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Abstract 
 
Desert dust accounts for most of the atmosphere’s aerosol burden by mass and produces numerous 
important impacts on the Earth system. However, current global climate models (GCMs) and land surface 
models (LSMs) struggle to accurately represent key dust emission processes, in part because of inadequate 30 
representations of soil particle sizes that affect the dust emission threshold, surface roughness elements 
that absorb wind momentum, and boundary-layer characteristics that control wind fluctuations. 
Furthermore, because dust emission is driven by small-scale (~1 km or smaller) processes, simulating the 
global cycle of desert dust in GCMs with coarse horizontal resolutions (~100 km) presents a fundamental 
challenge. This representation problem is exacerbated by dust emission fluxes scaling nonlinearly with 35 
wind speed above a threshold wind speed that is sensitive to land surface characteristics. Here, we address 
these fundamental problems underlying the simulation of dust emissions in GCMs and LSMs by 
developing improved descriptions of (1) the effect of soil texture on the dust emission threshold, (2) the 
effects of non-erodible roughness elements (both rocks and green vegetation) on the surface wind stress, 
and (3) the effects of boundary-layer turbulence on driving intermittent dust emissions. We then use the 40 
resulting revised dust emission parameterization to simulate global dust emissions in a standalone model 
forced by reanalysis meteorology and land surface fields. We further propose (4) a simple methodology 
to scale up high-resolution gridded dust emissions to the coarse resolution of GCMs. The resulting dust 
emission simulation shows substantially improved agreement against regional dust emissions 
observationally constrained by inverse modeling. We thus find that our revised dust emission 45 
parameterization can substantially improve dust emission simulations in GCMs and LSMs. 
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1. Introduction 
 50 

Desert dust accounts for more than half of the atmospheric mass loading of particulate matter (PM) 
(Kinne et al., 2006; Kok et al., 2017) and produces a wide range of important impacts on multiple 
components of the Earth system (Shao et al., 2011a). For instance, dust changes Earth’s radiative budget 
and atmospheric dynamics directly by scattering and absorbing radiation (Sokolik and Toon, 1996; Miller 
and Tegen, 1998) and indirectly by mediating cloud formation (Rosenfeld et al., 2001; Shi and Liu, 2019; 55 
McGraw et al., 2020). Dust also impacts biogeochemistry by delivering nutrients such as iron and 
phosphorus to ocean and land ecosystems (Mahowald et al., 2010; Hamilton et al., 2020).  

 
In recent decades, modelers have made substantial progress in developing various 

parameterizations for the main dust cycle processes including emission (e.g., Shao et al., 1993; 60 
Marticorena and Bergametti, 1995; Marticorena et al., 1997; Tegen and Fung, 1995; Klose and Shao, 
2013), advection (e.g., Prospero, 1999; Lin, 2004; Van der Does et al., 2018), deposition (e.g., Barth et 
al., 2000; Liu et al., 2001; Zhang et al., 2001; Petroff and Zhang, 2010), as well as its biogeochemical 
effects (e.g., Jickells et al., 2005; Mahowald et al., 2005, 2010; Hamilton et al., 2020), optics (e.g., Sokolik 
and Golitsyn, 1993; Linke et al., 2006; Adebiyi et al., 2020), and radiative effects (e.g., Di Biagio et al., 65 
2020; Li et al., 2021). Despite substantial progress in dust modeling, current global climate models (GCMs) 
and Earth System Models (ESMs) still struggle to adequately simulate the dust cycle, which impedes an 
accurate assessment of dust impacts (Huneeus et al., 2011; Wu et al., 2020; Zhao et al., 2022). For instance, 
model simulations still show large discrepancies when compared against observations of the spatial and 
temporal characteristics of the dust cycle, including dust emission (Kok et al., 2014a; Pierre et al., 2014a), 70 
dust PM concentration (Wu et al., 2019; Pu et al., 2020; Li et al., 2022), dust aerosol optical depth (DAOD 
or DOD) (Ridley et al., 2012; Kok et al., 2014b; Pu and Ginoux, 2018; Parajuli et al., 2019), dust 
deposition (Ginoux et al., 2001; Albani et al., 2014; Kok et al., 2014b; Li et al., 2022), and dust size 
distributions (Parajuli et al., 2019; Adebiyi and Kok, 2020; Li et al., 2022). Also, models struggle to 
capture the observed interannual and decadal variability of dust (Ridley et al., 2014; Smith et al., 2017; 75 
Evan, 2018; Kok et al., 2018) as well as the sensitivity of dust to climate changes (Evan, 2018; Kok et al., 
2018). An improved quantification of dust impacts on the Earth system thus requires improvements in 
how dust is simulated in models. 
 

One key piece of physics that models struggle to parameterize is the dust emission threshold. The 80 
dust emission threshold 𝑢∗" is defined as the threshold wind stress/speed above which winds initiate, or 
below which winds cease, the lifting of sand particles whose impacts on the soil surface emit dust aerosols 
(Kok et al., 2012; Comola et al., 2019b). The dust emission threshold is a function of soil properties like 
particle size distribution, air density, and soil moisture. There are various reasons for the inadequate 
parameterization of the dust emission threshold. First, many models assume a globally constant soil 85 
particle size in calculating a spatially varying dust emission threshold (Zender et al., 2003a; Darmenova 
et al., 2009; Kok et al., 2014b), whereas the actual soil particle size is likely a function of space and time 
and could depend on soil properties (Webb et al., 2016) . Some models proposed that soil particle sizes 
are related to the soil texture and therefore represent the soil particle size as a global map (Tegen et al., 
2002; Darmenova et al., 2009; Menut et al., 2013; Klose et al., 2021), but these maps either have not yet 90 
been thoroughly validated against observations or are based upon extrapolation of a limited amount of 
observations. Second, most current models use the fluid threshold (also named static threshold or initiation 
threshold) above which saltation is initiated as the dust emission threshold, but it is well known that dust 
emission is governed by both the larger fluid threshold and the smaller impact threshold (also named 
dynamic threshold or cessation threshold) below which saltation is terminated (Bagnold, 1941; Shao, 2008; 95 
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Martin and Kok, 2018; Comola et al., 2019a, b; Pähtz et al., 2020). Moreover, dust emission is a nonlinear 
process (i.e., it varies with the wind speed to the second to fifth power per Kok et al., 2014a) and the 
emission flux is particularly sensitive to the magnitude of the emission threshold (Kawai et al., 2021). 
Thus, land surface models (LSMs) within GCMs and ESMs need to parameterize the emission threshold 
correctly to get an adequate spatiotemporal variability of the modeled atmospheric dust. 100 
 

The second key dust emission physics that LSMs struggle to represent is the partitioning of the 
wind stress. Wind drag is partitioned into the part absorbed by surface roughness elements (mainly rocks 
and plants) and the part exerted on the bare soil that drives dust emissions. This drag partitioning effect is 
modeled by several dynamical schemes (Raupach et al., 1993; Marticorena and Bergametti, 1995; Okin, 105 
2008), and is accounted for in some models (LeGrand et al., 2019; Klose et al., 2021; Tai et al., 2021) but 
not others (e.g., Kok et al., 2014b; Evans et al., 2016). One major challenge in modeling drag partition is 
to quantify the amount of rocks (which includes rocks, pebbles, and gravel in this study) and their 
corresponding partition effect, because there are few measurements of rock roughness. To cope with this 
issue, studies have used in-situ and/or remote sensing scatterometer measurements to quantify the small-110 
scale land surface roughness (e.g., Greeley et al., 1997; Roujean et al., 1997; Marticorena et al., 2004; 
Prigent et al., 2005, 2012), especially over arid desert regions over which rocks, pebbles, and gravel 
dominate the roughness. However, with a few recent notable exceptions that attempted to represent both 
the roughness effects of rocks and vegetation (e.g., Darmenova et al., 2009; Foroutan et al., 2017; Klose 
et al., 2021), studies often omitted the drag partition effect either due to vegetation (e.g., Menut et al., 115 
2013) or due to rocks (e.g., Wu et al., 2016; LeGrand et al., 2019; Tai et al., 2021). To resolve these issues, 
we propose a new approach that combines the drag partition effects of both elements, leveraging satellite 
scatterometer measurements to quantify the surface rock roughness, and using observable vegetation and 
land surface variables to quantify the surface vegetation roughness. 
 120 

The third key piece of fundamental dust emission physics not accounted for by many models is 
the effect of boundary-layer turbulence on dust emissions. Most current GCMs assume a constant wind 
speed (and thus a constant emission flux) within the relatively large model time step, e.g., 30 minutes (e.g., 
Rahimi et al., 2019; Dunne et al., 2020). However, in reality, high-frequency turbulent fluctuations cause 
the wind speed to fluctuate within a time step. Because dust emissions scale nonlinearly with wind speed, 125 
this causes highly uneven and fluctuating dust emission fluxes (Durán et al., 2011). Even more importantly, 
wind turbulent fluctuations can sweep across the dust emission threshold multiple times and shut off dust 
emissions intermittently within one model time step, resulting in strong dust emission intermittency 
(Comola et al., 2019b). Therefore, omitting turbulence will either overestimate or underestimate dust 
emissions, especially over marginal source regions where winds fluctuate around the high emission 130 
threshold, as models do not account for the cessations or initiations of dust emissions due to turbulent 
fluctuations. To account for the instantaneous wind fluctuations, one approach is to derive a probability 
density function (PDF) for the instantaneous momentum flux using large-eddy simulations (LES), which 
is then used for quantifying instantaneous dust emission fluctuations (Klose and Shao, 2012; Klose et al., 
2014). Another approach is to use the Monin-Obukhov similarity theory (MOST) to relate the standard 135 
deviation of the instantaneous wind to the boundary-layer dynamical variables (Comola et al., 2019b). In 
this study, we will account for turbulent dust emissions by following Comola et al. (2019b), which showed 
significant improvements in representing the small-magnitude saltation and dust fluxes that are 
particularly important over marginal source regions. 
 140 

In addition to these issues of models missing some of the fundamental physics of dust emission, a 
central issue in modeling the global dust cycle is that dust emissions are grid resolution-dependent because 
of the nonlinear dependence of dust emissions to meteorological fields and land-surface variables. Since 
dust emission varies nonlinearly with wind speed and has an even more complex relation to the soil 
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moisture (Gillette and Passi, 1988; Fécan et al., 1999; Shao, 2001; Kok et al., 2014a), the total regional 145 
and global emissions can vary significantly with grid resolution (Ridley et al., 2013; Meng et al., 2021). 
For instance, modeled emissions were found to increase by ~29 % from a 1° × 1° to 0.25° × 0.25° 
resolution (Ridley et al., 2013; Feng et al., 2022). As a consequence, GCMs and ESMs often need to tune 
emissions separately for different grid resolutions to match observational dust budgets (Ginoux et al., 2001; 
Zender et al., 2003a; Albani et al., 2014; Kok et al., 2014b; Chappell et al., 2021). This issue occurs 150 
because current GCM grid sizes of ~1° or 100 km cannot resolve the spatial scales of ~1 m to ~1 km over 
which soil properties and wind speeds change (Ridley et al., 2013). When adopting coarse grid resolutions, 
coarser modeled meteorological fields (for GCMs) or spatially averaged input meteorological fields (for 
chemical transport models or CTMs) will smooth out the local wind extrema, possibly causing wind 
speeds to fall below the dust emission threshold. As a result, the coarse modeled winds usually result in 155 
strong GCM emissions underestimations (Ridley et al., 2013). The same smoothing problem also occurs 
for soil moisture for instance, with its maxima smoothed out leading to an overestimation of dust emissions. 
Thus, although some GCMs and ESMs recently implemented more physical schemes (Zhao et al., 2022), 
their inability to resolve the small scales still causes challenges for capturing the accurate spatial 
distributions of dust emissions (Meng et al., 2021). For the same reason GCMs tend to neglect small-scale 160 
emissions over marginal source regions. In this study, we will analyze the scale-dependence of our dust 
emission scheme given specific input datasets and propose a method of upscaling the coarse dust 
emissions to alleviate the scale-dependence problem. 

 
To tackle the above problems and improve simulations of the global dust cycle, we propose a new 165 

emission scheme for global models that includes key dust emission physics missing from current models. 
Specifically, we (1) account for the effects of the soil particle size distribution (PSD) on the dust emission 
threshold, (2) draw on satellite data and physically explicit models to account for wind momentum 
absorption by both rocks and vegetation, and (3) account for turbulence-driven intermittency in dust 
emission fluxes. After we review current dust emission schemes in Sect. 2, we present our new scheme in 170 
Sect. 3. In Sect. 4, we code the new dust emission scheme as a standalone sandbox model (see Sect. 2.4) 
in R, a programming language for data analysis and computation, and examine the resulting 
spatiotemporal variability of the new dust emissions. We then examine the grid scale-dependence of dust 
emissions and derive a correction map for coarser dust emission simulations to correct their spatial 
variability to high-resolution simulations. Sect. 5 discusses and summarizes the main findings of this paper. 175 
In our companion paper (Leung et al., in prep.), we will implement this new scheme in the state-of-the-art 
Community Earth System Model version 2 (CESM2) and evaluates its performance against observations. 
 
2. Current dust emission schemes in climate models 
 180 

This section provides a basic review of current dust emission schemes. Broadly speaking, these 
schemes consist of a parameterization of the dust emission threshold (Sect. 2.1), a parameterizatation of 
the reduction of the wind drag on the bare soil surface due to momentum absorption by surface roughness 
elements (Sect. 2.2), and a parameterization of dust emission flux given wind speed, threshold wind speed, 
and drag absorption (Sect. 2.3). We will develop an improved emission scheme for GCMs in Sect. 3 by 185 
improving upon each of these three core ingredients of dust emission schemes. We also provide a brief 
description of meteorological data used for computing our dust emission scheme in Sect. 2.4. 
 
2.1. Parameterization of the dust emission thresholds 

There have been extensive studies on the dust emission threshold 𝑢∗", defined as the wind speed 190 
or drag that corresponds to the initiation or cessation of dust emission. Dust emission is caused by saltation, 
a process by which sand particles (geometric diameter > 63 μm) on the surface are lifted by wind drag 
into the airstream (known as aerodynamic entrainment) and undergo ballistic trajectories (Anderson, 1989; 
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Kok et al., 2012). Saltated sand particles subsequently impact on the granular bed (known as saltation 
bombardment), and the kinetic energy incident on the granular bed may eject other particles and cause 195 
further saltation, or may break the cohesive bonds between fine soil particles and either the saltating 
particle or the granular bed, causing the emission of dust aerosols (Shao, 2008). The minimum wind 
friction velocity 𝑢∗ required for initiating saltation through aerodynamic entrainment is called the fluid 
threshold 𝑢∗#"  (McKenna Neuman and Sanderson, 2008). Once saltation is initiated, a smaller 𝑢∗  is 
needed to maintain saltation because saltation bombardment can create further saltation, which is more 200 
efficient than creating saltation solely through the wind drag. Saltation will be maintained at a slightly 
smaller 𝑢∗ called the impact threshold 𝑢∗$" (Bagnold, 1941; Martin and Kok, 2018). The ratio 𝑢∗$"/𝑢∗#", 
is about 0.8–0.85 for loose dry sand and less for soils with other sources of cohesion (e.g., moisture, 
organic matter), because cohesion rapidly increases 𝑢∗#" but low-to-moderate levels of cohesion do not 
increase 𝑢∗$" as indicated by numerical simulations (Comola et al., 2019a; Ralaiarisoa et al., 2022) . It 205 
follows that dust emission can occur below 𝑢∗#", especially in marginal dust source regions with high soil 
moisture for which 𝑢∗$" can be much smaller than 𝑢∗#". 𝑢∗" is thus a general concept comprised of both 
𝑢∗#" and 𝑢∗$". However, 𝑢∗$" is not currently accounted for in most current GCMs, which simply use 𝑢∗#" 
as 𝑢∗". 

One challenge in parameterizing 𝑢∗#" and 𝑢∗$" lies in the representation of the effect of the soil 210 
particle size 𝐷% on both thresholds. These two thresholds are mainly governed by soil particle diameter 
𝐷%, air density 𝜌&, and soil moisture 𝑤 (Greeley et al., 1997; Shao and Lu, 2000). Although there are 
multiple data sources of globally gridded products for 𝜌&  and 𝑤 , there are relatively few efforts on 
obtaining globally gridded 𝐷% since there are no methods for satellites to observe and derive surface 𝐷% 
observations. Furthermore, current science only has a good understanding of the saltation dynamics of an 215 
idealized, homogeneous (or monodisperse) soil bed, but natural soil beds consist of particles with a wide 
range of 𝐷% (and are heterogeneous or polydispersed). With few comprehensive field studies of saltation 
dynamics over mixed soils, past saltation studies either assumed that particles of different sizes saltate 
independent of each other (Marticorena and Bergametti, 1995; Shao et al., 1996; Alfaro and Gomes, 2001; 
Zender et al., 2003a), or assumed that a single grain size (e.g., the median) could be used to represent the 220 
whole PSD of the soil bed (Elbelrhiti et al., 2005; Andreotti et al., 2010). The dispute of whether the 
assumption of “independent” saltation (Shao, 2008) or “representative” saltation (Claudin and Andreotti, 
2006) is more appropriate was informed by Martin and Kok (2019), which used both approaches to model 
a series of field measurements of saltation fluxes. Their results indicated that modeling the threshold using 
a single particle size (“representative” saltation) is more realistic than assuming no interactions between 225 
saltation of different particle sizes. They argued that the median particle diameter 𝐷&% of the PSD should 
be used for calculating the threshold of a mixed soil, and the emission should then be calculated for the 
whole soil bed using the median instead of using a “spectral / independent” approach of calculating 
emissions of different particle sizes separately.  

 230 
To model 𝑢∗#", current models assume that 𝑢∗#" is mainly dependent on the soil PSD and soil 

moisture (Iversen and White, 1982; Marticorena and Bergametti, 1995; Zender et al., 2003a): 
𝑢∗#" = 𝑢∗#"'(𝐷%, 𝜌&)𝑓((𝑤)          (1) 
where 𝑢∗#"' is the “dry” fluid threshold friction velocity (in m s-1) on a smooth and bare surface as a 
function of air density 𝜌&(lon, lat, 𝑡) (longitude, latitude, time) and 𝐷%(lon, lat), which in this study will 235 
be the median diameter 𝐷&% of a polydispersed, mixed soil PSD. 𝑓( is the correction factor for the presence 
of soil moisture 𝑤(lon, lat, 𝑡); 𝑓( ≥ 1 such that soil moisture protects soil particles from being lifted. 𝑢∗#" 
is the “wet” fluid threshold accounting for the moisture effect; dust emission occurs when 𝑢∗ exceeds 𝑢∗#" 
(see Eq. 13). Other factors can also affect 𝑢∗#", such as salt concentration, organic matter, electrostatic 
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effects, and surface crusts, but they are not included in most studies because they are not well understood 240 
and modeled (Shao et al., 2011; Foroutan et al., 2017).  

