explored. In our BASE inversions, the non-Swiss receptors used are TAC in UK and MHD in Ireland. Inversions with

additional observations from TOB and CMN were conducted for HFC-134a to test the sensitivity of Swiss emissions to the

inclusion of additional sites closer to Switzerland (Table 2).

2.6.6 Seasonal variability

In our BASE inversions, the total emissions and their spatial distribution represent average values over the whole year;470

no annual cycle is considered. For refrigerants such as HFC-134a and HFC-125, this assumption can be ambiguous. HFC-

134a is mainly used in mobile air conditioning in cars, but we do not know if the emissions are stronger when the air

conditioning system is in use (mainly in summer months), or if they are at a constant rate independent of the usage. There

is some evidence in the literature supporting a seasonal cycle of the emissions (Xiang et al., 2014; Hu et al., 2015). To test

the impact of this assumption on the total emissions and whether seasonality is revealed by the inversion system, we475

conducted a sensitivity inversion for HFC-134a extending the emissions state vector to separately hold emissions for each

different season. The seasons were defined according to the meteorological definition. In our sensitivity inversion, the a-

priori emissions and their uncertainty were constant during the different seasons. Furthermore, we assumed a temporal

correlation length scale for the a-priori covariance of 30 days (see Eq. 15).
::::
From

::::::::
previous

:::::::
inverse

:::::::::
modelling

::
of

:::::
Swiss CH4

:::
and

:
N2O

::::::::
emissions

::::::::::::::::::::::::::::
(Henne et al., 2016; FOEN, 2022)

::
we

:::::
know

::::
that

:::
the

:::::::::
inversion

:::
was

::::
able

::
to

::::::::::
realistically

::::
pick

:::
up

::::::::
seasonal480

::::::::
variability

:::::
even

:
if
:::
the

:::::::
a-priori

:::::::::
emissions

:::
did

:::
not

:::::::
include

:::
any

:::::::::
variations

::
in

:::::
time.

Since running the maximum likelihood optimization for the enlarged inversion problem proved to be computationally

too costly, two sensitivity inversions with slightly different covariance settings were performed: one with the covariance
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Table 2. Different groups of inversions conducted in this study.

Inversion ID Sensitivity variation Receptors Transport model HFC-134a HFC-125 HFC-32 SF6

Base inversions

BASE7 BASE ( BRM, SOT, JFJ,

MHD, TAC)

C7 x x x x

BASE1 BASE C1 x x x x

Sensitivity inversions

BASE_ED7 A-priori distribution

(elevation-dependent)

( BRM+SOT+JFJ

+MHD+TAC)

C7 x x x x

BASE_ED1 C1 x x x x

BASE_UNI7 A-priori distribution

(uniform)

( BRM, SOT, JFJ,

MHD, TAC)

C7 x x x x

BASE_UNI1 C1 x x x x

SEAS1
:
∗

Emission variability

(seasonal)

( BRM, SOT, JFJ,

MHD, TAC)

C1 x - - -

SEAS2
:
∗ C1 x - - -

Preliminary screening

PREL_COV7 Covariance parameters

(optimize L & fb )

( BRM, SOT, JFJ,

MHD, TAC)

C7 x x x x

PREL_COV1 C1 x x x x

PREL_NCEL7 Inversion grid

(number of cells)

( BRM, SOT, JFJ,

MHD, TAC)

C7 x x x x

PREL_NCEL1 C1 x x x x

PREL_SITEXT7 Observational sites

(incl. CMN & TOB)

( BRM, JFJ, MHD,

TAC, CMN, TOB)

C7 x - - -

PREL_SITEXT1 C1 x - - -

PREL_SITRED7 Observational sites

(excl. SOT)

( BRM, JFJ,

MHD, TAC)

C7 x x x x

PREL_SITRED1 C1 x x x x

PREL_AGR7 Observation aggregation

(3-hourly)

( BRM, SOT, JFJ,

MHD, TAC)

C7 x - - -

PREL_AGR1 C1 x - - -

∗: Two different approaches for setting covariance parameters were used for the seasonal inversions. See text for details.

parameters taken directly from the outputs of the BASE inversion with maximum likelihood optimization (SEAS1) and one

with the model error being determined by an iterative approach (SEAS2), as described in Stohl et al. (2010); Henne et al.485

(2016).
::
In

:::
the

:::::
latter,

::::
the

::::::::::
model-data

::::
error

::
is
::::

first
::::::::::
determined

:::::
from

:::
the

::::::::
residuals

::
of

::::
the

::::::
a-priori

::::::::::
simulation,

::::::
fitting

:
a
::::::

linear

::::::::::
relationship

::
to

:::
the

::::::::
residuals

::::::::::
depending

:::
on

::::::
a-priori

:::::::::
simulated

::::::::::::::
concentrations.

:::
For

::::::::::
subsequent

:::::::::
iterations,

:::
the

:::::::::::
a-posteriori

:::::::
residuals

:::::
from

:::
the

::::::::
previous

:::::::
iteration

:::
are

:::::
used

:::::::
instead.

:::
The

:::::::
method

:::::::
usually

::::::::
converges

:::::
after

:::
2-3

::::::::
iterations.

:

2.6.7 Observation aggregation

Finally, the sensitivity of the inversion to the temporal aggregation window of the assimilated observations was assessed.490

In our BASE inversions, we use observations averaged over 24-hour intervals. Since the high-resolution model was shown
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to improve the simulated representation of the observed diurnal cycle of tracer mole fractions at the BRM tall tower

(Katharopoulos et al., 2022), we further performed sensitivity inversions employing 3-hourly aggregated observations (

Table 2) to investigate whether we obtain additional information from the sub-daily observed tracer variability.

3 Results495

3.1 Preliminary screening tests

Swiss halocarbon emissions using the low-resolution model were estimated after the measurement campaign in Beromün-

ster in 2020 and the results are summarized in Rust et al. (2022). The inversions conducted for their study included obser-

vations from two sites in Switzerland, JFJ, and BRM, and two sites on the British Isles, MHD and TAC, to constrain the

European emissions. Here, we first examine the impact of the additional observational sites (CMN and TOB) on the Swiss500

national emission estimates. Sensitivity inversions were conducted for both the high- and the low-resolution models and

for HFC-134a including observations from CMN and TOB (PREL_SITEXT7 and PREL_SITEXT1, Table 2). Only results from

the high-resolution model are discussed in the following. In Fig. 4, the spatial distributions of the a-posteriori emissions of

HFC-134a are displayed for the inversion excluding (PREL_SITRED1), (a), and including CMN and TOB (PREL_SITEXT1),

(b), and the resulting difference (c). For HFC-134a no significant
:::::
large spatial differences between the a-posteriori emis-505

sions of the two inversions can be seen (Fig. 4, c). The differences in the total Swiss emissions for the two inversions are

also not significant, 308±48 Mg yr−1 for the BASE inversion and 312±50 Mg yr−1 when including CMN and TOB.

The same cannot be claimed for observational sites in Switzerland though, since the PREL_SITRED1 inversion changes

significantly both in terms of spatial distribution and total emissions when SOT (BASE1) is included (Sect. 3.2, Fig. 4 panel

d). This is an expected result since SOT adds sensitivity to regions where BRM is not very sensitive (Fig. 2). Additional510

observational sites are also essential, since they allow for sampling emissions from the same region at different sites and

hence under different atmospheric conditions (advection diretion
:::::::
direction, turbulence regime), thereby improving the

representation of dispersion. This happens because turbulent dispersion behaves differently in the near- and the far-field.

In the near-field, dispersion approaches isotropy both
:::::
mainly

:
at the large and small scales, meaning that the diffusion in

the near-field is independent of the size of the eddies.
::::::
During

::::
that

:::::
phase,

::::
the

:::
size

::
of

:::
the

::::::
plume

::
is

:::::
much

:::::::
smaller

:::::::::
compared515

::
to

:::
the

:::::
larger

::::::::
turbulent

:::::::
eddies,

:::
and

::::::::::
turbulence

::::
acts

::::
more

::::
like

:
a
:::::
mean

::::::::
transport

:::::::::::
mechanism

:::::::::::::
(Csanady, 1973)

:
.

Concerning the covariance parameters which were excluded from the maximum likelihood step (Sect. 2.6.3), fb was ini-

tially set to 1, meaning that the baseline is assigned an uncertainty equal to the uncertainty calculated in the REBS method

(Sect. 2.3). The latter sometimes leads to unrealistically large adjustments in the baseline, and usually underestimation of

the emissions, since most of these adjustments tend to increase the baseline considerably. Different sensitivity tests with520

different values of the factor fb were conducted to find a representative value for each different receptor and for each dif-

ferent compound (PREL_COV1 and PREL_COV7). Then, for all the inversions for this compound, the value of the factor fb

was fixed, and not further optimized in the maximum likelihood step.
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Figure 4. Spatial distribution of Swiss HFC-134a a-posteriori emissions for the inversion PREL_SITRED1 (a), and for PREL_SITEXT1 (b).

(c) shows the a-posteriori emission differences between (a) and (b), while in (d) the a-posteriori emission differences between (a) and

BASE1 inversion is shown. In all cases, results from the high-resolution transport model are given.

:::::::::
Estimating

:::
the

::::::::
baseline

::::::::::::
concentration

::::::
purely

::::
from

:::::::::::
observations

::::
and

::::::::::
optimizing

:
it
:::

by
:::
site

::::
may

::::
not

::
be

:::
the

::::
best

::::::::
solution

::
to

:::
the

:::::::
baseline

::::::::
problem.

::::::::::::
Alternatively,

:::::::
baseline

:::::::::::
observations

::::
and

::::::::
transport

::::::
model

::::::::::
information

::::
can

::
be

:::::
used

::
to

::::::::::
reconstruct525

:
a
:::::::
spatially

::::
and

:::::::::
temporally

::::::::
resolved

:::::::
baseline

::::::::::::
concentration

::
at

:::
the

:::::::
domain

::::::::::
boundaries

::::
from

::::::
which,

:::::
again

::::
with

::::
the

::::::::
transport

:::::
model

:::::::::::
information,

:
a
::::::::
baseline

::::::::::::
concentration

::
for

:::::
each

:::
site

:::
and

:::::
time

:::
can

::
be

::::::::
sampled

:::::::::::::::::::::::::::::::::::
(e.g., Manning et al., 2021; Hu et al., 2023)

.
:::::::::

Common
:::::::
baseline

:::::::::::::
concentrations

::
at

:::
the

:::::::
domain

:::::::::
boundary,

::::::
instead

::
of

:::::::::
individual

:::::::
baseline

:::::::::::::
concentrations

::
at

:::
the

:::::
sites,

::::
may

::::
then

::
be

::::::::
included

::
as

::::
part

::
of

:::
the

:::::
state

::::::
vector.

Another factor that is poorly constrained by the maximum likelihood approach is the correlation length, L. Values point-530

ing to overfitting , were also obtained from the maximum likelihood, mainly for the low-resolution model. A series of sen-

sitivity runs were deployed for the estimation of a meaningful correlation length, which afterward was used as a fixed value

in the inversion for both model resolutions without being further optimized by the maximum likelihood (PREL_COV1 and

PREL_COV7). The total emission estimates were not sensitive to small to medium deviations of the correlation length from

the chosen value.535
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Furthermore, we investigated whether we obtain additional information from the high-resolution inversions if we use

3-hourly observation aggregates to drive the inversion instead of 24-hourly aggregates, as used for the low-resolution in-

versions and in previous studies (Rust et al., 2022) (PREL_AGR1 and PREL_AGR7). There was no significant difference when

the 3-hourly aggregates were used, so we maintained the 24-hourly aggregates for the inversions in this study since they

result in considerably reduced computational costs.540

Finally, we fixed the parameters, which influence the resolution of the inversion grid, to values that lead to similar in-

version grids for both FLEXPART model resolutions (PREL_NCEL1 and PREL_NCEL7). However, the total country or total

inversion emissions did not show sensitivity to the resolution of the inversion grid (<1% differences across the two models)

within the range of tested resolutions.