𝑢∗#"'  is parameterized by considering the balance between aerodynamic drag and lift against 
gravity and interparticle cohesion on a soil particle. An equation for the moment balance at the moment 
of soil particle lifting is given by considering the wind drag 𝐹), aerodynamic lift 𝐹*, interparticle force 𝐹$%, 
and gravity 𝐹+ on the soil particle: 𝑟)𝐹) + 𝑟+𝐹* = 𝑟$%𝐹$% + 𝑟+𝐹+, where 𝑟 is the moment arm of any force 245 
relative to the pivoting point P. The Shao and Lu (2000) (hereafter S&L00) scheme derived a simple 
solution to the force balance (also see Kok et al., 2012), considering the moment balance and further 
assumes that the cohesive force is proportional to particle size. Using wind tunnel measurements (e.g., 
Greeley and Iversen, 1985) they obtained an equation with fitting parameters: 
𝑢∗#"' = 7𝐴(𝜌%𝑔𝐷% + 𝛾/𝐷%)	𝜌&,'..         (2) 250 
where g = 9.81 m s-2 is the gravitational acceleration, ρp = 2650 kg m-3 is the typical soil particle density, 
𝜌& is in kg m-3, and 𝐴 = 0.0123 as well as 𝛾 = 1.65 × 10,/	kg	s,0 are empirical constants accounting for 
the aerodynamic forces and interparticle forces, respectively. Assuming an air density 𝜌& = 1.225	kg	m,1, 
Eq. 2 will yield the smallest 𝑢∗#"' of 0.21 m s-1 at 𝐷% = 80	𝜇m. For larger sizes the particles are heavier 
to lift; for smaller sizes the particles are more strongly bound by interparticle forces.  255 
 An alternative parameterization for 𝑢∗#"'  is the Iversen and White (1982) scheme (hereafter 
I&W82). They derived a similar solution as S&L00 but further considered the effects of soil particle size 
to the airflows, characterized by the particle Reynolds number Re%. They derived different solutions for 
𝑢∗#"' in the laminar regime (0.03 < Re% < 10) and the turbulent regime (Re% > 10) (see the full solution 
in I&W82 or Kok et al., 2012). I&W82 calculates 𝑢∗#"' = 𝑢∗#"'M𝜌%, 𝜌& , 𝑔, 𝐷%, Re%N in a similar form to 260 
S&L00, with 
Re% = 𝑢∗#"'𝐷%/𝜈           (3) 
where 𝜈 is the kinematic viscosity of air. Since 𝑢∗#"' is a function of Re%, which itself is a function of 
𝑢∗#"', 𝑢∗#"' is an implicit function of itself and the calculation needs to be iterated a few times given ρa 
and Dp in calculation.  265 

Regardless of whether S&L00 or I&W82 is used, different models make different assumptions for 
soil particle sizes 𝐷%, including a globally constant value (e.g., Zender et al., 2003a), a function of soil 
texture (e.g., Menut et al., 2013), or other forms. For instance, the Community Land Model (CLM), the 
land component of CESM, uses a global optimal soil diameter of 𝐷% = 75 μm for the threshold calculation 
following Zender et al. (2003a) (Oleson et al., 2013; also see the latest version of CLM5.0 technical note 270 
on https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html; last access on 
3 October 2022), and thus 𝑢∗#"' becomes solely a function of 𝜌& in CESM (e.g., 𝑢∗#"' = 	0.21	m	s,2 for 
𝜌& = 1.225	kg	m,1 at 𝐷% = 75 μm).  

Most models parameterize the effect of soil moisture on 𝑢∗#" following Fécan et al. (1999): 
𝑓( = 71 + 1.21(𝑤 − 𝑤")'.34    for 𝑤 > 𝑤"      (4a) 275 
𝑤" = 𝑎(0.17𝑓5*&6 + 0.0014𝑓5*&6							0)         (4b) 
where 𝑤(lon, lat, 𝑡) is the gravimetric soil moisture (kg / kg) in the shallowest soil layer (see Sect. S1 and 
Fig. S1 for the relation between volumetric and gravimetric moisture), 𝑤"(lon, lat)  is the threshold 
gravimetric water content above which 𝑢∗#" increases, 𝑓5*&6(lon, lat) is the percentage of clay content in 
the soil, and 𝑎, a tunable constant usually of order one, was introduced by Zender et al. (2003a) to account 280 
for the mismatch in the small scales for which Fécan et al. (1999) obtained their parameterization and the 
large scales on which it is used in climate models (e.g., Zender et al., 2003a; Mokhtari et al., 2012; Kok 
et al., 2014b). 𝑤" increases with soil clay content as water adsorbs onto clay water such that more moisture 
is needed to enhance 𝑢∗#". 
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Another essential dust emission threshold for this study is the dynamic or impact threshold 𝑢∗$", 285 
which is the lowest wind speed or stress to maintain saltation (Kok et al., 2012; Comola et al., 2019b): 
𝑢∗$" = 𝐵$"𝑢∗#"'           (5) 
where 𝐵$" = 0.82 is approximately constant with soil properties and particle size (Bagnold, 1937; Kok et 
al., 2012). In this study, we propose that dust emission models should use 𝑢∗$" instead of 𝑢∗#" for dust 
emission schemes (e.g., Eq. 10 and Eq. 13), which will cause substantial changes in the simulated 290 
spatiotemporal variability of dust emission (see Sect. 4.1). This is needed to allow dust emission when the 
𝑢∗ is intermediate between 𝑢∗$" and 𝑢∗#", which is especially common in marginal dust source regions. 
Additionally, this is more physically correct as the dust emission threshold is the minimum friction 
velocity at which the saltation and dust emission fluxes are non-zero, which is true at 𝑢∗$" but not true at 
𝑢∗#" (Martin and Kok, 2018; Comola et al., 2019b; Pähtz et al., 2020).  295 
 
2.2. Parameterization of the drag partition 
 Apart from the dust emission threshold, another essential parameter for determining the dust 
emission flux is the wind drag partition effect, 𝐹8## , due to the existence of land-surface roughness 
elements covering the desert surfaces (Raupach, 1992; Marticorena and Bergametti, 1995). It is crucial to 300 
account for this effect for accurately simulating the magnitude and spatial pattern of dust emissions. Many 
past modeling studies treated this effect as increasing the dust emission threshold 𝑢∗#" (e.g., Raupach, 
1992; Marticorena and Bergametti, 1995; Darmenova et al., 2009; Menut et al., 2013), such that the 
relation is expressed as (Raupach et al., 1993; Marticorena and Bergametti, 1995; Marticorena et al., 1997, 
2006; Foroutan et al., 2017; Webb et al., 2020): 305 
𝑢∗#" = 𝑢∗#"'(𝐷%, 𝜌&)𝑓((𝑤)/𝐹8##         (6a) 
where 𝐹8## < 1 when roughness elements are present, such that roughness elements increase 𝑢∗#" and 
decrease the dust emission. However, this approach is physically incorrect because roughness elements 
reduce the wind stress exerted on the bare soil and do not increase the forces resisting particle lifting that 
determine 𝑢∗#" (Kok et al., 2014a; Webb et al., 2020). As a consequence, Webb et al. (2020) showed that 310 
dust models using Eq. 6a will overestimate the dust emission flux compared to those using Eq. 6b. A 
correct emission modeling approach should instead combine Eq. 1 for 𝑢∗#" with the effect of drag partition 
𝐹8## to 𝑢∗: 
𝑢∗9 = 𝑢∗𝐹8##            (6b) 
where 𝑢∗9 is called the soil surface friction velocity (Webb et al., 2020). Dust emissions should thus be a 315 
function of 𝑢∗9 instead of 𝑢∗. 
 
 There are different schools of drag partition schemes. A major school of drag partition 
parameterization originated from Arya (1975) and later Marticorena and Bergametti (1995) (hereafter 
M&B95), who primarily used the roughness length 𝑧'  to quantify roughness. Because of the large 320 
differences in the length scales between mountains/orography, rocks and plants, as well as down to soil 
particles, Menut et al. (2013) distinguished three distinct roughness lengths describing different sizes of 
roughness. First, the aerodynamic momentum roughness length 𝑧'( mainly represents roughness due to 
large-scale orography, forests, and/or urbanization (with sizes of 10–103 m) with values ranging from ~1 
cm to 1 m (Menut et al., 2013). Second, the aeolian roughness length 𝑧'& quantifies the roughness due to 325 
smaller elements such as rocks and vegetation, with a typical order of magnitude of 10-3 to 10 cm (Prigent 
et al., 2005; Prigent et al., 2012). 𝑧'& is the relevant roughness length that informs the partition of the wind 
stress when considering the near-surface (~ 1 m) flows in which saltation occurs,. Third, the smooth 
roughness length 𝑧'9 quantifies the roughness of a bed of fine soil particles in the absence of roughness 
elements. 𝑧'9 characterizes the roughness of mobile, erodible soil particles over an exposed surface. 𝑧'9 330 
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is directly related to the particle diameter Dp by (Nikuradse, 1950; Sherman, 1992; White, 2006; Pierre et 
al., 2014b): 
𝑧'9 = 2𝐷%/30            (7) 
M&B95 proposed their drag partition scheme by applying the treatment of Arya (1975) of the wind stress 
over Arctic pack ice to the wind stress over desert roughness elements. M&B95 argued that behind a 335 
roughness element (obstacle), an internal boundary layer (IBL) grows and the wind within the IBL follows 
the log law of the wall as a function of 𝑢∗9 and the local roughness length 𝑧'9. They then pointed out that 
without the obstacle, the planetary boundary layer (PBL) wind profile would follow the log law as a 
function of 𝑢∗ and 𝑧'&. By arguing that the two wind speeds must be equal at the IBL height 𝛿, they 
derived 𝐹8## as a function of 𝑧'& and 𝑧'9: 340 

𝐹8## = 1 −
:;<!"#!"$

=

:;< %
!"$

=
           (8) 

Later studies improved this equation based on more observations for calibrating several parameters 
(MacKinnon et al., 2004; King et al., 2005; Darmenova et al., 2009; see Eq. 15 in Sect. 3.2). Historically 
this scheme has been employed by Marticorena and others to represent the roughness due to rocks (e.g., 
Marticorena et al., 1997; Darmenova et al., 2009; Menut et al., 2013). 345 
 Another major school of drag partition parameterization originated from Raupach (1992) and 
Raupach et al. (1993) (hereafter R93), which primarily used the roughness density 𝜆 to quantify roughness. 
𝜆 is defined as the total frontal area of roughness elements divided by the area of land A: 𝜆 = 𝑛ℎ𝑏/𝐴, 
where ℎ and 𝑏 are the obstacle height and width and 𝑛 is the number of obstacles within the area. Knowing 
the geometric and aerodynamic properties of the roughness elements, R93 showed that the drag force of 350 
the exposed area 𝜏>′ is related to the total drag force 𝜏, given 𝜆, the roughness-element basal area-to-
frontal area ratio 𝜎, as well as the ratio of the roughness element-to-surface drag coefficient 𝛽. They then 
derived the roughness effect by geometric arguments: 
?&
'

?
= 2

(2,(AB)(2D(EB)
           (9a) 

where 𝑚 is a geometric parameter to account for the spatial variability of 𝜏>′ on the erodible surface. 355 
Raupach then applied this ratio to the dust emission threshold (per Eq. 6a).  

Many later studies used the R93 parameterization for plants (specifically shrubs) with prescribed 
𝜎, 𝑚, and 𝛽 (Darmenova et al., 2009; Xi and Sokolik, 2015). 𝜆, however, is related to the abundance of 
obstacles and is thus spatially variable, and thus far there is no globally gridded datasets of 𝜆 available. 
Most studies thus related grid-scale 𝜆 to other grid-scale properties; for instance, Shao et al. (1996) linked 360 
𝜆 to the vegetation cover fraction 𝑓F using in-situ observations: 
𝜆 = 𝑐Bln	(1 − 𝑓F)           (9b) 
where 𝑐B is a proportionality constant. Gridded 𝜆 could thus be obtained from gridded satellite retrievals 
of vegetation cover (Gutman and Ignatov, 1998; Wu et al., 2016; Foroutan et al., 2017) or parameterized 
as a function of other gridded land-surface variables such as the leaf area index (LAI) (e.g., Klose et al., 365 
2021). Later studies have attempted to improve Raupach’s parameterization and newer schemes relating 
𝐹8## and 𝜆 have emerged (e.g., Okin, 2008). 
 With a few recent exceptions (e.g., Darmenova et al., 2009; Foroutan et al., 2017; Klose et al., 
2021), many previous modeling studies have not accounted for the drag partition effects of both rocks and 
vegetation on dust emissions (e.g., Ginoux et al., 2001; Tegen et al., 2002; Zender et al., 2003a; Kok et 370 
al., 2014b). Many past studies either accounted for only the drag partitioning by rocks (e.g., Marticorena 
et al., 2006; Menut et al., 2013) or by vegetation (e.g., Shao et al., 2011b; Wu et al., 2016), mainly because 
it is very challenging to use proxies of both rocks and vegetation in either the M&B95 or R93 scheme. 
For instance, R93 was historically mostly used for modeling vegetation but not rock drag partitioning 
because there was no dataset of the 𝜆 due to rocks. Similarly, vegetation roughness is historically mostly 375 
represented by 𝜆 rather than 𝑧'&, so there is no globally gridded 𝑧'& observations for vegetation that can 
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be fed into the M&B95 scheme. Some modeling studies (e.g., Klose et al., 2021) generated globally 
gridded vegetation 𝑧'& by relating plant 𝜆 with 𝑧'& (e.g., Minvielle et al., 2003; Shao and Yang, 2005; 
Marticorena et al., 2006; Foroutan et al., 2017; Klose et al., 2021), but these studies all found slightly 
different relations between 𝜆 with 𝑧'&, and often the in-situ obstacle height ℎ is required by the relation. 380 
It is thus very challenging to model vegetation drag partitioning using M&B95 by converting 𝜆 to 𝑧'& 
when globally gridded ℎ (short vegetation height but not canopy height) is mostly unknown in GCMs or 
possesses strong subgrid variability.  

To our knowledge only a few approaches tried to represent both rock and vegetation roughness in 
one drag partition scheme, but they all have different limitations. The first approach was proposed by 385 
Darmenova et al. (2009) and subsequently modified by Foroutan et al. (2017): They assumed rock 𝜆 for 
different land types (e.g., Table 2 in Darmenova et al., 2009), and combined rock 𝜆 with vegetation 𝜆 
(from Eq. 9b) using Darmenova’s double drag partition equation (see Eq. 5 in Foroutan et al., 2017). The 
second approach was also proposed by Darmenova et al. (2009): They provided measured rock 𝑧'& and 
vegetation 𝑧'& for different land types (Table 1 in Darmenova et al., 2009), determined the dominant land 390 
type (bare or vegetated) for each grid, and then applied M&B95 to calculate drag partitioning. The third 
approach was proposed by Klose et al. (2021): They provided a relation between vegetation 𝜆, ℎ, and 𝑧'&, 
plus a relation between vegetation height ℎ and LAI, and thus derived the vegetation roughness length 𝑧'& 
as a function of LAI. They then used Prigent et al. (2012) satellite measurements of 𝑧'& (time-invariant, 
static, mostly representing rocks), and took the larger 𝑧'& between Prigent’s static 𝑧'& and their dynamic 395 
vegetation 𝑧'&. They finally used M&B95 to calculate drag partitioning with 𝑧'&. All three approaches 
tried to represent both rock and vegetation roughness using either 𝑧'&  or 𝜆 , which was problematic 
because rocks are better measured in 𝑧'&  by satellites and plants are better parameterized in 𝜆 . For 
example, globally gridded rock 𝜆 was not available and thus the first and second approaches needed to 
assign 𝜆 for rocks as a function of land type, which can be inaccurate and highly uncertain because 𝜆 also 400 
depends on other factors apart from the land type. On the other hand, the second and the third approaches 
assumed one dominant land type and used one single (either rock or vegetation) 𝑧'& to represent the whole 
grid, but ignored the fact that a grid can be partly covered by plants and partly by rocks, which was only 
accounted for by the first approach (the double drag partition equation is a function of rock 𝜆, plant 𝜆, and 
𝑓F). Note that the second and the third approaches had to choose either rock or plant 𝑧'& because adding 405 
up the rock 𝑧'& and plant 𝑧'& is not allowed (𝑧' is not additive, whereas 𝜆 is additive). The same problem 
would not occur if there were global scale observations of rock roughness measured in density 𝜆, which 
could either be directly applied to the double drag partition equation in Darmenova et al. (2009) or be 
added upon plant 𝜆 and then converted to 𝑧'& in Klose et al. (2021). All in all, due to insufficient and 
inadequate observations, all the aforementioned approaches struggle to accurately represent the combined 410 
effect of vegetation and rocks on the drag partition and dust emission. In Sect. 3.2, we will propose a novel 
approach that incorporates both roughness of rocks and plants and equally respects the 𝑧'& and 𝜆 from 
both schools of drag partition parameterizations, quantifying the drag partitions of rocks and plants into 
one hybrid drag partition factor 𝐹8##. 
 415 
2.3 Parameterization of dust emission flux 
 

There are multiple available dust emission equations (e.g., Gillette and Passi, 1988; Shao et al., 
1996; Alfaro and Gomes, 2001; Ginoux et al., 2001; Tegen et al., 2002; Zender et al., 2003a; Shao, 2004; 
Kok et al., 2014b; Evans et al., 2016; and more) implemented in GCMs and ESMs to calculate dust 420 
emission fluxes. For example, the Zender et al. (2003a) scheme (hereafter Z03) is based on the 
Marticorena and Bergametti (1995) dust emission equation and is a popular a popular dust emission 
scheme adopted by many GCMs (e.g., Miller et al., 2004; Oleson et al., 2013; Meng et al., 2021). Z03 
calculates dust emission as follows: 
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𝐹) = 𝑆𝑇𝐶GH𝜑𝑓I&J8
K#
+
𝑢∗9		1 e1 −

L∗)
		+

L∗$		+
f e1 − L∗)

L∗$
f  for 𝑢∗9 > 𝑢∗"    (10) 425 

where Fd is the emission flux (in kg m2 s-1), 𝐶GH is a proportionality constant for bridging the gap between 
local-scale and large-scale dust fluxes, 𝜑 = 1021./#,-#.,3 is the sandblasting efficiency, the amount of 
dust flux produced per unit of horizontal saltation flux as a function of soil clay fraction 𝑓5*&6, 𝑢∗" is the 
dust emission threshold (in m s-1; Z03 used 𝑢∗#" as 𝑢∗"), and 𝑓I&J8 characterizes the fraction of land not 
covered by vegetation. 𝑆(lon, lat) is an empirical “source function” (Ginoux et al., 2001; Zender et al., 430 
2003a, b; Koven and Fung, 2008) to characterize soil erodibility and thus preferential source regions where 
fluvial sediment accumulates and scale down emission flux out of desert regions. For 𝑓I&J8, Mahowald et 
al. (2006) used a simple parameterization in which 𝑓I&J8 is a pure function of LAI (neglecting the effects 
of other objects such as snow, rocks, buildings, etc.):  
𝑓I&J8 = 1 − LAI/LAIMNO    for LAI ≤ LAIMNO    (11a) 435 
𝑓I&J8 = 0      for LAI > LAIMNO    (11b) 
While Mahowald et al. (2006) took LAIMNO = 0.3, we take LAIMNO = 1 in this study instead because 1) 
observations show that there could be dust emitted from semiarid regions with LAI > 0.3 (Okin, 2008); 
and 2) Mahowald et al. (2006) did not account for wind drag partitioning due to plants, and thus by setting 
a small LAIMNO, emission (𝐹) ∝ 𝑓I&J8) drops more rapidly with LAI such that the drag partition effect is 440 
also incorporated in the 𝑓I&J8 term. However, since we are considering 𝐹8## in this study, we can set a 
more realistic LAIMNO value such that 𝑓I&J8 becomes less sensitive to LAI. 