3.2 Emissions of HFC-134a545

HFC-134a is the most used halocarbon/HFC in Switzerland with reported emissions of 455 Mg yr−1 for 2019 and 415 Mg yr−1

for 2020 (FOEN, 2022). HFC-134a is employed as a refrigerant both in mobile air conditioning (i.e., road traffic and in sta-

tionary refrigeration systems). It is also used as a foam blowing agent. Its 100-year GWP is 1430 and its atmospheric lifetime

is approximately 14 years (Engel et al., 2018).

BASE7 inversion leads to an a-posteriori estimate of annual Swiss emissions of 260±49 Mg yr−1 (Fig. 9). The a-posteriori550

distribution of the emissions for this inversion can be seen in panel (a) of Fig. 5 and the difference between the a-posteriori

values and the a-priori in panel (a) of Fig. 6. Compared to the UNFCCC reported bottom-up emissions, there is a significant

reduction in HFC-134a emissions almost everywhere in Switzerland except for the region south of SOT and in the canton

of Valais, where the emissions are increased compared to the a-priori. In Rust et al. (2022) the Swiss emission estimate

for HFC-134a –using observations from BRM, JFJ, MHD, TAC, a population-based a-priori, and inversions with the low-555

resolution model (PREL_SITRED1)– was 274 ± 67 Mg yr−1 (two standard deviations) for 2019–2020.

The same a-posteriori emissions distributions but obtained with the high-resolution transport model can be seen in

Fig. 5 (b) and the difference from the a-priori emissions in Fig. 6 (b). The total emissions estimate for BASE1 inversion is

351±44 Mg yr−1 (Fig. 9), which is 35 % higher compared to the BASE7 estimate. The BASE1 estimate is closer to the value

of the inventory, while the BASE7 gives a 40 % lower estimate than the inventory. The relative uncertainty in the estimate560

is higher for the BASE7, 12.8
:::
18.8 %, compared to the BASE1 , 18.8

::::::::
inversion,

::::
12.5 %. This is an indication of an improved

use of the information content of the observations by the high-resolution model due to the improved representation of the

atmospheric flow.
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Figure 5. Spatial distribution of Swiss HFC-134a a-posteriori emissions for the BASE inversion with the 7 km model (a,
::
c,

:
e) and the 1 km

model (b,
::
d,

:
f) starting from a population-based a-priori

:
(a,

::
b), and the same plots, (c) and (

:
, d), starting from a spatially uniform a-priori,

and from an elevation-dependent a-priori, (e) and (
:
, f ).

If we consider the difference between the a-posteriori emissions of the high- and the low-resolution model inversions

(BASE1 and BASE7), the BASE1 inversion enhances the emissions in all big cities of Switzerland, in the regions with the565

most industrial activity (canton of Aargau, west north-west of Zurich), and along the traffic network Fig. 8. The arc with

increased emissions from Zurich to Bern, Fig. 8, could point to emissions from the main highway of Switzerland (A1) form-
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ing the main west-east transport route and connecting two of the biggest cities of Switzerland. To evaluate the connection

between HFC-134a emissions and traffic, we calculated the correlation between a-posteriori emissions and CO2 traffic

emissions, as taken from the spatially-resolved Swiss emission inventory (Heldstab et al., 2021), for the two different inver-570

sions. The a-posteriori emissions from the BASE1 inversion show a higher correlation, r=0.6, with the traffic CO2 emissions

compared to the BASE7 inversion emissions, r=0.35. Since we start from a population-based a-priori, the correlation be-

tween the a-posteriori emissions and the population was additionally estimated. A-posteriori emissions from the BASE1

inversion possess a correlation of r=0.96 with the population, while the emissions from the BASE7 inversion are slightly

less correlated, r=0.8. Hence, the high-resolution model inversion stays closer to the a-priori distribution compared to the575

low-resolution model.
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Figure 6. A-posteriori minus a-priori emission differences for HFC-134a for the BASE inversion with the 7
::
km

:
model (a

:
,
:
c,
::

e) and the 1

::
km

:
model (b,

::
d,

:
f) starting from a population-based a-priori

::
(a, and the same plots

::
b), a

:::::::
spatially

:::::::
uniform

::::::
a-priori (c) and (,

:
d), starting

from
:::
and an elevation-dependent

::::::::::::
elevation-based a-priori .

::
(e,

::
f)

Fig. 7 shows the mole fraction timeseries of daily-averaged HFC-134a for both low- and high-resolution BASE inver-

sions and the observations at BRM, (a), and SOT, (b). Both inversions represent the observed variability closely, however,

some distinct differences do exist. To assess the performance of our inversions, we used the following statistical mea-

sures: reduced χ2 index, which is a measure of the normalized variance between the observations and the simulated580
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values, the degrees of freedom, which is a measure of the relative uncertainty reduction between the a-priori and the

a-posteriori, the correlation coefficient, r, and the root mean square error (RMSE) of the simulated versus the observed

mole fractions (Table 3). From these statistics for HFC-134a, we conclude that both BASE1 and BASE7 inversions are

reliable, but the BASE1 inversions show improved performance at the receptors in Switzerland.
::
A

::::::
general

::::::::::::
performance

:::::::::::
improvement

:::
of

::::::::::::::::::
FLEXPART-COSMO-1

::::::
versus

:::::::::::::::::::
FLEXPART-COSMO-7

:::
can

:::::::
already

:::
be

::::
seen

::
in

::::
the

::::::::::
a-posteriori

:::::::::::
simulations585

:::
(see

:::::::::::
supplement

:::::
Table

:::
S1),

::::::
where

:
it
::
is

:::::
solely

::::
due

::
to

:::::::::::::
improvements

::
in

:::
the

::::::::
transport

::::::::::::::
description/flow

::
in

::::::::
complex

:::::::
terrain,

::
as

::::::::
emission

::::::::::
distribution

:::
and

::::::::
baseline

:::::
values

:::::
were

:::
the

:::::
same

:::
for

::::
both

::::
sets

::
of

::::::::::
simulations.