In this study, we use the Kok et al. (2014b) dust emission equation (hereafter K14) which is 
increasingly adopted by more GCMs (e.g., Evan et al., 2015 ; Ito and Kok, 2017; Mailler et al., 2017; Tai 
et al., 2021; Li et al., 2021, 2022; Klose et al., 2021). One key advance of K14 over Z03 is that K14 445 
eliminated the need to use an empirical, time-invariant source function 𝑆 to tune the spatial variability of 
dust emissions. K14 proposed that a dynamical and time-varying soil erodibility (named 𝐶) in K14) can 
be physically parameterized using the standardized fluid threshold 𝑢∗9" = 𝑢∗#"7𝜌&/𝜌&', which is 𝑢∗#" 
scaled to the standard air density of 𝜌&' = 1.225	kg	m,1: 
𝐶) = 𝐶)' exp e−𝐶8

L∗$),L∗$)"
L∗$)"

f,         (12) 450 
where 𝐶)(lon, lat, 𝑡) is the time-varying dust emission coefficient or soil erodibility coefficient, 𝐶)' =
(4.4 ± 0.5) × 10,. , 𝐶8 = 2.0 ± 0.3 , and 𝑢∗9"' = 0.16	𝑚	𝑠,2 . Furthermore, K14 derived a new dust 
emission equation for 𝐹) (kg	m,0s,2): 
𝐹) = 𝐶"LP8𝐶)𝑓I&J8𝑓5*&6

K#QL∗$		+,L∗)		+R
L∗$)

eL∗$
L∗)
f
S
	 for 𝑢∗ > 𝑢∗"      (13a) 

𝜅 = 𝐶S
(L∗$),L∗$)")

L∗$)"
           (13b) 455 

where 𝐶S = 2.7 ± 1.0, 𝐶"LP8 = 0.05 is the proportionality constant, 𝑓I&J8 is modeled by Eq. 11, and 𝑢∗" 
is again the emission threshold (K14 assumed for simplicity that 𝑢∗" = 𝑢∗$" = 𝑢∗#") . 𝜅  is the 
fragmentation exponent which quantifies the sensitivity of 𝐹) to 𝑢∗9. Here we limit the value of 𝜅 to 3 in 
order to prevent excessive sensitivity of the model to wind speeds, which can be problematic around 
topography. From Eq. 12, 𝐶)  increases exponentially with 𝑢∗9"  and thus K14 dust emission is very 460 
sensitive to 𝑢∗#". K14 showed improvements compared with Z03 when evaluated against ground-based 
DAOD measurements (Kok et al., 2014a, b; Li et al., 2022).  
 
2.4 Input data and model description 
 When calculating dust emissions and other aeolian processes, we employ the meteorological and 465 
land-surface variables as input data from the Modern-Era Retrospective Analysis for Research and 
Applications version 2 (MERRA-2) (Gelaro et al., 2017). MERRA-2 is a reanalysis dataset provided by 
NASA’s Global Modelling and Assimilation Office (GMAO). MERRA-2 has a native resolution of 0.5° 
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× 0.625° and hourly data assimilation. All MERRA-2 modeled fields and other input variables in this 
study are listed in Table 1. In this study, we code the dust emission scheme with all new aeolian processes 470 
in the statistical programming language R (v4.2.1) as an offline (outputs do not feedback onto input 
forcings), standalone sandbox model. In this study, we use the standalone model to read in all input 
atmospheric and land surface forcings for year 2006 and employ equations in Sects. 2 and 3 to compute 
2006 dust emissions as outputs and results for Sects. 3 and 4.  
 475 
 
Table 1. Input meteorological and land-surface variables employed for running the standalone dust 
emission model in this study. 
 

Variable Meteorological parameter (SI unit) 

𝑢∗ MERRA-2 friction velocity (m s-1) 

𝜃 MERRA-2 volumetric soil moisture (m3 water / m3 soil) 

LAI MERRA-2 leaf area index (m2 leaf / m2 land) 

𝜌& MERRA-2 air density (kg m-3) 

𝑧$ MERRA-2 planetary boundary layer height (m) 

𝑇 MERRA-2 air temperature (K) 

𝐻 MERRA-2 Sensible heat flux over land (W m-2) 

𝜑 MERRA-2 porosity (dimensionless) 

𝑓5*&6 SoilGrids clay fraction (fraction) 

𝑓9$*" SoilGrids silt fraction (fraction) 

𝑧'& Prigent et al. (2005) aeolian roughness length (m) 

𝐴J Rock and bare soil land cover derived from the European Space 
Agency land cover dataset (fraction) 

𝐴F Vegetation land cover derived from the European Space Agency land 
cover dataset (fraction) 

𝑆 Ginoux et al. (2001) or Zender et al. (2003b) source function 

 480 
 
 
3 Physics-based parameterization of dust emission threshold 
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In this section, we propose additions and improvements to several parameterizations of dust 485 
emission physics, which include 1) deriving a more realistic soil median diameter map and including it in 
the 𝑢∗#"  calculation, 2) proposing a new hybrid approach to incorporate the drag partition 
parameterizations of both rocks and vegetation, and 3) implementing a parameterization of the effects of 
turbulence on the intermittency of dust emissions. We will use the improved model from this section to 
compute hourly dust emissions in Sect. 4, driven by meteorological and land surface fields.  490 

 
3.1 Improving the description of soil particle size parameter 

 
The PSD of the soil bed is a critical factor to determine the dust emission threshold. In this section, 

we focus on deriving a new global soil median diameter (a good proxy for the soil PSD) (Martin and Kok, 495 
2019) as a parameter for computing the dust emission thresholds. Section 5.1 discusses the caveats and 
limitations of this approach. 
 
3.1.1 Motivation and literature compilation of soil particle size distribution 
 500 

As discussed in Sect. 2.1, Martin and Kok (2019) argued that 𝑢∗#"  of a mixed soil should be 
determined by the median diameter 𝐷&% of the soil PSD. Thus, we ideally need a global gridded map of 𝐷&% 
to calculate 𝑢∗$" and 𝑢∗#" over the globe. However, there are only very limited in-situ measurements of 
soil PSDs (e.g., see Table S1) that are insufficient to compile a global 𝐷&% map. Meanwhile, extensive 
studies have compiled global maps of many other soil properties, such as soil texture, soil bulk density, 505 
pH value, soil organic carbon (SOC), cation exchange capacity, and more (e.g., FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012; Shangguan et al., 2014; Hengl et al., 2017; Dai et al., 2019). Therefore, to determine and 
predict 𝐷&% , we use a compilation of literature measurements to explore and construct relationships 
between 𝐷&% with other soil properties such as the clay and silt fractions.  

However, many past laboratory studies used the wet sedimentation or wet sieving technique to 510 
measure the texture of the soil samples. Wet sieving effectively breaks down soil microaggregates into 
disaggregated particles and can dissolve soluble minerals (Chatenet et al., 1996), thereby disturbing the 
estimations of the in-situ soil median particle sizes. In contrast, dry sieving causes a minimal disruption 
to soil microaggregates and thus Chatenet et al. (1996) argued that the dry-sieved soil PSDs are more 
representative of the in-situ, aggregated soil PSDs. Although the soil texture is a disaggregated soil 515 
property, 𝐷&% might depend on soil texture 𝑓& and other soil properties because the strength of interparticle 
forces is contingent upon soil texture (the clay and silt content), which govern the extent of soil 
aggregation. Here, we use measurements from past laboratory studies (see Table S1), which contain site-
scale, dry-sieved soil PSDs, wet-sieved soil texture 𝑓& , and other soil properties to investigate their 
statistical relations and infer a new global distribution of 𝐷&%. All studies listed in Table S1 have dry-sieved 520 
soil PSD measurements, as well as the wet-sieved sand, silt, and clay fractions. Many studies have 
recorded soil organic carbon (SOC, %), as well as other properties such as calcite (CaCO3, %), pH value, 
and bulk density (g cm-3). Figure 1a shows the locations of the measurements of the employed soil studies, 
and the colors show the aridity where the sites are located. Some studies obtained measurements over a 
relatively large spatial domain and we plot only one symbol at the domain centroid representing multiple 525 
measurements. Many studies reported PSD measurements extending to diameters in excess of 6000 μm, 
but we used only PSD measurements in the diameter range of 0 and 2000 μm that is relevant to dust 
emission (Zender et al., 2003a). For each dry soil PSD measurement, we obtain the aggregated 𝐷&% by 
calculating the 50th percentile of the dry soil PSD.  
 530 
3.1.2 Deriving a global soil median diameter map 
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We classify the datasets into arid and nonarid groups, since we are primarily interested in 𝐷&% over 

desert regions (although we also display the soil behaviours over nonarid regions). We follow past studies 
(Mahowald et al., 2006, 2010; Kok et al., 2014b) which defined arid (or dust emission) regions using the 535 
criterion of LAI smaller than a threshold LAIthr, which we take to be 1 (see Sect. 2.3). Section 3.2.2 also 
describes the MERRA-2 LAI we used in this study to identify the world’s arid regions.  

After dividing the data into median dry diameters for arid and non-arid soils, we examine the 
statistical relationships between 𝐷&% and the soil properties (see Fig. 1b and Fig. S2). Figure 1b shows a 
scatterplot of 𝐷&% versus the sum of the soil component that produce substantial cohesion, namely the silt 540 
and clay fractions (𝑓9$*"D5*&6 = 𝑓9$*" + 𝑓5*&6). The data exhibits distinctly different trends for non-arid 
versus arid soils: for non-arid soils, 𝐷&% increases from 100 μm to greater than 1000 μm with 𝑓9$*"D5*&6 
(regression p-value = 7.3 × 10,3), likely due to increasing cohesion with increasing clay and silt content. 
In contrast, 𝐷&% for arid soils shows a small and statistically insignificant increasing trend with 𝑓9$*"D5*&6 
(p-value = 0.77) with a smaller 𝐷&% variability (50–250 μm). This flat trend indicates that 𝑓9$*"D5*&6 does 545 
not effectively explain the median diameter of aggregated soil particles in arid regions. We examined the 
relationships of 𝐷&% with the individual fractions of sand, silt, and clay, as well as with other soil properties 
including SOC, pH, and CaCO3 (Fig. S2), but these relationships are not statistically significant. We obtain 
a surprisingly simple finding from the available measurements that there is limited variability in the 
aggregated 𝐷&%  over the arid regions across different soil textures. We thus use a constant 𝐷&%'  as an 550 
approximation for arid regions. From Fig. 1b, we summarize the relationship between 𝐷&% and 𝑓9$*"D5*&6 
as: 

𝐷&% = s
𝛹' +𝛹2𝑓9$*"D5*&6

𝐷&%'	
,							 								𝑓𝑜𝑟	LAI > LAIMNO	

								𝑓𝑜𝑟	LAI ≤ LAIMNO	
      (14) 

where 𝛹' = 7.81 ± 3.70	𝜇m, 𝛹2 = 124 ± 36	𝜇m, 𝐷&%' = 127 ± 47	𝜇m, and LAIMNO = 1 as specified in 
Eq. 11. This empirical formula suggests that some models’ assumptions of the relationship between 𝐷&% 555 
and soil texture was possibly inaccurate (e.g., Table 2 of Laurent et al., 2008 assumed 𝐷&% decreases with 
𝑓9$*"D5*&6), and this result could substantially simplify model parameterizations. Additionally, our diameter 
of 127	𝜇m over arid regions is larger than Z03’s assumption of a globally constant optimal diameter of 
75	𝜇m . This translates to a modest increase of 𝑢∗#"'  from 0.204 m s-1 to 0.216 m s-1 (given 𝜌& =
1.225	kg	m,1), which slightly decreases global dust emissions by 18 % (see Sect. 4). The uncertainty in 560 
𝐷&%' = 127 ± 47	𝜇m translates to an uncertainty of 𝑢∗#"' between 0.204	m	s,2 to 0.234	m	s,2. 
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Figure 1. Constructing a global map of the median diameter 𝐷% of aggregated soil particles using soil 565 
particle size and texture data. (a) The locations of literature measurements, with symbols indicating the 
names of the studies and the color indicating the aridity of the locations; a site is classified as arid (red 
color) if its location has MERRA-2 LAI < 1 and otherwise nonarid (blue color). (b) Literature 
measurements of soil dry median diameter 𝐷% versus silt + clay fraction (𝑓9$*"D5*&6). (c) The predicted soil 
dry median diameter 𝐷&% map (in μm) derived by projecting our derived 𝐷&%–𝑓9$*"D5*&6 relationship of Eq. 570 
14 on the SoilGrids (Hengl et al., 2017) soil texture data (Fig. S3). The circles represent the locations of 
the sites same as panel (a) and their colors show the measured median diameter 𝐷&% at those sites. (d) The 
predicted 𝐷&% using Eq. 14 versus measured 𝐷&% from past studies.  
 

We then project our derived relation between 𝐷&% and 𝑓9$*"D5*&6 on the available soil texture and 575 
properties database. We employ global soil properties data from the SoilGrids database (Hengl et al., 2014, 
2015, 2017), a global soil mapping project that used machine learning (random forest) to regress in-situ 
measurements of soil variables (moisture, temperature, nutrients, etc.). SoilGrids provides global maps of 
soil texture and other soil properties with a horizontal resolution of 250 m and eight soil depths down to 
200 cm (Hengl et al., 2017). We use SoilGrids instead of other available soil databases as it shows better 580 
performance against observed soil profiles than other soil databases (Dai et al., 2019). Figure S3 shows 
the SoilGrids relative fractions of sand, silt, and clay with a 0.1° × 0.1° horizontal resolution for the 
topmost soil layer. Fig. 1c shows our global 0.1° × 0.1° soil median diameter 𝐷&% map. Following Eq. 14, 
the arid and semi-arid regions are set to have a 𝐷&%' of 127 μm, whereas for nonarid regions 𝐷&% increases 
with 𝑓9$*"D5*&6 . Our derived 𝐷&% are largely consistent with the site 𝐷&% measurements from past studies 585 
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(overlaid points), showing a similar spatial distribution, with a fit-line slope of 0.98 (p-value = 0.007), and 
an R2 of 81% (Fig. 1d).  
 
 
3.2 A wind drag partition scheme for decreasing wind stress and erosion 590 
 

We now present a methodology to account for the wind drag partition effect due to nonerodible 
roughness elements including vegetation and rocks that protect the bare soil by absorbing part of the 
surface wind stress. We calculate the rock drag partition 𝑓8##,J using 𝑧'& since global 𝑧'& observations are 
available, and calculate the vegetation drag partition 𝑓8##,F using vegetation cover which is a proxy of 𝜆 595 
(e.g., Shao et al., 1996; Okin, 2008) since gridded plant cover is often parameterized in GCMs (e.g., Wu 
et al., 2016; Foroutan et al., 2017; Meier et al., 2022). Here we use two separate drag partition schemes 
(Marticorena and Bergametti, 1995; Okin, 2008) to quantify the roughness effect of rocks (Sect. 3.2.1) 
and vegetation (Sect. 3.2.2), respectively. Then, we propose a unifying approach to combining the two 
effects into a hybrid factor 𝐹8## (Sect. 3.2.3). 600 
 
3.2.1 Drag partition due to roughness of rocks 

In this study, we use the aeolian roughness length 𝑧'& to quantify the drag partition effect due to 
rocks. Whereas the smooth 𝑧'9 and the aerodynamic momentum 𝑧'( can be derived from pre-existing 
datasets, it is more challenging to quantify the aeolian 𝑧'&. Existing efforts employed satellite and field 605 
measurements to quantify the roughness over deserts (e.g., Greeley et al., 1997; Roujean et al., 1997; 
Marticorena et al., 2004; Laurent et al., 2005; Prigent et al., 2005; Marticorena et al., 2006; Prigent et al., 
2012). For instance, Marticorena et al. (1997) and Callot et al. (2000) developed a 1° × 1° 𝑧'& map over 
Africa and the Middle East by combining topographic data, geological information, aerial pictures and in-
situ observations. Prigent et al. (2005) and Prigent et al. (2012) further used radar measurements to yield 610 
global maps of backscatter coefficient, which is a measure of surface roughness because rougher surfaces 
generally scatter more radar signals to different directions and reduce the backscattering. Comparisons 
between satellite backscattering signals and field measurements of 𝑧'& yielded an empirical formula for 
extrapolating a global dataset of backscattering signal to global 𝑧'&. We use here the global aeolian 𝑧'& 
dataset from Prigent et al. (2005) (hereafter Pr05), which contains the climatological monthly mean 𝑧'& 615 
(12 monthly values per grid) derived from the backscatter coefficient observed by the scatterometer at 5.3 
GHz on board the European Remote Sensing (ERS) satellite. Since satellite 𝑧'&  measurements could 
quantify both the roughness of rocks as well as vegetation, we take the minimum value out of the 12 
months for all grids to obtain a static aeolian 𝑧'& map to eliminate as much as possible the vegetation 
effect on the inferred roughness. Furthermore, we apply this map over arid regions only (LAI < 1), where 620 
the backscatter signal is mostly generated by rocks with little contribution from vegetation roughness. The 
resulting 2-D map of 𝑧'& (in cm) thus mostly represents time-invariant rock roughness and is plotted in 
Fig. 2a.  

Marticorena and Bergametti (1995) derived a parameterization to quantify the drag partition effect 
using both 𝑧'& and 𝑧'9. They assumed that this equation is valid for roughness elements that are not too 625 
closely spaced (small wake), i.e., 𝑧'& < 1	cm (Darmenova et al., 2009). Here we use their semi-empirical 
equation to quantify the drag partition due to rocks, 𝑓8##,J (also see Eq. 8): 

𝑓8##,J = 1 −
:;<!"#!"$

=

:;U&< /
!"$

=
0
V
          (15) 

where 𝑋 is the distance downstream the point of discontinuity in roughness, a length parameter that scales 

with the IBL height 𝛿  behind the obstacle in Eq. 8, i.e., W
X"$
= 𝑎 e Y

X"$
f
I

 following Marticorena and 630 
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Bergametti (1995), and 𝑎 = 0.7 and 𝑏 = 0.8 are empirical constants (King et al., 2005; Darmenova et al., 
2009). 𝑋 should be a function of land type and implicitly space and time, but thus far most dust modeling 
studies have used a global constant for 𝑋 (e.g., Darmenova et al., 2009 used a globally constant 𝑋 =
0.1	m). We use a globally constant 𝑋 = 10	m in this study, which is different from what the past studies 
suggested, because the scale of the rocks and plants we focus on in deserts are larger and are of the order 635 
of 100–101 m. Some studies considered even larger roughness and used 𝑋~122	m for vegetated deserts 
(MacKinnon et al., 2004). We then obtain 𝑧'9 from our derived global dataset of 𝐷&% in Sect. 3.1 using Eq. 
7. When nonerodible roughness elements are abundant over a surface, 𝑧'& ≫ 𝑧'9 and 𝑓8##,J ≪ 1, causing 
the sheltering of the bare soil from the wind; when there are few roughness elements, 𝑧'& is small and 
close to 𝑧'9  and thus 𝑓8##,J  approaches 1. In Fig. 2a, the red areas with very small 𝑧'&  are the most 640 
susceptible regions for dust emission. Fig. 2a also shows that most arid and semiarid regions have 𝑧'& <
0.2	cm, such that Eq. 15 can be well following the criterion (𝑧'& < 1	cm) in Darmenova et al. (2009). Fig. 
2b shows the global 𝑓8##,J over arid regions, which is dominated by the spatial pattern of 𝑧'& in Fig. 2a 
given 𝑓8##,J is governed purely by 𝑧'&.  
 645 
 

 

 
Figure 2. Global roughness length and rock drag partition factor maps at a horizontal resolution of 0.25° 
× 0.25°. (a) Global mesoscale aeolian roughness length 𝑧'& (in cm) derived by Prigent et al. (2005). (b) 650 
Global static rock drag partition factor 𝑓8##,J derived by Eq. 15 following Marticorena and Bergametti 
(1995), derived over arid and semi-arid regions defined as MERRA-2 LAI < 1 in this study. The color 
schemes are set such that the most erodible regions appear red. 
 
 655 
3.2.2 Drag partition due to roughness of vegetation 
 

Unlike the very static and slowly evolving rock roughness, vegetation changes temporally. To 
include the effect of these dynamic vegetation changes on the drag partition, we follow the approach of 
Okin (2008) (hereafter O08), which uses unvegetated gap size (the distance between neighboring plants) 660 
to characterize the variability of the reduced wind stress. O08 argued that his scheme represents an 
advancement over the classical R93 scheme, since R93 uses the roughness density (or lateral cover) 𝜆, 
which only quantifies how much roughness is on a surface but not how that roughness is spatially 
distributed. O08 pointed out that, given the same 𝜆, roughness elements divided into small blocks spread 
over the soil surface would be more effective than elements stacked up like a telephone pole in partitioning 665 
wind stress (see Fig. 3 in Okin, 2008). Okin argued that since Raupach’s model neglects the spatial 
variability of 𝜆, the resulting simulated emission flux using the R93 scheme in Okin’s paper decreased 
rapidly with increasing 𝜆 and unrealistically reached zero at relatively low 𝜆. To partially compensate this 
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error, R93 introduced a tuning parameter 𝑚  (Eq. 9a), serving to reduce the effective λ and thereby 
reducing the rapid decrease in dust flux. However, 𝑚  is a tuning parameter not derived from first 670 
principles, and it is not clear how 𝑚 changes over different surface conditions. Therefore, we use the O08 
model here to better characterize the spatial variability of wind stress and the resulting dust emissions. 

Here we describe the O08 scheme and adapt it for use in LSMs and GCMs. O08 assumes 𝑢∗ drops 
significantly when encountering a roughness element (plant), and gradually recovers at the lee (downwind 
region) of the plant as a function of distance 𝑥, following: 675 

𝑢∗9(𝑥/ℎ) = 𝑢∗[𝑓' + (1 − 𝑓')(1 − 𝑒
,1/3, )]        (16a) 

where 𝑥/ℎ is the dimensionless downwind distance from an obstacle normalized by vegetation height ℎ 
(m), 𝑓' =

L∗$
L∗
|Z[' is the friction velocity ratio immediately behind the obstacle, and 𝑐 is the dimensionless 

e-folding distance (normalized by ℎ) over which 𝑢∗9 locally recovers to 𝑢∗. In this formulation, the local 
drag partition factor due to vegetation as a function of distance 𝑥 is:  680 

𝑓*\5&* e
Z
]
f = L∗$

L∗
= 𝑓' + (1 − 𝑓')(1 − 𝑒

,1/3, )         (16b) 
Note that in the limit of 𝑥/ℎ → ∞,	𝑢∗9 → 𝑢∗. O08 used measurements from Bradley and Mulhearn (1983) 
and fitted 𝑓' = 0.32 and 𝑐 = 4.8 (i.e., the e-folding distance of 𝑢∗9 recovery to 𝑢∗ is 4.8 times the plant 
height ℎ) for semiarid regions. 

In order to use Eq. 16b to obtain the drag partition 𝑓8##,F relevant to a regionally vegetated area 685 
that is more applicable to GCMs, one needs to calculate an integral for the averaged and aggregated effect 
of drag partitioning 𝑓8##,F  (see Eq. 20a) instead of a locally varying 𝑓*\5&*  (Eq. 16b). Therefore, Okin 
employed a probability distribution function as a function of distance 𝑥/ℎ to indicate the importance (or 
weight) of 𝑓*\5&* at any 𝑥/ℎ to the averaging of 𝑓8##,F (McGlynn and Okin, 2006; Okin, 2008). The PDF 
is an exponential decay such that the weight of 𝑓*\5&*  decreases with distance 𝑥/ℎ , so 𝑓*\5&*  at the 690 
immediate lee of the obstacle (which is smaller and close to 𝑓') has more weight than the 𝑓*\5&* farther 
away (which is larger and tends to one). From McGlynn and Okin (2006), the PDF is a function of 
normalized distance 𝑥/ℎ: 

𝑃)(𝑥/ℎ) =
2
^
𝑒,

1/3
4            (17a) 

𝐾 ≡ 𝐿/ℎ            (17b) 695 
where 𝐿 (m) is the mean gap length between obstacles (plants), which is conceptually related to 𝑓F; and 𝐾 
is the normalized gap length, which is the gap length 𝐿 scaled by the plant height ℎ. Physically, 𝑃) is the 
probability that there is not another obstacle present within a downwind distance 𝑥/ℎ. This exponential 
decay implies that, the farther away from a plant (larger 𝑥/ℎ), the higher the likelihood that there is another 
plant present within the downwind distance 𝑥/ℎ, with the normalized gap length 𝐾 quantifying the e-700 
folding distance of the probability. This PDF governs the spatial domain over which 𝑢∗9 recovers. 

For O08, the mean gap length between obstacles 𝐾 is the only required input for calculating the 
drag partition, since 𝑓' and 𝑐 are assumed to be invariant to surface conditions and desert biome. 𝐾 can 
be expressed as a function of 𝑓F using some simple assumptions. First, O08 argued that vegetation cover 
fraction is simply 𝑓F ≡

_
`D_

, where 𝐿 is the mean gap length and 𝑊 is the mean width of the plants within 705 
that vegetated area. Rearranging gives 
𝐿 = 𝑊( 2

#5
− 1)           (18a) 

Then we assume plants in arid regions (e.g., shrubs) are approximately hemispheres with radius R. Then, 
the plant height ℎ = 𝑅 and width 𝑊 = 2𝑅 are related by 𝑊 = 2ℎ, which can be substituted into Eq. 18a 
to yield 710 
𝐾 ≡ `

]
= 2 e2

#5
− 1f           (18b) 
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and thus we related 𝐾 to 𝑓F. 𝑓F could be measured at the local level and thus O08 was frequently applied 
in field studies (e.g., Li et al., 2013; Pierre et al., 2014a). However, what is novel in our study is that we 
are the first to propose the implementation of O08 into LSMs, because Eq. 18b shows us that O08 could 
be formulated as a function of 𝑓F , which is a grid-level parameter. Here we propose to follow the 715 
Mahowald et al. (2006) assumption in Eq. 11 and approximate vegetation cover fraction as 𝑓F = 1 −
𝑓I&J8 = LAI/LAI"]J, Eq. 18b becomes  
𝐾 ≡ `

]
= 2 e2

#5
− 1f = 2( 2

abc/abc678
− 1)        (18c) 

where we assume LAI"]J = 1 (in Eq. 11). The assumption of 𝑓F~LAI is valid if we reasonably assume that 
leaf areas over arid regions overlap relatively little with each other. We note that by using LAI to quantify 720 
𝑓F in Eq. 18c, we are only accounting for the vegetation drag partitioning due to green (photosynthetic) 
vegetation and miss that due to brown (non-photosynthetic) vegetation. In the future, it is warranted that 
Eq. 18b includes other proxies of brown vegetation drag partitioning, such as the vegetation cover 
quantified by Guerschman et al. (2015), which was adopted by later dust modeling studies such as Klose 
et al. (2021) and Huang and Foroutan (2022).  725 
 

To estimate the reduced emission flux, O08 uses an integration approach without quantifying 
𝑓8##,F. O08 calculates the reduced dust emission flux 𝐹J8) (kg m-2 s-1) by locally integrating the emission 
𝐹) following the spatially varying 𝑢∗9 over the normalized distance 𝑥/ℎ: 
𝐹J8) = ∫ 𝑃) e

Z
]
f 𝐹) �𝑢∗9 e

Z
]
f� 𝑑 eZ

]
fe

Z/]['         (19a) 730 
where 𝐹) (kg m-2 s-1) is the local emission as a function of 𝑢∗9 which is itself a function of 𝑥/ℎ. In the 
integration, 𝐹)  needs to be weighted by 𝑃)  (which means 𝐹)  at large 𝑥/ℎ  has proportionally less 
importance) because as 𝑥/ℎ increases, the likelihood of the presence of another obstacle gets larger and 
larger, which will hinder the recovery of 𝑢∗9 to 𝑢∗. Integrating the emission flux 𝐹) from zero to infinity 
gives a reduced emission flux 𝐹J8) , which will be smaller than the emission flux without roughness 735 
elements, defined as 𝐹I&J8 = ∫ 𝑃) e

Z
]
f 𝐹)(𝑢∗)𝑑 e

Z
]
f = 𝐹)(𝑢∗)

e
Z/][' , in which 𝐹)  is a constant in space 

since 𝑢∗9 = 𝑢∗ is a constant without obstacles.  
However, since we need to also combine the vegetation drag partition with the rock partition 

effects, we need to quantify 𝑓8##,F in order to form a hybrid drag partition factor for LSMs. Instead of 
directly implementing Eq. 19a into LSMs, we require an alternative approach of quantifying 𝑓8##,F such 740 
that 𝐹)M𝑓8##,F𝑢∗N = 	𝐹J8). Quantifying 𝑓8##,F for O08 can be useful for comparisons against 𝑓8##,F from 
other schemes such as R93 and Klose et al. (2021). In addition quantifying 𝑓8##,F for O08 makes it possible 
to generate a high-resolution, diagnostic 𝑓8##,F dataset for mechanistic models with different resolutions 
as a model input.  

An approach of evaluating 𝑓8##,F from O08 was proposed by Pierre et al. (2014a). They obtained 745 
the expected value of the shear stress ratio 𝑢∗9/𝑢∗ (SSR in Okin, 2008) between obstacles by evaluating 
the integral of 𝑢∗9/𝑢∗  weighted by 𝑃) , which represents the averaged 𝑓*\5&*  (in Eq. 16b) across the 
vegetated area and perfectly fits our purposes for implementing 𝑓8##,F into LSMs: 

𝑓8##,F = ∫ 𝑃) e
Z
]
f �

L∗$<
1
3=

L∗
� 𝑑 eZ

]
fe

Z/][' = ∫ 𝑃) e
Z
]
f 𝑓F e

Z
]
f 𝑑 eZ

]
fe

Z/]['      (20a) 

Substituting Eq. 17 for 𝑃) into Eq. 20a and analytically evaluating the integral gives a simple algebraic 750 
equation for 𝑓8##,F (Pierre et al., 2014a), representing the aggregated vegetation drag partition effect at the 
grid level: 
𝑓8##,F =

^D#"5
^D5

            (20b) 
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This elegant formula conveys a clear physical intuition: If the obstacle does not effectively dissipate 
momentum (𝑓' → 1), 𝑓8##,F → 1; if land is densely covered by vegetation (gap length 𝐾 → 0), 𝑓8##,F →755 
𝑓'(= 0.32), the shear stress ratio at the immediate lee of the obstacle. An advantage of this approach is 
that it can be easily adopted by gridded models since modelers only need to code an algebraic equation 
instead of an integral. 

We calculate 0.5° × 0.625° global hourly 𝑓8##,F data for Okin’s model, using Eq. 18c and Eq. 20b 
with hourly MERRA-2 LAI. We note that MERRA-2 LAI is based on the Advanced Very High Resolution 760 
Radiometer (AVHRR) observations (Reichle et al., 2017). Figure 3a shows the annually averaged 
MERRA-2 LAI for year 2006 over arid regions with LAI < 1 (seasonal LAI maps are also shown in Fig. 
S4), and Fig. 3b shows the corresponding mean 𝑓8##,F for areas where LAI < 1. The LAI plot shows the 
most erodible regions on Earth.  
 765 
 
 

 
Figure 3. Vegetation drag partition factor 𝑓8##,F derived from the Okin (2008) and Pierre et al. (2014) drag 
partition model for year 2006 on a 0.5° × 0.625° grid. (a) Annual mean MERRA-2 LAI, with colorbar 770 
saturated at a value of 1. (b) Annually averaged 𝑓8##,F derived using the Okin (2008) and Pierre et al. 
(2014) drag partition model. White areas indicate water body, ice/snow, or LAI > 1. 
 
 
3.2.3 Combining drag partition factors of rocks and vegetation 775 
 

After obtaining both the static 𝑓8##,J map of rocks and the time-varying 𝑓8##,F map of vegetation, 
we now propose a methodology to combine the two drag partition sources to capture and represent the 
total drag partition effect for dust emission. LSMs need a single drag partition factor capturing all 
roughness effects to estimate the total reduction of the surface winds. Thus, we compute a hybrid drag 780 
partition factor map 𝐹8## that can be used as input for dust modules in GCMs. To achieve this, we need 
to know the fractions of a grid that consists of areas dominated by rocks and areas dominated by plants, 
which can be obtained from several recent studies (Lawrence et al., 2016; ESA, 2017; Klein Goldewijk et 
al., 2017; Kobayashi et al., 2017). We obtained this data from the European Space Agency Climate Change 
Initiative (ESA CCI) dataset (https://www.esa-landcover-cci.org/?q=node/164, last access: 21 June 2022). 785 
The land cover product classifies the land cover of the whole globe into 37 categories (Li et al., 2018), 
with relevant land cover over arid regions such as shrub, herbaceous, sparse vegetation, cropland, 
grassland, as well as consolidated (gravels and rocks) and unconsolidated (soil) bare land. This dataset 
has a horizontal resolution of 300 m, making the dataset capable of counting the portion of the grid 
consisting of rocks and vegetation over a larger MERRA-2 0.5° × 0.625° gridbox (a MERRA-2 grid box 790 
consists of ~35000 grids of 300 m). This dataset gives a representation to the annually varying land covers, 
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so the rock and vegetation area fractions	we use are a function of space only within the simulation year of 
2006. We describe our approach to synthesizing the ESA CCI land cover maps and drag partition datasets 
in the following. 
 795 

We incorporate the drag partition effects by identifying two roughness regimes using the ESA CCI 
dataset. The first regime is the rock regime (Fig. 4a), for which we combine the consolidated (gravel and 
rocks) and unconsolidated (soil) bare land types (types 34–36). This regime is subject to the rock drag 
partition effect. The second regime is the vegetation regime (Fig. 4b), which includes different vegetation 
types such as shrubland and herbaceous (types 19–23, 28–29, 32), sparse vegetation (types 26–27), 800 
cropland (types 2–5), grassland (type 24), mixed vegetation (type 18), and other vegetation mosaic (types 
6–7). Since O08 does not specify the differences in drag partition for different plant functional types 
(PFTs), here we assume all PFTs produce the same drag partition effect. The overall drag partition effect 
𝐹8## for a grid is thus defined by the summation of emissions, with emission 𝐹),J over the rock regime 
with a fractional area of 𝐴J, and emission 𝐹),F over the vegetation regime with another fractional area 𝐴F: 805 
𝐹)M𝑢∗𝐹8##N = 𝐴J𝐹),J + 𝐴F𝐹),F = 𝐴J𝐹)(𝑢∗𝑓8##,J) + 𝐴F𝐹)(𝑢∗𝑓8##,F)    (21a) 
Given that dust emissions approximately scale with the cube of 𝑢∗9 (Zender et al., 2003a; Kok et al., 2014b) 
and neglecting the effect of the dust emission threshold, Eq. 21a can be simplified to 
𝐹8##					1 = 𝐴J 	𝑓8##,J								1 + 𝐴F	𝑓8##,F									1          (21b) 
such that 𝐹8##  is simply the weighted mean of drag partition effects. The fractional areas are simply 810 
calculated by counting the total occupied area of the ESA CCI land cover corresponding to a certain 
regime, and then dividing by the total area of the gridbox. We use Eq. 21b to obtain the spatiotemporally-
varying 𝐹8##(lon, lat, 𝑡), given 𝑓8##,F(lon, lat, 𝑡) as well as 𝐴J , 𝐴F , and 𝑓8##,J  as functions of (lon, lat). 
We then apply the obtained 𝐹8## here to Eq. 6 to yield 𝑢∗9 for the dust emission equation. We discuss in 
Sect. 5.2 the caveats and limitations of this hybrid drag partition scheme. 815 
 

Figures 4a–b show the fractional areas of the two regimes. The rock regime (Fig. 4a) is located 
mostly over the Sahara, the Middle East, and the Asian deserts. The vegetation regime (Fig. 4b) is 
concentrated mostly over Australia, the United States, South America and South Africa. Fig. 4c shows the 
resulting annually averaged 𝐹8##  using Eq. 21b. The regions with the highest 𝐹8##  are the Bodélé 820 
Depression, El Djouf, the Arabian Desert, and Taklamakan due to high 𝑓8##,J. The Strzelecki–Sturt Stony 
Deserts in Australia, the Kyzylkum and Patagonia also have high 𝐹8## (~ 0.7) due to high 𝑓8##,F. Regions 
with both high rock and vegetation roughness are located in parts of the Middle East and North America 
with low 𝐹8## values. 
 825 
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Figure 4. The 0.5° × 0.625° hybrid drag partition factor 𝐹8##  incorporated using the European Space 
Agency Climate Change Initiative (ESA CCI) dataset. (a–b) The fractional areas of (a) the rock regime 830 
(consolidated/unconsolidated land) and (b) the vegetation regime (shrubs, herbaceous plants, croplands, 
grassland, and sparse vegetation) over arid regions. (c) The hybrid drag partition factor 𝐹8##  by a 
combination of rock drag partition 𝑓8##,J and vegetation drag partition 𝑓8##,F for year 2006. 
 