:

Figure 7. Time series of observed (blue lines) and simulated (red and green lines) HFC-134a mole fractions at BRM (a) and SOT (b).

A-posteriori simulations for the BASE inversion and with the low- (C7, green lines) and high-resolution (C1, red lines) transport model

are given.
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For the inversions with uniformly distributed a-priori emissions by country (BASE_ED), (Figs. 5–6) panels (c) and (d), the

results are inferior to the results obtained with the population-based a-priori. The BASE_ED inversions tend to retain and

cannot completely remove the emissions from the Alpine region, while the distribution of emissions in the Swiss Plateau590

looks little plausible, at least for the low-resolution model. The inversion with the high-resolution model seems to be able to

locate the emission hot-spots north of BRM and northwest of Zurich. These results highlight the importance of the a-priori

spatial distribution. If the inversion is initialized with a highly unrealistic a-priori and there is an insufficient observational

constraint, the inversion may not converge to a rational
:::::::
realistic state.

In Figs. 5 and 6, (e) and (f) correspond to inversions with an elevation-dependent a-priori (BASE_ED). The total Swiss595

emission estimate is 318 ± 62 Mg yr−1 for the BASE_ED1 and 217 ± 46 Mg yr−1 for the BASE_ED7 (Fig. 9). For the inversions

with the high-resolution model, Figs. 5 (f) and 6 (f), we can see that the inversion converges again towards a population-

based distribution, especially close to the observational sites. The hot-spots of emissions in the cantons of Zurich and

Aargau are reconstructed by the inversion, although not as sharply as for a population-based a-priori, along with the hot-

spots in the Lausanne and Geneva regions. However, the inversion using the low-resolution transport model cannot recover600

the population-based distribution to the same degree, Fig. 5 (c). Especially, the emissions from Zurich seem to be allocated

too far to the west at a closer distance to BRM. Similarly, emissions from Geneva are not indicated as prominently. These

observations are corroborated by the correlation between the a-posteriori emissions and population, which was r=0.56 for

the high-resolution model and only r=0.31 for the low-resolution model. Since we are highly confident that the emissions of

this substance should be correlated with population density, the BASE_ED inversions show that the high-resolution model605

inversions are much more accurate in reconstructing the true distribution.

Figure 8. A-posteriori emission differences between the high- and low-resolution model inversions with population-based a-priori for

HFC-134a.

Moreover, the HFC-134a inversions with seasonally variable emissions (SEAS) reveal the existence of a seasonality pat-

tern in the emissions in Switzerland. In both types of seasonal inversions with the high-resolution model (
::

see
:::::
Sect. 2.6.6)

there is a clear annual variability of HFC-134a with the peak during the summer months June–August (JJA)– 433± 94 Mg yr−1

for SEAS1 and 364 Mg yr−1
::::::::::::::
364 ± 92 Mg yr−1

:
for the SEAS2 inversion– and the minimum during the winter–238± 98 Mg yr−1610
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for the SEAS1 239 ± 100 Mg yr−1 for the SEAS2 inversion. This corresponds to a seasonal amplitude of approximately

1.3, which is similar to seasonal amplitudes obtained by Hu et al. (2017) for HFC emissions in North America.
:::::
Given

:::
the

::::::::
relatively

::::
large

::::::::::
a-posteriori

::::::::::::
uncertainties

:::
on

:::::::
seasonal

::::::::::
emissions,

:::::::
summer

::::
and

::::::
winter

::::::::
emissions

:::
are

:::::::::::
significantly

::::::::
different

::
at

:::
the

::
95

:::
%

::::::::::
confidence

::::
level

:::
for

:::
the

::::::
SEAS1

::::::::::
inversions,

:::
but

::::
not

:::
for

:::
the

::::::
SEAS2

::::::::::
inversions. The spatial distribution of the

emissions for the different seasons is similar, pointing to the conclusion that the emissions in all different seasons have615

the same sources, but the leakage of HFC-134a from refrigeration systems is higher when they are in use. According to the

statistical measures used, the SEAS2 inversion is superior to the SEAS1, possessing a better correlation of the simulated

values when compared to the observations and reduced χ2 much closer to 1. The total annual emission estimate for the

two inversions is 320 ± 50 Mg yr−1 for the SEAS2 342 ± 48 Mg yr−1 for the SEAS1 inversion, close to the BASE estimate.

Hence, there seems to be no big gain when we consider inversions with seasonality when the main target is the validation620

of annual total emissions. However, these simulations could help improve our understanding of the release mechanisms

of these compounds.

For the
:::::::::::
Additionally,

:::
the

::::::::::
a-posteriori

::::::
model

:::::::::::
performance

:::::::
slightly

::::::::
increased

:::
for

:::
all

:::::::
seasonal

:::::::::
inversions

:::::::::
compared

:::
to

:::
the

::::::
annual

::::::
mean,

:::::::::::::::
population-based

:::::::::
inversions

::::
(see

:::::::::::
supplement

:::::
Table

::::
S2).