 835 
 
3.3 Parameterizing the dust emission intermittency  
 

The above improvements enable a more accurate calculation of emission when wind speeds are 
sufficient to initiate dust emission. Next, we will improve the calculation of the resulting dust emission 840 
flux by accounting for the effects of boundary-layer turbulence on dust emission intermittency. Dust 
emission intermittency exists because saltation is driven by turbulent surface winds, which exhibit strong 
spatiotemporal fluctuations in speed and direction. Instantaneous winds can thus pass within short 
timescales across the emission thresholds for initiating or ceasing saltation (Martin and Kok, 2018). 
Consequently, saltation can be highly intermittent (Comola et al., 2019b), with pronounced variability on 845 
timescales of seconds to hours (Dupont et al., 2013). In contrast, existing dust emission parameterizations 
describe saltation as uniform in time and space and driven by a constant downward momentum flux within 
a model time step. The disconnect between the reality of intermittent dust emissions and uniform 
emissions in current theories is likely contributing to the poor performance of dust emission simulations 
(Barchyn et al., 2014; Todd et al., 2008). Comola et al. (2019b) argued that the intermittency effect is 850 
more prevalent for regions with low intensity dust emissions when 𝑢∗9 is regularly fluctuating around the 
threshold to turn on or shut off dust emissions. Neglecting intermittent dust emissions in current models 
thus likely degrades the accuracy of dust emission simulations for arid regions during low-wind periods 
as well as for marginal dust source regions such as semi-arid areas (since soil cohesion increases 𝑢∗#" but 
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does not affect 𝑢∗$"), which dominate in much of the Southern Hemisphere (Ginoux et al., 2012; Ito and 855 
Kok, 2017).  

Accounting for the intermittency effect on dust emission fluxes is complicated by the hysteresis of 
dust emission due to the existence of double thresholds for dust emission physics. The instantaneous wind 
at the saltation level 𝑢�9 (we use the tilde to denote instantaneous quantities and take away the asterisk to 
denote winds at the saltation level of 𝑧fg:~0.1	m instead of a velocity scale) needs to exceed the fluid 860 
threshold 𝑢#" (also defined at the saltation level) to initiate saltation, but only needs to exceed a smaller 
impact threshold 𝑢$" to sustain it (Kok et al., 2012; Martin and Kok, 2018; Comola et al., 2019b). When 
𝑢�9 at a moment lies between both thresholds (𝑢$" < 𝑢�9 < 𝑢#"), saltation is active if transport was more 
recently initiated (𝑢�9 > 𝑢#") and inactive if transport was more recently terminated (𝑢�9 < 𝑢$"). This 
process is known as hysteresis (Kok, 2010; Martin and Kok, 2018; Comola et al., 2019b). As a result, if 865 
𝑢9 (mean of 𝑢�9 within a model time step) is between 𝑢$" and 𝑢#", there will be fluctuating emission fluxes 
in reality, while models using a fluid threshold scheme would predict zero emission within a model time 
step, thereby underestimating the emissions. Meanwhile, models using an impact threshold scheme 
without considering turbulence will have uniform positive dust emission within the time interval. However, 
because in reality high-frequency winds can pass below 𝑢$" and shut off dust emissions, using average 𝑢9 870 
in an impact threshold scheme will overestimate dust emissions. It is thus important for GCMs to account 
for the effects of turbulence causing both intermittency and hysteresis of dust emission. 

As GCMs have a relatively large time step (e.g., ~30 minutes for a 1° GCM) and cannot 
dynamically resolve high-frequency (~0.1–5 minutes) turbulent wind speed fluctuations, models cannot 
directly simulate the dust emission intermittency. Therefore, accounting for intermittent dust emission 875 
requires a parameterization that links the low-frequency (~30 minutes) variables of boundary-layer 
turbulence that are resolved in GCMs to the high-frequency intermittency dynamics. Comola et al. (2019b) 
formulated a parameterization (hereafter the C19 scheme) of intermittent saltation fluxes by quantifying 
wind fluctuations due to both shear-driven and buoyancy-driven turbulence in terms of resolved model 
parameters, including 𝑢$"  and the Monin-Obukhov length L. C19 showed that when a dust emission 880 
equation employs 𝑢$" and accounts for the intermittency effect, it can successfully capture the magnitudes 
of small dust fluxes otherwise missed by models using 𝑢#" (Fig. 3 of Comola et al., 2019b). The C19 
scheme will thus moderate the temporal variability of modeled dust emissions due to diurnal wind cycles 
continuously crossing the thresholds. Additionally, it will also capture more lower intensity emissions 
over marginal sources missed by many current models (Zhao et al., 2022).  885 

In the C19 scheme, the dust emission flux 𝐹) is calculated using 𝑢∗$" instead of 𝑢∗#". We update 
K14 (Eq. 13) with 𝑢∗$"  as the threshold (see Sect. 2 for the description of K14 and dust emission 
thresholds), giving: 
𝐹) = 𝐶"LP8𝐶)𝑓I&J8𝑓5*&6

K#QL∗$+ ,L∗9)
		+ R

L∗9)
eL∗$
L∗9)
f
S
	    for 𝑢∗ > 𝑢∗$"   (22a) 

where 𝐶) is still a function of 𝑢∗9" and 𝑢∗9" = 𝑢∗#"7𝜌&/𝜌&' is the same standardized fluid threshold as in 890 
the default K14, and 𝑢∗$" is computed using Eq. 5. Because 𝑢∗$" < 𝑢∗#", this modified equation allows 
more small dust fluxes over the marginal source regions that are otherwise missed by employing 𝑢∗#" as 
the threshold (see Fig. 7g).  

Next, we account for the intermittency effect by introducing the intermittency factor η, which is 
the fraction of time that saltation is active in a model time step (e.g., ~30 minutes). 𝜂 corrects the horizontal 895 
sand saltation flux, which scales with dust emission flux (Shao et al., 1993), thereby also representing the 
fraction of time that dust emission is active in a model time step. C19 accounts for the effect of 
intermittency by multiplying dust emission by 𝜂: 
𝐹),h = 𝜂𝐹)            (22b) 
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where 𝜂 ∈ [0,1]. Note that C19 parameterizes 𝜂 using wind information at the typical saltation height of 900 
𝑧fg: = 0.1 m instead of the velocity scales (and thus there are no asterisks). 𝜂 is formulated as: 
𝜂 = 1 − 𝑃#" + 𝛼(𝑃#" − 𝑃$")          (22c) 
where 𝑃$" is the cumulative probability that the instantaneous wind (at 0.1 m) 𝑢�9 does not exceed 𝑢$", 𝑃#" 
is the cumulative probability that 𝑢�9 does not exceed 𝑢#", and 𝛼 is the fluid threshold crossing fraction. 𝛼, 
𝑃#", and 𝑃$" are functions of 𝑢�9, 𝑢$", 𝑢#", as well as the standard deviation 𝜎Li$ of the instantaneous 𝑢�9 (see 905 
their full form in Sect. S2, Eqs. S3–S6). 𝜎Li$ is defined given 𝑢�9 can be described by a normal distribution 
(Chu et al., 1996), with its mean being the model time step mean (at 0.1 m) 𝑢 and its standard deviation 
𝜎Li$. From Eq. 22c, within a model timestep, dust emission is continuous for the fraction of time 1 − 𝑃#" 
when 𝑢�9 > 𝑢#", and for the fraction of time 𝑃#" − 𝑃$" dust emission is in the hysteresis regime (𝑢$" < 𝑢�9 <
𝑢#") where dust emission can only be active for a fraction of time 𝛼. With Eqs. S3–S6, we computed 𝜂 to 910 
yield the dust emission with intermittency effect 𝐹),h as the final dust emission for the LSM. The full C19 
intermittency scheme is summarized in Sect. S2 and also discussed in Comola et al. (2919b). 𝜎Li$  is 
parameterized using the similarity theory (Panofsky et al., 1977): 

𝜎Li$ = 𝑢∗9 e12 − 0.5
X9
`
f
2/1

     for 12 − 0.5 X9
`
≥ 0   (23) 

where L is the Obukhov length and 𝑧$ is the modeled PBL height. Note that MERRA-2 does not provide 915 
𝐿 output, and in this study we computed 𝐿 from the MERRA-2 outputs of 𝑢∗, 𝜌&, sensible heat flux 𝐻, 
and temperature 𝑇 for our simulations (see Sect. S3). In boundary-layer dynamics, turbulence is generated 
by mechanical shear and buoyancy (Stull, 1988). From Eq. 23, high-frequency wind fluctuations 𝜎Li$ 
increase with shear (𝑢∗9 > 0) and buoyancy (L < 0). For larger 𝜎Li$, it is easier for 𝑢�9 to sweep across 𝑢$" 
and shut off dust emission, leading to 𝜂 < 1. If 𝑢9 ≫ 𝑢#", 𝑢�9 will be less likely to sweep across 𝑢$" and 𝜂 920 
will approach 1. If 𝑢$" < 𝑢9 < 𝑢#", 𝜂 will be much smaller than one, leading to a small emission flux when 
other parameterizations predict a zero emission flux. When 𝑢9 < 𝑢$", 𝜂 could also be greater than zero 
when 𝜎Li$ is large enough so that the instantaneous 𝑢�9 crosses through 𝑢$", but C19 would not generate 
any emission anyway according to Eq. 22a (which is a technical flaw of C19; see a discussion in Sect. 
5.3). We note that Eq. 23 is not the traditional Monin-Obukhov similarity theory as the zonal fluctuation 925 
was shown to correlate poorly with 𝑧/𝐿 but relates much better with 𝑧$/𝐿 (Panofsky et al., 1977). We also 
note that Eq. 23 only applies to the convective PBL, but dust emission often occurs during daytime within 
the convective boundary layer (Yu et al., 2021). See a discussion to the limitations of this scheme in Sect. 
5.3. 
 930 
 Here we show some significant results from the intermittency scheme. Figure 5 shows the global 
dust emission thresholds in 2006 computed using MERRA-2 fields. Figure 5a shows 𝑢∗$", computed using 
a globally constant 𝐷&%' = 127	𝜇m (Sect. 3.1). Its spatial variability is purely a function of 𝜌& (Eq. 5). 𝑢∗$" 
is around ~0.16–0.24 m s-1, and higher 𝑢∗$"  implies higher altitude. A lower 𝑢∗$"  leads to a smaller 
aerodynamic drag force from the airflows given the same wind speed; conversely, there will be a large 935 
𝑢∗$" for soils over low 𝜌& regions. Figure 5b shows 𝑢∗#" (Eq. 1). It varies between 0.2 and 0.9 m s-1. Its 
spatial variability is dictated by the spatial variability of soil moisture 𝑤 (see Fig. S1). Regions with the 
lowest 𝑢∗#" are the driest places in the world, which are all deserts. Regions with the highest 𝑢∗#" are wet 
soils covered by rainforests, boreal forests, tundras/permafrosts, and snow. Figure 5c shows the ratio of 
𝑢∗#" /𝑢∗$" , for which the spatial variability is again dictated by that of 𝑤. The magnitude of the ratio 940 
conveys not only the strength of the soil moisture effect on the threshold but also the width of the hysteresis 
regime. Deserts with 𝑢∗#"/𝑢∗$"	~	1/𝐵$" have a narrow hysteresis regime (𝑢∗$" < 𝑢∗9 < 𝑢∗#") and smaller 
thresholds, and thus tend to have more continuous dust emissions. Semiarid and nonarid regions with 
larger 𝑢∗#"/𝑢∗$" tend to have a wide hysteresis regime and thus dust emissions will be more intermittent. 
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 945 
 

 
 

Figure 5. The dust emission thresholds using the (Shao and Lu, 2000) scheme for the year 2006 on a 0.5° 
× 0.625° grid. (a) the impact threshold 𝑢∗$"  calculated using 𝐷&%' = 127	𝜇m (Eq. 4), (b) the wet fluid 950 
threshold 𝑢∗#" (Eq. 1), and (c) the ratio between the wet fluid threshold and impact threshold which is the 
𝑓( / 0.81, where 𝑓( is the moisture effect on 𝑢∗#" (Eq. 3). The larger this ratio, the wider the range of wind 
speeds for which hystesis in dust emission occurs and the more important it is to account for intermittency 
in dust emissions. 
 955 

Figure 6a shows the 2006 annual mean intermittency effect over the Bodélé Depression as an 
example. Figure 6a shows hourly mean 𝜂  as a function of the hourly mean 𝑢9 . It demonstrates the 
properties of 𝜂 discussed above: e.g., when 𝑢9 > 𝑢#", 𝜂 → 1, and when 𝑢9 < 𝑢$", 𝜂 → 0. In both regimes, 
the behaviour of the dust emission intermittency is asymptotic to dichotomous (0 or 1) activity which is 
the same as that of the conventional emission schemes. Near the intermittency or hysteresis regime 𝑢$" <960 
𝑢9 < 𝑢#" , 𝜂  is intermediate between zero and one, and thus a scheme using 𝑢∗$"  gives a small finite 
emission flux while conventional schemes using 𝑢∗#" give a prediction of zero. The color code shows the 
strength of convection −𝑧$/𝐿. −𝑧$/𝐿 is positive (red) when buoyant convection is active (L < 0), and is 
negative (blue) when the PBL is statically stable (L > 0). The color shows that there is a modest correlation 
between −𝑧$/𝐿 and 𝑢9 but the correlation is not necessarily strong, and the strongest buoyancy (dark red) 965 
often happens when 𝑢9 (or shear 𝑢∗9) is moderate. The strongest buoyancy associates with moderate 𝜂 
values of ~0.5 only, and for the highest 𝜂 values −𝑧$/𝐿 is mildly unstable (light red). This means that the 
turbulent fluctuation is primarily governed by shear 𝑢∗9 instead of controlled by buoyancy −𝑧$/𝐿, and the 
intermittency behavior is dictated by shear-driven instead of buoyancy-driven turbulence. Eq. 23 could 
essentially be simplified into 𝜎Li$ ≈ 122/1𝑢∗9.  970 
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Figure 6b shows the global spatial distribution of the annual mean 𝜂 for year 2006, averaged across 
time steps during which saltation and dust emissions are occurring over the grid (and thus 𝜂 during time 
steps when 𝐹) = 0 are not counted). Most marginal sources have small 𝜂 < 0.3 (red color), indicating dust 
emissions are fluctuating and intermittent. These emissions may not be existent in other LSMs employing 
𝑢∗#" in the dust emission equation (but also dependent on their threshold tuning). Over these regions, 975 
because of the intermittent shut offs of emissions, the emissions need to be scaled down by the fraction of 
time 𝜂 which is also missed by other LSMs. Intermittency is thus critical in accounting for emissions over 
semiarid regions. Regions with high 𝜂 (more continuous emission; light blue color) include El Djouf, the 
Bodélé Depression, the Libyan–Nubian Desert over Libya, Egypt and Sudan, the Rub’ al-Khali Desert 
within the greater Arabian Desert, the Lut Desert in Iran, the Taklamakan Desert, and the Strzelecki Desert 980 
in Australia. During saltation, these regions tend to have wind episodes further away from the thresholds, 
leading to a high 𝜂 . However, regions with high 𝜂  are not necessarily regions with the highest dust 
emissions (Figs. 7a–b) because their saltation frequency could be low, or the strength of their emission 
fluxes is limited by other factors such as the fragmentation exponent and soil moisture. In Fig. S5, we 
further show the factor 𝜂 averaged over all time steps of 2006, including periods of no emissions over the 985 
grid. Since 𝜂 is close to 0 when there is no emission, Fig. S5 shows much smaller 𝜂 compared to Fig. 6b. 
 
 

 
 990 

 
Figure 6. Simulated dust emission intermittency effect for year 2006. (a) The hourly mean intermittency 
factor 𝜂 versus hour mean wind speed (m s-1) at 0.1 m height over the Bodélé Depression. The color 
indicates −𝑧$/𝐿 , with red indicating −𝑧$/𝐿 > 0  (unstable), blue indicating −𝑧$/𝐿 < 0  (stable), grey 
indicating −𝑧$/𝐿~0  (neutral). The two vertical dotted black lines indicate the annual mean impact 995 
threshold (left) and the fluid threshold (right) wind speed (m s-1) at 0.1 m. (b) The annual mean 
intermittency factor 𝜂, or equivalently the fraction of time within a time step that emission is active, 
averaged over times when emission is active (Fd > 0).  
 
 1000 
4 Results of our new dust emission scheme 
 
 In this section, we implement the three new parameterizations of key dust emissions processes 
upon the K14 model into R to investigate the resulting spatial variability of dust emissions. The MERRA-
2 data are for year 2006, and other input data are regarded as climatological datasets. In Sect. 4.1, we then 1005 
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compute the dust emissions and analyze their spatial characteristics. We examine the effects of each new 
modification on the simulated dust emissions by conducting different simulations with different individual 
parameterizations added. Then, in Sect. 4.2, we inspect the effects of the grid-resolution of input data on 
simulating dust emissions, and propose a simple method to calibrate the spatial variability of low-
resolution dust emissions to match the spatial variability of high-resolution emissions. 1010 
 
4.1 Effects of different new physics on global dust emissions 

In this subsection, we show the effects of different modifications on the resulting dust emissions 
(in kg m-2 yr-1) in Fig. 7. We demonstrate the effect of each modification by creating a suite of sensitivity 
experiments as follows: (I) First we simulate emissions using the default K14 scheme; (II) then we use 1015 
the K14 scheme with our derived soil diameter of 𝐷&%'	~	127	𝜇m for simulation; (III) we further add in 
the hybrid drag partition physics on top of (II); (IV) we switch from using the fluid threshold to the impact 
threshold in (III); and finally (V) we include the intermittency effect on top of (IV) for simulation. We 
note that past studies derived the approximate magnitude of the global total emission (e.g., Tegen and 
Fung, 1995; Zender et al., 2004; Evan et al., 2014; Kok et al., 2021), but there are no global observations 1020 
of dust emissions. In the field of dust modeling, there are currently no first principles that can derive the 
essential dust emission proportionality constants to constrain modeled emissions at a correct order of 
magnitude, which means scientists still have insufficient knowledge in aeolian physics to generate 
predictions in the correct order of magnitude. Recognizing that the spatiotemporal characteristics of the 
predictions are more credible, it is very common for dust modelers to rescale the emissions according to 1025 
the known constraints of observed atmospheric dust mass or the global DAOD. For instance, Li et al. 
(2022) scaled all their simulations to achieve a global mean DAOD of 0.03, based on Ridley et al. (2016). 
Thus, what matters the most is how each modification changes the spatial variability and the relative 
magnitudes of dust emitted from one region compared to the others, and the absolute magnitude changes 
are of secondary importance. Here in Fig. 7, the left panels (Figs. 7c, e, g, i) show the unnormalized 1030 
absolute changes in emissions from one experiment to another, and then the right panels (Figs. 7d, f, h, j) 
show the normalized emission ratios from one experiment to another. In calculating the ratios, we 
normalize all simulations to a global total of 5000 Tg yr-1, which is around the current constraint of global 
PM20 dust emission flux from past studies (Evan et al., 2014; Kok et al., 2021a, b). The maps of ratios on 
the right panels thus show the changes in the dust emission spatial variability better than the left panels. 1035 
Fig. S6 shows the unnormalized emission maps for all experiments.  

Figure 7a shows the unnormalized emissions from the default K14 scheme (experiment I) using 
MERRA-2 inputs, giving a global total of ~29300 Tg yr-1. The emission map shows a similar spatial 
pattern compared with the K14 simulations in Kok et al. (2014b) and Li et al. (2022) despite differences 
in the data used for different land surface fields (e.g., for LAI and soil moisture). The most significant 1040 
emissions are over the Bodélé Depression in Chad, the Nubian Desert in Sudan and Egypt, the whole 
Arabian Peninsula, most of Iran, the Taklamakan Desert in China, and the Strzelecki Desert in Australia. 
Over regions with emissions, the spatial variability of the emissions is dictated by the moisture 𝑤 (see Fig. 
S1 and Fig. 5b), which fundamentally shapes the threshold 𝑢∗#" , the soil erodibility 𝐶) , and the 
intermittency 𝜂. Smaller emissions occur over South Africa, South America, and the western U.S.  1045 

Figures 7c–d show the effect of changing the global soil diameter from the current standard of 75 
𝜇m to our new constraint of  𝐷&%' = 127	𝜇m (experiment II). As described in Sect. 3.1, a larger 𝐷&% leads 
to heavier particles, resulting in higher thresholds and lower emissions. Therefore, the global emission 
flux is ~23900 Tg yr-1, 18 % less than the unnormalized emission flux of experiment I. Figure 7c (and 
subsequent difference maps) shows that larger emissions reductions occur over the major sources simply 1050 
because the emission magnitudes are larger there. The light blue color in Fig. 7c shows that the effect of 
employing a new global 𝐷&%' is relatively mild compared to the drag partition effect and intermittency 
(Figs. 7e and g). Then, Fig. 7d shows the ratio map of the normalized emissions of experiment II to those 
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of experiment I, which shows the changes in solely the spatial variability of the emissions. Employing a 
new globally constant 𝐷&%' does not strongly impact the spatial pattern of the emissions, so the ratio map 1055 
is of order one around the globe. While Fig. 7c shows that the largest absolute emission changes occur 
over the major sources, Fig. 7d shows that after rescaling there are some mild emissions reductions (in 
blue) over marginal regions (e.g., the Arctic) compared to the minimal increases over the major sources 
(in light red). The major sources are less affected since in the high 𝑢∗9 regime 𝐹) becomes more sensitive 
to 𝑢∗9 than to 𝑢∗#". Thus, a uniform increase in 𝑢∗#" around the globe tends to eliminate small emissions 1060 
more than large ones. The main effect of employing a larger 𝐷&%  is therefore a very modest shift of 
emissions from the marginal regions toward the arid areas. 

Figures 7e–f show the effect of including the hybrid drag partition effect 𝐹8## (experiment III). 
Rocks and plants (𝐹8## < 1) reduces 𝑢∗9 and thus the global total emission decreases drastically by 85 % 
relative to that of experiment II to ~2880 Tg yr-1 (Fig. S6c and Fig. 7e). Many significant emissions 1065 
reductions (in dark blue) occur over the Sahara where 𝐹8## is 0.7 or smaller, such as Egypt, Sudan, and 
Western Sahara. K14 struggles to distinguish major sources (e.g., the Bodélé) from less significant sources 
(e.g., Sudan) and predicts similar levels of emissions (Fig. 7a). 𝐹8## effectively introduces the effect of 
surface roughness on mitigating emissions over secondary sources, reducing the magnitude of emissions 
by at least one order of magnitude. A clearer contrast between major and marginal sources is shown in the 1070 
ratio map in Fig. 7f, which mirrors the spatial pattern of 𝐹8##  in Fig. 4c. For example, normalized 
emissions increase (in red) over major sources such as the Bodélé Depression, El Djouf, and the Rub’ al 
Khali Desert; normalized emissions over the western U.S. and western Australia are significantly reduced. 
El Djouf is a significant dust source over Africa (Yu et al., 2018), yet K14 fails to represent its high 
emissions because of the strong moisture effect (see Fig. 5c) compared to other major sources such as the 1075 
Bodélé Depression. However, 𝐹8## highlights El Djouf as a highly erodible surface and helps mitigate the 
low emission issue over there. Similarly, the underrepresented emissions over Taklamakan and the 
Arabian Desert by K14 is partially mitigated by accounting for the drag partitioning (light red in Fig. 7f).  

Figures 7g–h show the effects of implementing the C19 intermittency scheme. It consists of 
employing 𝑢∗$" in K14 (experiment IV) and further multiplying the dust emission flux by the intermittency 1080 
factor 𝜂 (experiment V). Figures 7g–h show their combined effects by comparing experiment V with 
experiment III. First, Fig. 7g first shows the effects of employing 𝑢∗$"  instead of 𝑢∗#"  since the 
unnormalized total emission vastly increases to ~13200 Tg yr-1 (Fig. S6d), more than four times that of 
experiment III. As seen from the ratios in Fig. 7h, emission schemes employing 𝑢∗$" will have slightly 
higher emissions over major sources but much stronger emissions over marginal sources. This is because 1085 
not only 𝑢∗#"/𝑢∗$" but also the fragmentation exponent 𝜅 (which scales with 𝑢∗#") is also greater over 
marginal sources. As a result, the main feature in the spatial pattern of Fig. 7h is that the marginal sources 
(in red color) now have more emissions than experiments II and III. The most apparent emissions increases 
are over Patagonia, the Horn of Africa (HOA), and western U.S. deserts. Another observable change is 
that there are many more high-latitude dust emissions, such as over the Arctic, Canada, and Alaska. 1090 
Studies reported that many models greatly underestimate high-latitude dust emissions (Bullard et al., 2016; 
Meinander et al., 2021), and the use of 𝑢∗$" will mitigate this issue.  

On the other hand, the effect of multiplying the emission flux with the intermittency factor 𝜂 is 
less dramatic than the effect of using 𝑢∗$". As shown in Fig. 5b, 𝜂 tends to scale down small emissions, so 
fluxes from major sources are only moderately reduced. In contrast, fluxes from marginal source regions 1095 
(e.g., high-latitude boreal forests) are typically reduced by ~1–3 orders of magnitude (see the blue areas 
in Fig. S6e). However, Experiment V has a global total of ~11700 Tg yr-1, which is only 11 % smaller 
than experiment IV, because those remote regions as such already have small emissions. All in all, 
accounting for both the impact threshold and the intermittency factor will increase the global total 
emission from ~2880 Tg yr-1 in experiment III to ~11700 Tg yr-1 in experiment V, which is about a four-1100 
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fold increase. Fig. 7h shows that C19 mainly increases marginal emissions; the overall effect of C19 is 
thus to move emissions from the hyperarid regions to semiarid regions. 

Figure 7b shows the final emission map of our new dust emission scheme with all new physics, 
and Figs. 7i-j show the resulting emission changes and ratios from K14 to our scheme. Our scheme’s 
global total emission of 11700 Tg yr-1 is ~60 % smaller than the K14 emission. Figures 7i-j show that 1105 
compared to K14, our scheme’s emission fluxes over densely vegetated regions (e.g., equatorial Africa 
and northern Australia) are reduced due to the drag partition effect, while there are increases in marginal 
sources like the Arctic and mid-latitude boreal forests due to the intermittency effect. Figure 7j shows the 
corresponding ratios of our scheme’s emissions (experiment V) to the K14 emissions (experiment I), 
which is essentially a combination of Fig. 7f and Fig. 7h. Major sources are more affected by the drag 1110 
partition effect (e.g., the Bodélé Depression and El Djouf), while marginal sources are more dominated 
by turbulence and intermittency (e.g., the Arctic). For regions where both effects take place, more 
vegetated semiarid regions are more affected by the drag partition (e.g., western U.S.) while less vegetated 
semiarid regions are more affected by the intermittency (e.g., Patagonia, the Great Plains of the U.S., and 
southern Australia). A notable feature shown in Fig. 7i is that the new mechanisms favor the emissions 1115 
over the Horn of Africa (HOA) the most, with an emission increase of ~2 kg m-2 yr-1 (as seen in Fig. 7g), 
because in C19 the HOA has low 𝑢∗$", high summertime 𝑢∗, low roughness element cover (and thus high 
𝐹8## ) and moderate soil moisture (and thus high dust emission coefficient 𝐶) ). This issue could be 
problematic since it could introduce too much dust in the GCM over the HOA, which is further discussed 
in Sect. 5.5.  1120 
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Figure 7. The effects of the proposed improvements to the parameterization of dust emissions on the 
default Kok et al. (2014a, b) dust emission scheme. (a, b) Global unnormalized dust emission fluxes 1125 
simulated by (a) the default K14 scheme (expt. I) and (b) our new scheme (expt. V). (c-j) Maps of (c,e,g,i) 
unnormalized emission differences and (d,f,h,j) of the ratios of the normalized emissions, with individual 
improvements added on top of the default K14 scheme. The individual improvements are respectively 
(c,d) changing the soil median diameter (expt. II), (e,f) including the drag partition effect (expt. III), and 
(g,h) employing the Comola et al. (2019) intermittency scheme (expt. V). (i,j) Maps of (i) unnormalized 1130 
emission differences and (j) emission ratios for our new scheme and the K14 scheme. 
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4.2 The grid scale-dependence of our new dust emission scheme 
 1135 

The spatial resolution of a GCM strongly affects the budget and spatiotemporal variability of dust 
emissions because modeled emissions scale nonlinearly with input meteorological fields (Ridley et al., 
2013; Meng et al., 2021). Many current GCMs have a horizontal resolution of  ~ 1°–2° (Zhao et al., 2022). 
Most of the datasets employed in this paper, such as the 0.5° MERRA-2 fields and the even finer aeolian 
roughness length 𝑧'&, are datasets of higher horizontal resolutions. Thus, GCMs need to regrid the datasets 1140 
to the model native grid resolution as model input. Since dust emission has a nonlinear dependence on 
multiple variables such as 𝑢∗ and 𝑤, using a simple, area-weighted spatial average of 𝑢∗ to calculate dust 
emission would be inaccurate as it is different from an area-weighted average of high-resolution dust 
emissions per se, i.e., for any 𝑛 > 1 𝑢�∗9		P < 𝑢∗9		P���� leads to 𝐹)(𝑢�∗9		P) < 𝐹)(𝑢∗9		P)���������� (Ridley et al., 2013) (here we 
use the bar as a spatial average from a finer to a coarser grid). This inequality applies to our model and 1145 
datasets as well: simply taking the area-weighted mean of high-resolution 𝑢∗9 or 𝑤 in a model grid box 
will omit the locally high 𝑢∗9  (or low 𝑤) values that can produce locally extremely high emissions, 
resulting in an underestimation of emissions relative to direct area-weighted averaging of the emissions. 
Additionally, the presence of thresholds in dust emission parameterizations further intensifies the scale 
dependence, because spatially averaging 𝑢∗9 might cause 𝑢�∗9 < 𝑢�∗$" which leads to zero emission over a 1150 
coarse gridbox, whereas fine emissions could be large than zero when 𝑢∗9 > 𝑢∗$" in any fine grid. Dust 
emission flux will thus be strongly dependent on model resolution more than other linear processes 
(Zender et al., 2003a; Ridley et al., 2013; Meng et al., 2021), which is undesirable. There is a need to 
better upscale low-resolution dust emissions to match the variability of high-resolution emissions such 
that dust emissions tend to be less resolution dependent. To address the problem of missing emissions due 1155 
to the smoothing of the subgrid wind maxima, a common approach is to employ a grid-by-grid Weibull 
distribution to the GCM winds to represent the subgrid wind maxima and thus obtain the subgrid emission 
peaks (Cakmur et al., 2004; Grini et al., 2005; Cowie et al., 2015; Zhang et al., 2016; Menut, 2018; Tai et 
al., 2021). However, the shape factor of the distribution needs to be empirically determined and thus might 
not capture the interannual variability and changes in climate. In this subsection, we examine the scale-1160 
dependence of our dust emission scheme and then propose an alternative approach, which is to derive a 
simple spatial map and upscale the spatial variability of dust emissions from low resolution ones to high 
resolution ones. A discussion about our proposed approach versus the more common Weibull approach is 
detailed in Sect. 5.4. 

 1165 
We first examine the scale dependence of our dust emission scheme. We achieve this by 

performing an area-weighted mean of all input meteorological and land-surface variables to various 
coarser resolutions. Starting from the native 0.5° × 0.625° resolution of MERRA-2, we regrid fields to 
0.9° × 1.25°, 1.9° × 2.5°, and 4° × 5°. Then we use these input fields with our new scheme to compute 
hourly dust emissions for 2006 across these four resolutions. We then compare the emission outputs across 1170 
these resolutions. 
 We examine the global, regional, and grid-level scale dependence of our dust emission scheme in 
Fig. 8. At the regional level, Fig. 8a shows the unnormalized annual total emissions (in Tg yr-1) of nine 
major dust source regions. The source regions are defined following Kok et al. (2021a) (see Fig. S7 and 
Figs. 8c-d). The regional dust abundance in Fig. 8a is mainly consistent with the regional dust emissions 1175 
in Kok et al. (2021b, see Fig. 2). The highest emissions occur over the Middle East/Central Asia, followed 
by the Sahel and northern Africa. Smaller emissions are over East Asia, North and South America, 
Australia, and southern Africa. The dust emission scheme also shows scale dependence across different 
resolutions. Some regions may have a sharper decrease in emissions from 0.9° × 1.25° to 1.9° × 2.5° (e.g., 
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northeastern Africa), and some regions may have a sharper decrease from 1.9° × 2.5° to 4° × 5° (e.g., 1180 
Sahel). This difference is contingent upon the degree of smoothing of the input fields such as 𝑢∗9 at a 
particular resolution. The emissions will drastically drop when the local extrema of 𝑢∗9 are smoothed out 
and no longer can be represented at a particular resolution, and over different regions this cut off may 
occur at different resolutions depending on the spatial heterogeneity of the local-scale meteorological 
fields. Nevertheless, in general, the coarser the resolution, the worse the model can represent the local 1185 
variability of 𝑢∗9 and other input fields and subsequently the emissions, and thus the magnitudes of the 
emissions decrease with resolution. Figure 8a shows that the relative differences in regional emissions can 
be different in different resolutions (e.g., Sahel can have larger emission than the Middle East/Central 
Asia in the 4° × 5° simulation), which will subsequently affect the spatial variability of other major dust 
cycle variables (such as DAOD or deposition). Therefore, it is always preferential for GCMs to simulate 1190 
the dust cycle in high resolutions. Figure 8b shows the scale dependence of the global emissions, which 
also shows the same decrease in emissions from fine to coarse grid resolutions. 
 We also examine the scale dependence of dust emissions at the grid level. Figures 8c and 8d show 
the spatial distributions of 0.5° × 0.625° and 1.9° × 2.5° unnormalized emissions (with a global total of 
11700 Tg yr-1 and 5450 Tg yr-1, respectively). The 0.5° × 0.625° simulation shows a more detailed local 1195 
spatial variability compared to the coarser 1.9° × 2.5° simulation. The 1.9° × 2.5° simulation fails to 
capture some of the high emission regimes in the 0.5° × 0.625° simulation such as over Taklamakan, and 
fails to simulate the local emission peaks over marginal sources such as the Chihuahuan Desert and 
Patagonia. It can be seen that coarse-gridded simulations lose emissions in both major and marginal dust 
sources. We calculate in Fig. 8e the grid-by-grid ratio of unnormalized 0.5° × 0.625° emissions to 1.9° × 1200 
2.5° emissions to show the emissions missed by the 1.9° × 2.5° simulation in each grid. Both the coarse 
(y-axis) and fine (x-axis) emissions are plotted in the log10 scale to show the emission ratios in terms of 
the order of magnitude only. It can be seen that most of the points are above the 1:1 line (black dashed 
line), meaning the coarse emissions are underestimating some local dust fluxes accounted by the fine 
emissions. The low-resolution simulation can capture the largest emissions well (top right hand corner), 1205 
as predicted by the high-resolution simulation. However, the smaller the emission, the more significant 
the difference in emissions, and for minimal emissions (< 10-5 kg m-2 yr-1) the difference can be up to three 
orders of magnitude. There are very few grids with low-resolution emissions higher than high-resolution 
emissions. Those are exceptional cases due to the spatial variability of moisture 𝑤 more heterogeneous 
than that of 𝑢∗9 , leading to the smoothing of local maxima of 𝑢∗#"  instead of 𝑢∗9  and thus the 1210 
overestimation of 𝐹) in the coarser simulation. In conclusion, the coarse resolution models omit many 
local input features and thus fail to represent the correct spatial variability of dust emissions. 
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Figure 8. The dependence on horizontal resolution of dust emissions simulated with our new dust emission 1215 
scheme. (a, b) Bar plots of dust emissions as a function of grid resolutions for (a) nine major dust emission 
regions and (b) the globe. (c) 0.5° × 0.625° unnormalized emissions and (d) 1.9° × 2.5° unnormalized 
emissions. e) A scatterplot of 0.5° × 0.625° versus 1.9° × 2.5° unnormalized dust emissions. The 
rectangular boxes show the nine source regions in (a) defined as in Fig. S7. 
 1220 
 
 To mitigate the scale dependence of our dust emission simulations, here we propose a simple 
approach to upscale the simulated low-resolution emissions to match the high-resolution emissions. This 
approach assumes that the fine emissions have a more adequate magnitude and spatiaotemporal variability 
than the coarse emissions so that the coarse emissions are calibrated to match the fine emissions. Our 1225 
approach is that, by dividing the normalized high-resolution emission map by the low-resolution emission 
maps, we obtain a map of scaling factors to account for the differences in the spatial variability of dust 
emissions between high- and low-resolution simulations. We obtain a climatological map of correction 
factors 𝐾�5, and apply this map to all simulated coarse emissions from both historical and future simulations, 
correcting their spatial variability to match that of the high-resolution emissions. We show the seasonal 1230 
variability of 𝐾�5 in Fig. S8. This map of scaling factors contains some temporal and seasonal variability, 
so it would be preferable to apply a seasonally varying dataset of 𝐾�5. But, as shown in Fig. S8, 𝐾�5 varies 
modestly across season because the subgrid variability of the meteorological and land-surface fields are 
partly determined by spatial structures such as orography or land use/land cover, which change across a 
relatively long enough time scale (decadel to multidecadal or longer). We note that theoretically this 1235 
approach will fail to work if, over the remote regions, the low-resolution emission is zero throughout the 
entire simulation period while the high-reoslution emission is a small positive definite, since 𝐾�5 will go to 
infinity. We also note that employing different input fields or different emission schemes will change the 
subgrid variability and thus the spatial representation of this correction map. For instance, one will obtain 
a slightly different correction map if one uses ERA-Interim meteorology instead of MERRA-2, or a 1240 

https://doi.org/10.5194/acp-2022-719
Preprint. Discussion started: 24 October 2022
c© Author(s) 2022. CC BY 4.0 License.