:::
For

:::
the

::::::
RMSE,

::::
the

:::::::::::
performance

::::::::
increase

:::
was

:::
in

:::
the

:::::
order

::
of

:::
10

:::
%,

:::
but

::::
was

::::
less

:::::::::::
pronounced

:::
for

:::
the

::::::::::
correlation

::::::::::
coefficient.

::::::
SEAS2

:::::::::
inversions

::::::::
achieved

::
a
:::::
larger

:::::::
degree625

::
of

::::::::
freedom,

:::
but

::::
also

::::::::
revealed

:
a
:::
χ2

:::::
index

::::::::::::
considerably

:::::
larger

::::
than

::
1,
:::::::::

indicating
::::::

some
::::::
degree

::
of

::::::::::
overfitting.

:::
For

:::
the

:
low-

resolution model, a much smaller (insignificant) seasonal amplitude was obtained in the a-posteriori emissions. Whether

this is due to the reduced ability of the model to realistically reproduce the diurnal mole fraction variability as compared to

the high-resolution model (Katharopoulos et al., 2022) or to potential seasonal transport biases will need to be investigated

in future studies.630

Based on the analysis in this section, we can claim that the high-resolution inversions reconstruct the spatial distri-

bution of the HFC-134a emissions in Switzerland better and with more detail than the low-resolution inversions. The total

Swiss emission estimates between the two resolution models differ significantly, with the high-resolution model predicting

values closer to those in the inventory.

For the remaining halocarbon inversions in this work, we present only the results from population-based a-priori and635

elevation-dependent a-priori since the elevation-dependent a-priori can be seen as an improved version of the uniform by

country a-priori. Figures for the simulations with a uniform spatial a-priori distribution can be found in the supplement.
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Figure 9. A-posteriori emissions for all the substances utilized in this study for the different model resolutions and the different a-prioris.

All results correspond to the BASE inversions.

3.3 Emissions of HFC-125

HFC-125 is the second most abundant HFC in Switzerland, with reported emissions of 122 Mg yr−1 for 2019 and 2020

(FOEN, 2022). HFC-125 is employed as a refrigerant mainly in stationary refrigeration systems, and as a result, its emis-640

sions are expected to be from static sources. It is also used as a fire suppression agent in fire extinguishers, but this use is

forbidden in Switzerland. Although, on a mass basis, HFC-125 emissions are lower compared to HFC-134a, their impact as

a GHG is higher since its 100-year GWP is 3500, almost three times that of HFC-134a. The setup used to estimate the Swiss

emissions of HFC-125 is identical to the setup used for HFC-134a including the two Swiss sites (BRM, SOT).

The BASE7 inversion yields Swiss a-posteriori emissions of 78±20 Mg yr−1 (Figs. 10, 11), and (Fig. 9). In Rust et al. (2022)645

the Swiss emission estimate for HFC-125 with PREL_SITRED7 was 107±28 Mg yr−1 (two standard deviations) for 2019–

2020 (Fig. S1–S2). The estimate from a second top-down method used in Rust et al. (2022) to estimate the emissions from

BRM (tracer-ratio method) was 94±19 Mg yr−1. The addition of SOT yields approximately 20 % lower annual Swiss emis-

sions estimates. The a-posteriori minus a-priori emission difference figures for the two cases (not shown) depict that the

PREL_SITRED7 inversion increases the emissions of HFC-125 compared to the a-priori north and north-west of BRM, in650

the Valais region, and in the regions north and south of SOT, whereas the BASE7 inversion including both BRM and SOT
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Table 3. Statistical measures used to assess the reliability of inversion for different compounds, different transport model resolutions,

and different a-priori emissions. The table displays the reduced χ2 index, degrees of freedom (DOF), root means squared error (RMSE),

and correlations of simulated compound values against observations for
::::::::::
Beromünster

:
(BRM, )

::::
and

::::::
Sottens

:
(SOT

:
), and JFJ

:::::::::
a-posteriori

::::::::
emissions,

::
Ea:::

for
:::::::::
Switzerland.

Compound Model Res. A-priori χ2 DOF r (BRM) r (SOT)
RMSE (BRM)

(ppt)

RMSE (SOT)

(ppt)
::
Ea:(Mg yr−1

:
)

HFC-134a C7 Population 1.01 88 0.74 0.75 4.66 4.63
::
260

::
±
::
49

:

HFC-134a C7 Uniform 1.08 88 0.71 0.65 4.91 5.70
::
322

::
±
::
66

:

HFC-134a C7 Elevation-dep 1.02 97 0.75 0.72 4.63 4.67
:::
217

:
±
::
46

HFC-134a C1 Population 1.00 78 0.79 0.83 4.10 4.10
:::
351

:
±
::
44

HFC-134a C1 Uniform 1.08 82 0.79 0.74 4.10 5.50
::
362

::
±
::
64

:

HFC-134a C1 Elevation-dep 1.01 91 0.8 0.83 4.00 4.10
::
318

::
±
::
54

:

HFC-125 C7 Population 1.02 98 0.76 0.77 1.18 1.17
::
78

::
±

::
20

HFC-125 C7 Uniform 1.07 97 0.73 0.72 1.26 1.26
::
82

::
±

::
27

HFC-125 C7 Elevation-dep 1.06 92 0.72 0.71 1.31 1.31
::
83

::
±

::
14

HFC-125 C1 Population 1.01 92 0.75 0.81 1.14 1.08
::
101

::
±
::
21

:

HFC-125 C1 Uniform 1.10 89 0.71 0.72 1.22 1.27
::
96

::
±

::
22

HFC-125 C1 Elevation-dep 1.06 93 0.72 0.78 1.20 1.17
::
90

::
±

::
18

HFC-32 C7 Population 1.02 94 0.68 0.75 1.57 1.71
:
38

::
±
:
8
:

HFC-32 C7 Uniform 1.09 86 0.67 0.70 1.59 1.87
::
41

::
±

::
12

HFC-32 C7 Elevation-dep 1.07 89 0.65 0.74 1.66 1.74
:
35

::
±
:
7
:

HFC-32 C1 Population 1.00 84 0.73 0.80 1.41 1.57
:
50

::
±
:
9
:

HFC-32 C1 Uniform 1.11 82 0.74 0.75 1.40 1.82
::
53

::
±

::
12

HFC-32 C1 Elevation-dep 1.04 90 0.74 0.81 1.39 1.55
::
47

::
±

::
10

SF6 C7 Population 0.85 76 0.59 0.52 0.17 0.26
::
7.6

::
±

::
2.1

:

SF6 C7 Uniform 0.85 54 0.49 0.42 0.18 0.28
::
7.6

::
±

::
2.2

:

SF6 C7 Elevation-dep 0.86 73 0.62 0.52 0.15 0.27
::
5.0

::
±

::
2.0

:

SF6 C1 Population 0.85 60 0.66 0.61 0.15 0.25
::
9.0

::
±

::
2.2

SF6 C1 Uniform 0.87 60 0.67 0.56 0.15 0.26
::
8.5

::
±

::
2.4

:

SF6 C1 Elevation-dep 0.85 72 0.69 0.60 0.14 0.25
::
7.1

::
±

::
2.4

:

increases the emissions compared to the a-priori only in a small radius around BRM and in the canton of Valais. In all other

regions of the Swiss Plateau, a significant decrease in emissions is observed.
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For the high-resolution BASE inversion, BASE1, the a-posteriori emissions can be seen in Fig. 10 (b) and the difference

from the a-priori emissions in Fig. 11 (b). The total emissions estimate in this case is 101±21 Mg yr−1. This number is655

22 % higher compared to the low-resolution model estimate. Similar to HFC-134a, the a-posteriori uncertainty is higher

(although only slightly) in the BASE7, 26 %, compared to the BASE1 inversion, 21 %. The BASE1 estimate is closer to the

value of the inventory, whereas the inversion estimate with the BASE7 corresponds to about 2/3 of the inventory value. The

BASE1 inversion increases the emissions in the region to the north of BRM, in Basel, and in eastern Switzerland close to

the borders with Austria and Germany (Fig. 11 (b)). In contrast to the BASE7 inversion, the BASE1 inversion increases the660

emissions for all the big cities of Switzerland and in the industrial region ranging from Zurich to Basel (Fig. S3).

Additionally, in Figs. 10 and 11, (c) and (d), the a-posteriori emissions and the differences from the a-priori for HFC-

125 can be seen starting from an elevation-dependent a-priori (BASE_ED). As with HFC-134a, the inversions converge

again towards a population-based a-priori, that is especially close to the observational sites. The hot-spots of emissions in

the cantons of Zurich and Aargau are reconstructed by the inversion, along with the hot-spots in the Lausanne and Geneva665

regions. The BASE_ED1 again tends to produce an a-posteriori distribution closer to the population distribution compared

to the BASE_ED7 inversion. The total Swiss emission estimate for the BASE_ED1 inversion with the elevation-dependent

a-priori is 90±18 Mg yr−1, while that for the BASE_ED7 inversion 83±20 Mg yr−1. The results for the inversions starting from

uniformly distributed emissions (BASE_UNI) can be seen in the supplement (Figs. S14–S17).

Both the high- and the low-resolution inversions are reliable (Table 3), since they present reasonable reduced χ2 and670

they both lower the uncertainty of the a-priori emissions (DOF). The high-resolution inversion for HFC-125 possesses a

slightly higher correlation and slightly smaller RMSE of simulated versus observed values at the Swiss receptors (Table 3).

Since HFC-125 is used in stationary air conditioning systems, its usage should be concentrated in the big cities and in

industrial areas and should partially follow a population-based distribution. Hence, the increase in emissions in the area

west of Zurich, north of BRM, and south of Basel looks reasonable.675
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Figure 10. Spatial distribution of a-posteriori emission for HFC-125 (a–d), SF6 (e–h), and HFC-32 (i–l) for the high- and low-resolution

inversions and the population-based (rows 1–2) and elevation-dependent a-priori (rows 3–4).

3.4 Emissions of HFC-32

Difluoromethane or HFC-32 is the fourth most emitted HFC in Switzerland with reported emissions of 57 Mg for 2020 and

an increasing emission trend. HFC-32 is employed as a refrigerant for the same purposes as HFC-134a. Hence, we expect
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the spatial distribution of its emissions to be similar to HFC-134a. Its lifetime is only 5 years and its GWP is correspondingly

low (705). Thus, it is a relatively low-risk choice among HFC refrigerants.680

The BASE7 and BASE1 inversions for the period 2019–2021 yield a-posteriori annual emissions of 38±8 and 50±8 Mg yr−1,

respectively (Figs. 10, 11, and (Fig. 9)). In Rust et al. (2022) the Swiss emissions estimate with PREL_SITRED7 inversion with

population-based apriori emissions for HFC-32 was 44±12,Mg for 2019–2020 (Figs. S4–S5).