 33 

moderately different map if one employs the Z03 or any other dust emission equations instead of K14 or 
our new scheme. Therefore, although here we present a standard correction map which is likely accurate 
and realistic, we suggest each model should make their own correction maps for their specific model 
configurations. We discuss more caveats of this approach in Sect. 5.4. 
 Figure 9 shows the ratio maps normalized fine emissions to coarse emissions. Figure 9a shows the 1245 
ratio of normalized 0.5° × 0.625° emissions (𝐹),'..) to constrained 1.9° × 2.5° emissions (𝐹),0), and Figure 
9b shows the ratio of constrained 𝐹),'.. to constrained 0.9° × 1.25° emissions (𝐹),2). Since all emissions 
are constrained to match the global dust budget, the correction maps display the relative changes in spatial 
variability between two resolutions. From both Figs. 9a and 9b, it can be seen that 0.5° × 0.625° emissions 
tend to generate relatively fewer emissions (blue color) over the major sources, such as the Sahara, the 1250 
Arabian Desert, and the Taklamakan Desert. 0.5° × 0.625° emissions also tend to have relatively more 
emissions (red color) over the peripheries of the major sources, such as Algeria, Yemen, and the 
peripheries of Taklamakan. This is in line with the above discussion, because the high-resolution 
simulations tend to be more capable of representing the local peaks of 𝑢∗9 and therefore can more likely 
pass the thresholds and produce 𝐹); the low-resolution simulations would miss a lot of marginal emissions 1255 
because the low-resolution wind will be smaller than the low-resolution threshold and yield a zero 𝐹). The 
ratios over the marginal sources can be up to 100 or even more because of the much smaller emissions in 
low-resolution simulations. The contrast is smaller (with ratios of 0.5–0.9) over major sources where 
coarser simulations are more capable of representing the large-scale emission fluxes. Due to the same 
reason, the correction values in Fig. 9a for 1.9° × 2.5° (𝐾�5,0) generally have bigger magnitudes than those 1260 
in Fig. 9a for 0.9° × 1.25° (𝐾�5,2). These maps indicate that in coarse-gridded simulations, dust emissions 
are overall underrepresented over marginal sources and overrepresented over major sources. Therefore, 
we propose implementing these maps into the coarser GCMs to correct the dust emission spatial variability 
accordingly. 
 1265 
 

 
Figure 9. Gridded maps of a 0.9° × 1.25°, 1.9° × 2.5°, and 4° × 5° scaling factor to rescale the coarse dust 
emission simulations to match the spatial variability of high-resolution dust emissions. This is achieved 
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by calculating the ratios of (a) 0.5° × 0.625° to 1.9° × 2.5° emissions, (b) 0.5° × 0.625° to 0.9° × 1.25° 1270 
emissions, and (c) 0.5° × 0.625° to 4° × 5° emissions. Emissions of all resolutions are constrained and 
normalized to have a global total of 5000 Tg yr-1 before calculating the ratios. 
 
 
 1275 
4.3 Comparison of our emission against other emissions estimates 
 

To validate the emissions produced by our new scheme, this subsection focuses on comparing the 
resulting 0.5° × 0.625° emissions from our new scheme against other existing emission data. Since there 
are no globally gridded observations of dust emissions, GCMs and ESMs mostly evaluate their schemes 1280 
using observable atmospheric dust products such as satellite and ground-based DAOD data, as well as 
dust surface concentrations and dust deposition flux measurements (Ridley et al., 2012; Kok et al., 2014b; 
Pu and Ginoux, 2018; Parajuli et al., 2019; Klose et al., 2021). Since this study focuses on simulating dust 
emissions, not their subsequent transport and deposition, we compare our results against constraints on 
the fraction of annual dust emission contributed by nine major source regions (see Fig. 10a and Table 1 in 1285 
Kok et al., 2021b). These constraints on regional emission fluxes were obtained from the Dust Constraints 
from joint Observational-Modelling-Experimental analysis (DustCOMM) data set (Kok et al., 2021a, b), 
which used inverse modeling to combine an ensemble of model simulations of the global dust cycle with 
constraints on the regional DAOD near major dust source regions (Ridley et al., 2016), the dust size 
distribution (Adebiyi and Kok, 2020), and dust extinction efficiency (Kok et al., 2017). The DustCOMM 1290 
constraints on regional dust emissions include error estimates that account for the spread in model results 
and the uncertainties in the constraints on dust properties and abundance. Comparisons against 
independent measurements of dust surface concentrations and deposition fluxes indicated that the 
DustCOMM product is more accurate than GCM simulations and the MERRA-2 dust reanalysis, and that 
uncertainties are realistic (Kok et al., 2021a, b). The total emissions from all nine source regions obtained 1295 
by the DustCOMM dataset was 4.7 (3.4–9.1) × 103 Tg/year for dust PM20. The global total of ~4700 Tg 
yr-1 is close to the 5000 Tg yr-1 we adopted in this study for normalization, and we again normalized the 
DustCOMM global emissions to 5000 Tg yr-1. Note that Kok et al. (2021a, b) only constrained the 
emissions and other dust variables for each broad region, but its subregional spatial distribution of dust is 
still a multimodel mean. 1300 

 
Fig. 10a shows the gridded global spatial distribution of DustCOMM dust emissions (Kok et al., 

2021a). Here we compare the gridded simulations of K14 (experiment I; Fig. 7a) and our scheme 
(experiment V; Fig. 7e) against the gridded K21 DustCOMM emissions. Our new scheme’s simulation in 
Fig. 7e successfully captures most of the major peaks in DustCOMM emissions, except that there are more 1305 
northern U.S. and high-latitude emissions in our new scheme which was not represented and constrained 
in DustCOMM’s inverse analysis. Our scheme and DustCOMM emissions have a gridded spatial 
correlation coefficient of r = 0.71, showing the resemblance of the two emission maps and our scheme’s 
ability in physically capturing the emission peaks. On the other hand, K14 emissions (Fig. 7a) also share 
a similar spatial distribution with DustCOMM emissions but show more emissions over central Africa, 1310 
central India, and northern Australia. Its gridded spatial correlation coefficient with DustCOMM is r = 
0.61, indicating it does not match DustCOMM emissions in spatial variability as well as our scheme does. 

We also conducted simulations using the Z03 scheme (Eq. 10) for comparison with our scheme’s 
simulation. The Z03 scheme requires a source function S, and in this study we adopted two popular source 
functions: one is the Zender et al. (2003b) geomorphological source function (e.g., used in CESM; Oleson 1315 
et al., 2013) and the other one is the Ginoux et al. (2001) source function (e.g., used in GEOS-Chem; 
Fairlie et al., 2007). Both source functions are plotted in Fig. 2 in Kok et al. (2014b). Fig. S9a shows the 
simulations of the Z03 scheme with Ginoux et al. (2001) S (Z03–G), which shows almost an identical 
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pattern with the Z03–G scheme in the GEOS-Chem simulations (e.g., top panel of Fig. 1 in Meng et al., 
2021). The Z03–G scheme is mostly consistent with the DustCOMM multimodel emissions (r = 0.57), 1320 
but captures more African emissions in the northwest Africa such as Algeria, Morocco, and Western 
Sahara. On the other hand, the Z03–Z scheme employs a geomorphic S that possesses a spatial distribution 
of the upstream area where surface runoff is collected, from Zender et al. (2003b). Fig. S9b shows the 
simulations of the Z03–Z scheme, which shows a highly similar pattern with the Z03–Z scheme in the 
CESM simulations (e.g., Fig. 2a in Li et al., 2022). It captures the emission peaks across the globe but is 1325 
quite spatially heterogenous, yielding a relatively low r = 0.35 with DustCOMM. 

 
 In Fig. 10b, we compare the simulated dust emissions summed over each of nine source regions 
(rectangular boxes in Fig. 10a) against the corresponding DustCOMM emissions. We also summed the 
emissions outside all rectangular boxes as the high-latitude emissions, to yield the ten data points in Fig. 1330 
10b. From Fig. 7e, high-latitude emissions from our scheme mainly includes emissions from Alaska, 
Canada, Greenland, and Iceland, and there are no emissions from Antarctica because of the lack of 
necessary input data there (e.g., soil texture and roughness due to rocks). However, since K21 does not 
provide emission estimates outside of the nine defined source regions, we compare against the estimate of 
high-latitude dust emissions from Bullard et al. (2016) (B16) obtained from GCM results. Their definition 1335 
of high-latitude emission not only includes emissions from the abovementioned regions but also from 
Patagonia, so we add Patagonia (39°–56°S of S America) emissions as part of the high-latitude emissions 
in Fig. 10b. Bullard et al. (2016) estimated that high-latitude emissions (without error estimates) accounted 
for 4-5 % of their assumed 2000 Tg/yr of global total emissions. We normalized their estimate to match 
our global total of 5000 Tg yr-1, yielding a high-latitude emission range of 200–250 Tg yr-1. We take the 1340 
mean value which is 225 Tg yr-1. 

It can be seen from Fig. 10b that the results with our scheme (blue color) better match these 
estimates of regional emissions than results with the K14 scheme, lying substantially closer to the 1:1 
(black) line over most regions including Africa, Asia, and Australia. There are two notable exceptions, 
namely North America and the high-latitude emissions. Our scheme generates fewer dust emissions over 1345 
the Mojave–Sonoran–Chihuahuan over the U.S.–Mexico border compared to the K14 emissions (Fig. 7a), 
because of the high LAI (annual mean > 0.4; Fig. 3a) over the western U.S that leads to the strong wind 
drag partitioning. Meanwhile, for the rest of the world, our scheme generates a significant amount of high-
latitude emissions over the Arctic, which were not captured by K14 emissions due to the very high 𝑢∗#". 
Using the emission intermittency parameterization, our scheme represents one of the earliest attempts of 1350 
successfully capturing a significant amount of high-latitude emissions. Our high-latitude emissions 
account for 262 Tg yr-1 (without Patagonia) and 308 Tg yr-1 (with Patagonia), in total accounting for 5–6 
% of a global sum of 5000 Tg yr-1 which is very close to what B16 suggested. Our scheme has an R2 of 
89 % and an RMSE of 141 Tg yr-1, which is substantially better than K14’s performance with an R2 of 65 
% and an RMSE = 259 Tg yr-1. On the other hand, the Z03–Z scheme has a similar level of performance 1355 
compared with K14, with a higher RMSE of 317 Tg yr-1 and an R2 of 64 %. The Z03–G simulation has a 
higher R2 of 83 % and also a smaller RMSE of 237 Tg yr-1 against DustCOMM compared with K14 and 
Z03–Z. In conclusion, our scheme outperforms all the aforementioned simulations in terms of matching 
against the DustCOMM estimates of regional dust emissions. 

 1360 
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 1365 

 
 

Figure 10. Dust emissions simulated using our new scheme and the older Kok et al. (2014b) scheme 
compared against DustCOMM (K21) and Bullard et al. (2016) constraints on regional dust emissions. (a) 
Globally gridded DustCOMM emissions (kg m-2 yr-1) based on emissions from six different models that 1370 
were adjusted using inverse modeling to match constraints on particle size distribution, extinction 
efficiency, and regional dust aerosol optical depth. The black rectangular regions specify the nine source 
regions defined by Kok et al. (2021a) as also shown in Fig. 8c-d. (b) DustCOMM regional emissions 
(based on fractional emissions reported in the fifth column of Table 1 in K21b scaled to a global total of 
5000 Tg yr-1) versus the regional emissions computed by the K14 scheme (Fig. 7a) and our new scheme 1375 
(Fig. 7e). The regional emissions are obtained from DustCOMM following the nine source regions in 
panel (a), with one extra data point representing the “high-latitude” emissions estimated by Bullard et al. 
(2016). The error bars show one standard error, except that the B16 high-latitude emission does not include 
an error estimate. The black line shows the 1:1 line. 
 1380 
 
 
5. Discussion of the caveats and limitations of the new parameterization 
 
Because of the complexities of simulating the fine-scale process of dust emission in a large-scale gridded 1385 
model, the parameterizations of dust emission processes presented in Sect. 4 and the dust schemes 
employed from all past studies necessarily made a number of assumptions. Below, we discuss the most 
important assumptions and the corresponding limitations. 
 
5.1. Soil median diameter representation 1390 
 For our derived parameterization for the dry soil median diameter 𝐷&%, we obtained a relationship 
between 𝐷&% and silt+clay fraction for non-arid regions (LAI > 1), and a constant of 𝐷&%' = 127 ± 47 μm 
for arid regions (LAI < 1). In theory, 𝐷&% should be a function of soil properties (Hillel, 1980) and therefore 
implicitly of space and time, but we obtained a simple relationship for 𝐷&%	over arid regions because 1) 
different studies provided measurements of different soil properties such that data are limited and 1395 
insufficient for a more detailed statistical analysis, 2) the uncertainties of the measured soil PSDs are 
moderately large, and 3) most 𝐷&% measurements over arid regions found 𝐷&% within 40–250 μm (Fig. 1c), 
which limited the dry fluid threshold 𝑢∗#"' to vary within the relatively small range of ~0.204–0.268 m s-

1 (from Eq. 2 assuming 𝜌& = 1.225	kg	m,1). This range is about ten times smaller than the global range 
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of the wet fluid threshold 𝑢∗#"  (~ 1 m s-1). Thus, using a single 𝐷&%'~127	𝜇m across all arid regions 1400 
appears to be a reasonable approach given the current data availability. 
 A number of previous studies have also compiled their global 𝐷&% maps for calculating the dust 
emission threshold (Laurent et al., 2008; Tegen et al., 2002; Menut et al., 2013). These studies used global 
soil texture data (with known fractions 𝑓& of soil components including sand, silt, and clay) to determine 
gridded soil types using the soil texture triangle diagram (e.g., FAO/IIASA/ISRIC/ISS–CAS/JRC, 2012; 1405 
Chatenet et al., 1996; Shirazi and Boersma, 1984), and calculated gridded 𝐷&% maps by combining the soil 
component fractions 𝑓&  with the estimated aggregated particle size 𝐷&&  of the soil components by a 
weighted mean 𝐷&% = ∑ 𝑓&𝐷&&&  (Menut et al., 2013). Since these 𝐷&& values are based on measurements 
from Chatenet et al. (1996), these studies also took into account the aggregated sizes of the individual soil 
components. However, owing to insufficient data worldwide, these maps have not been verified against 1410 
the measurements of the in-situ soil PSD. On the other hand, our results based on observations suggest 
that the spatial variability of 𝐷&% over deserts are relatively small compared to 𝐷&% over nonarid regions, 
and does not significantly correlate with soil texture and soil properties (see Eq. 14). Our results thus 
surprisingly suggest that the 𝐷&% parameterization can reasonably be much simplified into a global constant 
over arid regions. This approach is consistent with another current approach of employing a globally 1415 
constant soil particle diameter (e.g., Zender et al., 2003a; Mahowald et al., 2006) and significantly 
different from another approach of employing a 𝐷&% map (e.g., see Fig. S10 for the input D&j map for the 
CHIMERE CTM; Mailler et al., 2017; Menut, 2018; Menut et al., 2021). Furthermore, the 𝐷&% 
measurements showed a positive relationship with the silt+clay fraction 𝑓9$*"D5*&6  over the non-arid 
regions, which we attributed to the increasing cohesion between soil particles with the increasing silt+clay 1420 
content. This is different from the negative 𝐷&%–𝑓9$*"D5*&6 relationship assumed by most past studies (Tegen 
et al., 2002; Laurent et al., 2008; Menut et al., 2013) as they assumed that 𝐷&% increased with sand content 
(𝑓9&P)= 1 – 𝑓9$*"D5*&6). We argue that our 𝐷&%–𝑓9$*"D5*&6 relationships are based on observations and should 
thus represent an improvement over the past assumed 𝐷&%–texture relationships. We anticipate that as more 
measurements emerge in the future, more statistical or machine learning modeling approaches can more 1425 
robustly decipher the intricate relationships between the aggregated 𝐷&% and the soil properties in order to 
further improve the representation of the global 𝐷&% map. 
 
 
5.2. Hybrid drag partition scheme 1430 

For our drag partition scheme, we combined the drag partition for rocks (𝑓8##,J ) from the 
Marticorena and Bergametti (1995) scheme with the drag partition for vegetation (𝑓8##,F) from the Okin 
(2008) scheme using a weighted mean approach employing the land cover fractions of rocks and 
vegetation, which is a novel approach. Nonetheless, our scheme still contains several major limitations. 
First and foremost, we calculate the rock 𝑓8##,J using the Prigent et al. (2005) aeolian roughness length 1435 
data derived from the ERS microwave sensor, but we could not completely separate rock roughness from 
vegetation roughness in the dataset. Marticorena et al. (2006) argued that ERS sensor measurements has 
relative small local incident angles such that the contribution from vegetation roughness is relatively small 
compared to the contribution from rock roughness. We also removed as much vegetation influence as 
possible on 𝑧'& by taking the minimum 𝑧'& out of the 12 available monthly data for all grids, but it is still 1440 
possible that a small fraction of vegetation roughness remains. Thus, our approach of combining the time-
invariant Pr05 𝑧'&  (and 𝑓8##,J ) with the time-varying 𝑓8##,F  will probably result in a small degree of 
double-counting of vegetation roughness in our drag partition scheme. We also note that the Pr05 data 
used the microwave backscatter coefficient as a proxy for inferring 𝑧'&, but it does not perfectly correlate 
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with the 𝑧'& measured by the ground sites, and so there will be some corresponding errors in the Pr05 𝑧'& 1445 
used in our drag partition scheme. 