Comparing (e) with (f) in Fig. 11 reveals again significant differences between the two model versions. While both in-

crease the emissions in the canton of Valais, the Lausanne region, and around SOT, there is a significant difference for685

the rest of the Swiss Plateau, where the BASE7 inversion decreases the emissions, whereas the BASE1 inversion mostly

increases the emissions. In Fig. S6 the a-posteriori emission differences between the high- and low-resolution inversions

are shown. These results are very similar to the results for HFC-125. The latter, together with the resemblance of the a-

posteriori emissions between HFC-32, HFC-125, and HFC-134a for all model resolutions, verify our prior assumption that

the emissions for these substances have similar sources.690

In (g) and (h) in Figs. 10 and 11 the a-posteriori emissions and a-posteriori minus a-priori emission differences for HFC-

32 are depicted starting from an elevation-dependent a-priori (BASE_ED). Again the results are very similar to those of

HFC-134a, and the a-posteriori emissions reconstruct again a population-based distribution. The hotspots of emissions

in the cantons of Zurich and Aargau are reconstructed by the inversion, along with the hotspots in the Lausanne and

Geneva regions. The total Swiss emission estimate for the BASE_ED1 inversion with the elevation-dependent a-priori is695

47 ± 5 Mg yr−1, while for the BASE_ED7 inversion is 35 ± 4 Mg yr−1. The results for the inversions starting from a uniform

distribution by country (BASE_UNI), can be seen in the supplement (Figs. S18–S21). The statistical measures assessing the

reliability and performance of the results are summarized in Table 3, confirming the generally improved performance of

the high-resolution model at the receptor sites for all a-priori distributions.
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Figure 11. Spatial distribution of a-posteriori minus a-priori emission difference for HFC-125 (a-d), HFC-32 (e-h), and SF6 (i-l), for the

high- and low-resolution inversions and the population-based (rows 1–2) and elevation-dependent a-priori (rows 3–4).

3.5 Emissions of SF6700

Sulfur hexafluoride or SF6 is also an F-gas that is mainly used (80% of its emissions, Simmonds et al., 2020) in the electri-

cal power industry as a gaseous dielectric medium. Another utilization of SF6 is in semiconductor manufacturing and as

inert gas for the casting of magnesium. The Swiss inventory value for SF6 emissions was 6.7 and 6.0 Mg yr−1 for 2019 and

34



2020, respectively. Although its emissions are lower compared to those of the HFCs presented before, its very large GWP

(23’500) makes SF6 the fourth most important contributor of the F-gases to anthropogenic warming. Since SF6 is used as705

an electrical insulator by the electrical industry, its emissions may be concentrated on point sources and the choice of a

population-based a-priori may not be as obvious as with the HFCs.

The BASE7 and BASE1 inversions for the period 2019–2021, yield to a-posteriori annual emissions of 7.6±1.1 and 9.0±1.1 Mg yr−1,

respectively (Figs. 10 and 11). Sensitivity tests using both uniform and population-based a-priori (Rust et al., 2022), showed

that the population-based a-priori is still the best option for this compound. Their Swiss emissions estimate for SF6 – us-710

ing only observations from BRM (PREL_SITRED7) and a population-based a-priori – was 9±2 Mg yr−1 for 2019–2020 (Figs.

S7–S9). These results are consistently larger than the inventory values. A potential cause of this discrepancy could be the

strong emission sources in southwest Germany (as indicated in our a-posteriori results; also compare (Simmonds et al.,

2020)), which potentially may have been mis-attributed to Switzerland as well.

Comparing (i) with (j) in Fig. 11 the distribution of the emissions for both model resolutions reveal very similar patterns715

of increases and decreases of emissions compared to the a-priori. The difference of 15% in total emissions between the two

inversions comes from the areas of Lausanne, Geneva, and the areas north and north-west of BRM. The BASE1 inversion

increases the emissions more in these regions than the BASE7 inversion, Fig. S9.

In (k) and (l) in Figs. 10 and 11 the a-posteriori emissions and a-posteriori minus a-priori emission differences for SF6

are summarized starting from an elevation-dependent a-priori (BASE_ED). The BASE_ED1 inversion does a better job of720

reconstructing the hotspots of emissions north of BRM and around Lake Geneva. The total Swiss emission estimate for the

BASE_ED1 inversion is 7 ± 1.2 Mg yr−1, while for the BASE_ED7 inversion is 5 ± 1 Mg yr−1. The results for the BASE_UNI

inversions can be seen in the supplement (Figs. S18–S21), whereas the statistical measures assessing the reliability and

performance of the results are summarized in Table 3. In contrast to the other compounds, the spatial distribution of the

emissions for SF6 –when a uniform a-priori is used– seems more reasonable and highlights the same emission regions as725

the inversions with the population and the elevation-dependent a-priori.

4 Conclusions

This study highlights the importance of employing high-resolution meteorological fields and a dense observational net-

work to inversely estimate total
:::::::
national

::::
and

:::::::::::
sub-national emissions and their spatial distribution on the national scale (in

this case
:

in
:::::::
regions

::::
with

:
a
::::::::
complex

::::::::
emission

::::::::::
distribution.

:::
In

:::
our

::::
case

:::
this

::
is
:
a small country in

::
of the order of 40,000 km2 ).730

::::
with

:::::::
complex

:::::::::
orography.

::::::
Other

::::::::
examples

:::::
would

:::
be

::::::
coastal

::::::
regions

::
or

:::::
areas

::::
with

:::::::
skewed

::::::::::::::::::
population/emission

:::::::::::
distributions

:::
and

::::::::::::
locally-driven

::::
flow

::::::::
patterns.

:
Although the computational cost increases with the increasing resolution of the NWP

model and the inclusion of additional observations, the differences in the national total emission estimates and their spa-

tial distribution can be significant, as shown in this study for halocarbons.

Here, we used an analytical Bayesian inversion framework to minimize the observational and a-priori error, and hence,735

estimate the total Swiss halocarbon emissions and their spatial distribution. We first showed that including additional

35



receptors in the neighboring countries does not affect the total Swiss emission estimates or their spatial distribution. If

enough receptors are utilized to constrain the European emissions, then additional receptors – far from the region of inter-

est – do not lead to significant gains in that region itself.

We further investigated how variations in the inversion setup (e.g., inversion grid size, different spatial distribution of740

a-priori emissions, optimization of different covariance parameters during the maximum likelihood step, 3-hourly or 24-

hourly observation aggregation periods, seasonal emission variability, additional receptors outside Switzerland) influence

the final emission estimates, their uncertainty, and their spatial distribution. While most of these parameters do not show

any significant sensitivity to the final emission estimates and their uncertainty
:::
did

:::
not

:::::
show

:::
any

::::::::::
significant

:::::::::
sensitivity

::
to

::::
most

::
of

:::::
these

::::::::::
parameters, the baseline uncertainty has

:::
had

:
a significant impact on the final inversion estimates

:::::::
estimate.745

Future research should focus on comparing inversions using different baseline estimation methods (e.g., Vojta et al., 2022),

since a reduced baseline uncertainty and an accurate baseline concentration will substantially benefit the inversion esti-

mates.

In contrast to additional receptors far from the region of interest, the inclusion of additional measurements inside

Switzerland significantly amended both the total Swiss emission estimates for HFC-134a and partly their spatial distri-750

bution. Inversions with the high-resolution model with and without SOT differ by more than 10% in terms of total Swiss

emissions: 307±48 Mg yr−1 for the inversion including only BRM versus 351±44 Mg yr−1 for the inversion including both

BRM and SOT. These additional emissions in the inversion including two receptors on the Swiss Plateau are attributed to

the big cities of Switzerland, thus, increasing the population-based signal of the emissions for this compound. This is com-

pletely rational since the inclusion of additional receptors, SOT, adds sensitivity to areas where BRM was not very sensitive.755

Inversions solely assessing the effect of the transport model resolution on the Swiss emission estimates and their spatial

distribution for HFC-134a showed significant differences across the two model resolutions. The total emission estimates

discrepancy was close to 40% (i.e., 260±49 Mg yr−1 for the low-resolution inversion versus 351±45
::
44 Mg yr−1 for the high-

resolution inversion), and the additional emissions of almost 100 Mg yr−1 were attributed to the big cities, industrial areas,

and the traffic network. The high-resolution estimate is also closer to the bottom-up reported value of 415 Mg yr−1. The cor-760

relation of the a-posteriori emissions with the population and traffic CO2 emissions is significantly higher for the inversion

with the high-resolution model. Since we are confident that the emissions of this compound indeed follow a population-

based distribution, the results clearly point to an improvement of the inversion when the high-resolution model is em-

ployed. This is also reflected in the correlation of the simulated values of HFC-134a with the observations at BRM and SOT.

Furthermore, when starting from an elevation-dependent a-priori the high-resolution model is able to reconstruct partially765

the emission hotspots and the population-based distribution while the low-resolution inversion does not recover these fea-

tures to the same extent. Finally, the uncertainty of the total emission estimate is lower for the high-resolution inversion

(12.8%
:::::
12.5%) compared to the low-resolution inversion (18.8%). Inversions assessing the existence of an annual cycle in

the emissions for HFC-134a revealed that for the high-resolution inversions there is a minimum of emissions during the

three winter months, DJF, and a maximum during the three summer months, JJA. Although the total emission estimates770
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and their spatial distribution do not change significantly when we consider seasonality, these inversions can depict the

emission mechanism for substances with high uncertainty.

Inversions with the same setup for other F-gases (HFC-125, HFC-32, SF6) lead to similar results as for HFC-134a. Results

for these compounds have in common a significant difference in the total emissions (15–25%) and their spatial distribution

between the inversions with the high- and the low-resolution models. The high-resolution model inversions for all studied775

substances, except SF6, converge closer to a population-based distribution and reveal additional emission hot spots. The

regions north and north-west of BRM, west of Zurich, and south to the south-west of Basel are depicted as a high-emission

area for both HFC-125 and HFC-32 by the high-resolution model inversions, while the low-resolution model inversions

decrease the emissions compared to the a-priori in the same area. There is also a difference between the models near St.

Gallen, where again the high-resolution model increases the emissions, whereas the low-resolution model decreases the780

emissions. Both models agree on increased emissions in the canton of Valais, something highlighting the importance of

additional observational sites (SOT). Inversions employing a different a-priori (elevation-dependent or uniform) for HFC-

32 and HFC-125 perform less well and cannot depict the emission hot-spots. For SF6 both models point to similar emission

hot-spots, and this is the only substance for which we might expect the a-priori distribution to deviate strongly from the

population-based distribution. For this substance, the high-resolution inversions for the three different a-priori utilized785

can reproduce the same or similar emission regions, which is not true for the low-resolution inversions, in which when the

uniform distribution is employed the low-resolution inversion
::::::::

inversion,
:::::
which

:
fails and produces unrealistic results

:::::
when

:::::
using

:::
the

:::::::
uniform

::::::::::
distribution.

Our sensitivity inversions with a set of different a-priori highlight the importance of prior knowledge of the distribution

of these emissions on a national level. If we start from an unrealistic distribution, the inversion will not be able to depict790

the true emissions and their true spatial distribution. This can be seen in our inversions; the results for all HFCs and SF6

are subpar when a uniform a-priori spatial distribution of the emissions is employed. The data themselves (likelihood

function P (y |x)) are not enough to drive the inversion to the true emission state when the a-priori spatial distribution of

the emissions is unrealistic. Therefore, when the spatial distribution of the emissions on a national level is not known, a

different set of spatial distributions should be tested.795

Future work should focus on applying high-resolution inversions for other GHGs with biogenic sources and sinks (CO2,

CH4), especially in countries with complex terrain for which the high-resolution meteorological fields should substantially

improve the representation of atmospheric flow in the mountainous regions, and thus, the quantification and spatial at-

tribution of the surface fluxes (Rotach et al., 2014). To correctly estimate GHG budgets of any compound using inverse

modeling, we should both understand and mitigate the errors involved in the inverse framework. Transitioning to high-800

resolution NWP models will drastically help to reduce the representation and model error and reconstruct the local atmo-

spheric flows, while sensitivity inversions help characterize and understand the different errors involved in atmospheric

inversions and how these affect the emission estimates and their spatial distribution.
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al., 2021). Sottens measurement data will be made available in Zenodo data repository by the publication date of this study. Transport
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