Second, the land cover fraction areas used are obtained from the ESA CCI dataset in our drag 
partition scheme, which are annual mean and thus not season-dependent. The land cover of vegetation 𝐴F 
in Eq. 21b should also be a function of time mainly because of the seasonally changing vegetation cover. 
However, most current land cover datasets provide annual data but not seasonal data, and thus 𝐴J and 𝐴F 1450 
in Eq. 21b are only spatially varying within the year 2006. Furthermore, most land cover datasets only 
provide near-term land cover data (the farthest data goes back to the year 850; e.g., Klein Goldewijk et al., 
2017). ESA CCI has a temporal coverage of 1992–2019, and so the dataset will represent relatively well 
for present-day scenarios but become less representative of paleoclimatological scenarios, for which the 
vegetation distributions differ from that in the present day, such as during the Green Sahara > 6000 years 1455 
ago (Kutzbach et al., 1996; Bonan, 2015). 

A third limitation of our new drag partition scheme is that the Okin (2008) drag partition scheme 
requires the vegetation cover fraction 𝑓F as a proxy for vegetation density. In this study, we proposed 
LAI	~	𝑓F = 1 − 𝑓I&J8 as discussed in Eq. 18b. Since LSMs do not have accurate simulations of 𝑓F, there 
are only preliminary equations for calculating the bare and vegetated fractions proposed by previous 1460 
papers (e.g., Mahowald et al., 2006; see discussions in Eq. 11 and Eq. 18b). However, Eq. 11 (and thus 𝑓F 
~ LAI) only applies to regions with low LAI because leaves are mostly not overlapped; over regions with 
higher LAI, leaves start to overlap and LAI > 𝑓F. Thus, this assumption could overestimate 𝑓F and thus 
𝑓8##,F, thereby underestimating dust emissions over vegetated regions (e.g., underestimations over western 
U.S. deserts in Fig. 7e). Thus, LSMs need a more accurate parameterization of 𝑓F to get a more accurate 1465 
vegetation drag partition effect regardless of whether the Okin (2008) or the Raupach et al. (1993) scheme 
is used. Alternatively, LSMs could also read in observed 𝑓F from available satellite-derived products such 
as MODIS or AVHRR 𝑓F, as done by Wu et al. (2016) for instance. We used the observed/modeled LAI 
instead of observed 𝑓F, because LSMs actively simulate LAI, allowing the scheme to be used in past and 
future climates when vegetation cover observations are not available.  1470 

A fourth important limitation is that O08 does not fundamentally distinguish the drag partitioning 
between different plant functional types (PFTs). O08 assumes that all short plants are hemispheric in shape 
and produce the same 𝑓8##,F  if they have the same 𝑓F  or LAI. In reality, short plants such as shrubs, 
herbaceous plants, and crops have vastly different shapes; some are far from hemispheric and can hardly 
be approximated by a simple geometry or shape. Nonetheless, this limitation is not unique to O08 but 1475 
shared by other drag partition schemes such as Raupach et al. (1993), as their 𝑓8##,F equations are also 
functions of 𝑓F only and not functions of PFTs. More research is thus warranted in the future to better 
quantify the plant shapes and 𝑓8##,F of different PFTs. 
 

 1480 
5.3. Dust emission intermittency scheme 

There are two important caveats about the Comola et al. (2019b) intermittency scheme. The first 
caveat is that it has exponential dependences on 𝑢∗9, 𝜎Li$, 𝑢∗$", and 𝑢∗#" (see Sect. S2) and is thus very 
sensitive and vulnerable to the accuracy of the GCM simulations of the four variables. For instance, if the 
thresholds are overestimated by the threshold schemes, not only will emissions be underestimated but 𝜂 1485 
from C19 will also be close to zero and further worsen the low bias of the dust emissions. Therefore, a 
prerequisite of employing the C19 scheme is that the wind 𝑢∗9 and the thresholds should be adequately 
simulated and have reasonable ranges of variability throughout the year. If simulated well, 𝜂 will have 
reasonable day-to-day and seasonal fluctuations. Otherwise, 𝜂 can constantly fall on one or zero and 
become unindicative of the boundary-layer dynamics temporal variability, and the resulting 𝜂 time series 1490 
will further impact and worsen the temporal variability of the 𝐹),h time series. 
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The second caveat is that Comola’s theory allows turbulence to generate instantaneous winds 𝑢�9 
that exceed the impact and fluid thresholds and generate some emissions, even when the averaged 𝑢∗9 <
𝑢∗$" across the model timestep. Thus, C19 allows 𝜂 > 0 (per Eq. 22c) when 𝑢∗9 < 𝑢∗$". However, the C19 
parameterization as such still depends on conventional dust emission equations such as Kok et al. (2014b) 1495 
or Zender et al. (2003a), which prohibit emissions when the mean 𝑢∗9 < 𝑢∗$" within a model timestep. 
Thus, the C19 theory and its dust emission parameterization contain an internal logical inconsistency, and 
the C19 scheme per se still does not generate emissions 𝐹),h (Eq. 22b) for 𝑢∗9 < 𝑢∗$" (𝜂 > 0 per Eq. 22c, 
but 𝐹),h = 	𝜂𝐹) = 0 since 𝐹) = 0 per Eq. 22a). But, because the turbulent emissions in the 𝑢∗9 < 𝑢∗$" 
regime is small, the C19 formulation is still a good approximation for turbulent emissions, performing 1500 
much better than the conventional timestep-constant models as demonstrated in Comola et al. (2019b). 
 
 
 
5.4 Reducing the grid scale-dependence of dust emission simulations 1505 
 We produced the correction maps to scale the spatial variability of the low-resolution dust emission 
simulations, matching the spatial variability of the high-resolution emissions (Fig. 9) to reduce the scale-
dependence of dust emission simulations. As such, it is an alternative to the computationally expensive 
but more fundamental solution of simulating dust emissions in the highest model resolution possible and 
then regrid to coarser resolution. Employing the scaling map 𝐾�5 is different from the fundamental solution 1510 
in the sense that the maps in Fig. 9 are time-independent and derived by matching the annual total high-
resolution emissions (Sect. 4.2). As seen in Fig. S8, the scaling map exhibits a moderate degree of 
seasonality, but employing an annual scaling map like Fig. 9 will already address a large part of the scale-
dependence problem. We suggest GCMs and CTMs, which focus on present-day simulations, perform 
multiyear simulations in both high and native grid resolutions to obtain monthly climatological maps of 1515 
scaling factors for present-day dust emission simulations. Afterwards, ESMs only need to read in the 
climatological monthly scaling maps to rescale the native grid dust emissions every month before passing 
the dust emissions to the atmospheric model component. If desired, instead of generating climatological 
maps, models can even choose to obtain transient (e.g., monthly) 𝐾�5 maps as a time series for the past 
decades of the historical period (e.g., 1980–2020) so that the scaling maps contain a much better temporal 1520 
variability in terms of seasonality, interannual and decadal variability, of the historical dust emissions than 
compared with the climatological scaling maps. 

Our proposed approach is an alternative to a more common approach, which is to employ a Weibull 
distribution to the GCM winds (Cakmur et al., 2004; Grini et al., 2005; Cowie et al., 2015; Zhang et al., 
2016; Menut, 2018; Tai et al., 2021). In the Weibull approach, in each time step the model assumes a 1525 
Weibull PDF for each grid that is characterized by the modeled mean wind speed and a shape parameter 
𝑘 representing the subgrid wind variability. 𝑘 could be a global constant (e.g., k = 4 in Menut, 2018), a 
parameterized function of the model mean wind speed (e.g., Grini et al., 2005), or a globally gridded map 
obtained by comparing coarse winds against high-resolution winds (Ridley et al., 2013; Tai et al., 2021). 
A distinction between our approach and the Weibull approach is that while previous studies derived the 1530 
shape parameter by comparing high- and low-resolution winds (e.g., Tai et al., 2021), we directly make 
use of the high- and low-resolution input fields to calculate dust emissions (Fig. 8c and d) and then 
compare between the high- and low-resolution emissions. Therefore, the correction map 𝐾�5  (Fig. 9) 
captures subgrid wind variability due to subgrid spatial characteristics just like 𝑘 in the Weibull approach, 
and thus we anticipate some intrinsic spatial correlations between the 𝐾�5 and 𝑘 maps.  1535 

However, there are three distinctions and advantages of our approach over the Weibull approach. 
The first and the most important one is that our approach accounts for not only the subgrid variability of 
wind but all other fields (𝑢∗9, 𝑤, LAI, etc). 𝐾�5 is obtained via comparing emissions across resolutions and 
thus its magnitude is a result of the subgrid variability of all input fields, whereas in Tai et al. (2021) the 
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𝑘 is obtained via comparing winds across resolutions and thus only captures subgrid wind variability. The 1540 
second advantage is that our approach makes no assumption about the distributions of the subgrid 
variability of forcings. The Weibull approach is a parametric statistical method, which means the dust 
models need to assume the subgrid winds follow a Weibull distribution, but the subgrid spatial wind 
variability can deviate substantially from a Weibull distribution due to several reasons, such as complex 
terrain (Jiménez et al., 2011). Our method is non-parametric and thus more robust in capturing subgrid 1545 
variability of multiple input fields at once. The third advantage is that our approach saves computational 
cost because it only needs to (1) find the 𝐾�5 map and (2) directly apply 𝐾�5 to correct the coarse emissions. 
Meanwhile, past studies needed to (1) find the 𝑘 map, (2) iteratively calculate emissions by looping across 
the Weibull PDF (3) sum across the PDF to yield the total emission, and (4) update the Weibull PDF for 
each grid and time step. Repeating step (2) for all times and grids is computationally very expensive.  1550 

There is yet another alternative approach to account for subgrid variability of winds and other 
parameters. Some CTM studies (e.g., Meng et al., 2021) proposed to simulate dust emissions at the highest 
resolution possible and then store the results as a gridded emission inventory. Meng et al. (2021) proposed 
that CTMs do not need to simulate dust emissions and instead only need to regrid the stored gridded dust 
emissions to the desired grid resolutions. An advantage of their approach is clearly that their regridded 1555 
dust emissions will have the correct spatial and temporal correlations with their high-resolution dust 
emission inventory, which means there will be no grid scale-dependence problem in their approach. Their 
approach also saves time and computational resources because they do not simulate but just read in and 
regrid dust emissions. This approach is particularly favorable for the CTM simulations for air quality 
forecasts and hindcasts in which models need to ensure the near-term input meteorological fields are very 1560 
accurate to generate an accurate dust emission inventory, such as the air quality forecasts conducted by 
the Environmental Protection Agency (EPA) using CMAQ (Appel et al., 2013, 2017), or other CTM 
studies such as GEOS-Chem (Zhang et al., 2013; Meng et al., 2021). However, for GCMs/ESMs that care 
about long-term simulations and aerosol–climate interactions, there is a need to actively simulate dust 
emissions and allow a full coupling between meteorology and dust, which could not be achieved by 1565 
feeding the models with an inventory. In that case, our scaling method is likely more desirable for GCMs 
and ESMs to reduce the scale-dependence problem. 

Also, we note that although our approach alleviated the grid-scale dependence of dust emissions, 
the grid-scale dependence problem also appears in other component of dust cycle simulations, such as in 
dust transport. The grid-scale dependence can be due to not just the averaging problem but also other 1570 
problems, such as numerical diffusion which worsens with increasing grid size in an Eulerian GCM 
(Rastigejev et al., 2010; Eastham and Jacob, 2017; Zhuang et al., 2018). It has to be solved in the 
atmospheric model component such as by some adaptive mesh refinement approaches (e.g., Semakin and 
Rastigejev, 2016) or machine learning methods (e.g., Zhuang et al., 2021). 
 1575 
 
5.5. Dust emission simulations  

Last but not least, all maps produced in this paper depend on the accuracy of the representations 
of the input meteorological fields and land-surface variables in various datasets. Our results are 
particularly sensitive to the soil moisture simulated by MERRA-2 mainly because dust schemes are very 1580 
sensitive to soil moisture. As a result, the final simulation of our scheme (expt. V; Fig. 7e) outperforms 
other dust emission schemes employed in this paper (Fig. 10 and Fig. S9), yet some features in the map 
are not ideal. First, for instance, the Australian dust emissions are of a comparable order of magnitude to 
the East Asian emissions (and even larger than East Asian dust emissions in coarser resolutions, per Fig. 
8a), which might be because the soil moisture over Australia is slightly underestimated by MERRA-2. 1585 
Second, northeastern China in Fig. 7e has more emissions than northwestern Chinese deserts, and similar 
spatial variability is also seen in other past studies (e.g, Kok et al., 2014b), which might be due to the 
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stronger friction velocity over northeastern China (annual mean > 0.3 m s-1 in MERRA-2) than over 
northwestern China (annual mean ~0.2 m s-1 in MERRA-2) in the GCMs or input MERRA-2 fields (see 
Fig. S11 for the spatial distribution of MERRA-2 𝑢∗ over northeastern vs. northwestern China). Third, our 1590 
scheme generates very high summertime emissions over Sudan and the Horn of Africa because of the very 
high MERRA-2 𝑢∗ (~ 1 m s-1 in the summer), low soil moisture and aeolian roughness (see Fig. 7i). 
However, the emission peak are not seen by the dust aerosol optical depth (DAOD) observations. There 
might be several reason for the HOA emission peak: i) the input fields are biased over the HOA, e.g., ; ii) 
some unknown mechanisms are responsible for suppressing the HOA dust and we need to implement into 1595 
the GCMs; iii) dust emissions elsewhere except the HOA are suppressed too much by the drag partitioning 
and the intermittency effect.    
 
 
6. Conclusions and significance of our new parameterization 1600 
 
 This study presented a new desert dust emission scheme for GCMs and CTMs. The major advances 
of our scheme compared with existing schemes are the following: 1) we obtained improved 
parameterizations for several key aspects of dust emission, 2) these improved parameterizations were 
informed by multiple observations that constrained critical parameters, and 3) we proposed a method to 1605 
reduce the grid resolution-dependence of the emission scheme that is a common problem to many other 
existing schemes.  

To achieve these advances, we have implemented the following modifications to the existing dust 
emission scheme of Kok et al. (2014a, b): Our first improvement involved the use of soil particle size 
distributions from multiple past studies to estimate and constrain the soil median diameter 𝐷&% as a critical 1610 
parameter that determines the dust emission thresholds 𝑢∗$" (impact) and 𝑢∗#" (fluid). We found that over 
the arid desert regions (LAI < 1), 𝐷&% can be approximated as a global constant of 127 ± 47 μm, and over 
non-arid regions 𝐷&%  increases linearly with silt and clay content. This finding indicates that past dust 
modeling approaches which parameterized 𝐷&% as a function of soil types can be simplified.  

Second, we presented a parameterization of the effects of surface rocks and vegetation on the wind 1615 
drag partition effects, which is not included by many of the current GCMs and CTMs. In particular, a 
major advance of our drag partition scheme is that we propose a novel method to combine the effects of 
rocks and vegetation by getting a weighted mean of both effects according to the globally gridded rock 
and vegetation land-cover area fractions from land-cover datasets (e.g., Klein Goldewijk et al., 2016; ESA, 
2017; Kobayashi et al., 2017). Many dust modeling studies only attempted to include the drag partition 1620 
effect of either one of these roughness elements, and this study represents one of the earliest attempts 
along with a few other papers (e.g., Darmenova et al., 2009; Foroutan et al., 2017; Klose et al., 2021) to 
combine and unify the effects on the wind partition of both kinds of roughness elements. Future work 
should also account for the time-varying vegetation drag partition effect to further enhance the realistic 
coupling of dust emissions to vegetation dynamics and variability.  1625 

Third, we incorporated the boundary-layer turbulence effects on dust emission intermittency by 
coupling the intermittency scheme formulated by Comola et al. (2019b) to our Kok et al. (2014b) dust 
emission schemes. The C19 scheme is formulated based on field measurements of simultaneous high-
frequency measurements of sand transport and the turbulent wind. This is one of the first studies to have 
included the turbulence effects on dust emissions, amongst others which focused more on the turbulence 1630 
effects on convective dust emissions (e.g., Klose et al., 2014; Li et al., 2014). Including the turbulence-
driven intermittency effect is important for marginal dust emission sources where the wind speed is 
normally below the fluid threshold, e.g., dust emissions from high-latitude regions. The C19 scheme also 
allows dust emission physics to couple better with boundary-layer dynamics and variability, such that 
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simulated dust will have a day-to-day and seasonal variability that is physically linked to the 1635 
characteristics of the turbulent boundary-layer.  

Fourth, we proposed a simple scaling method to reduce the inconsistencies in the spatial 
distributions of the high-resolution and low-resolution dust emission simulations within a LSM. We 
propose to rescale the low-resolution dust emissions to match the spatial variability of the high-resolution 
emissions by comparing the spatial distributions of the high- and low-resolution dust emission maps, 1640 
thereby obtaining a climatological map of scaling factors. The correction maps can thus be applied to other 
simulations of similar settings, e.g., experiments with the same meteorological and land-surface inputs but 
different sea/land ice, ocean, stratospheric, or plant physiological forcings. This approach can alleviate the 
long-standing problem of grid-resolution dependence and spatial distribution inconsistencies of dust 
emissions across grid sizes among a GCM (e.g., Ridley et al., 2013). Although grid-scale dependence 1645 
exists in most physical variables in the GCMs, dust emission is exceptionally vulnerable to the grid-
resolution dependence problem because of the very strong nonlinearity (a power of 3–5 or more) of dust 
emissions to the meteorological fields. 

These new approaches act synergistically to improve dust emission modeling. Our new scheme’s 
dust emission simulation, driven by the MERRA-2 meteorological and land-surface fields, shows higher 1650 
consistency with the Kok et al. (2021a, b) DustCOMM multimodel mean emissions (Fig. 10 and Fig. S9), 
which were observationally constrained by an inverse modeling approach and thus contain a realistic 
regional distribution of dust emissions. Our scheme shows the best agreement against the multimodel 
mean dust emissions in terms of regional characteristics with R2 = 89 %, meanwhile other schemes, i.e., 
Kok et al. (2014a, b) and Zender et al. (2003a, b), respectively yielded R2 = 65 % and the R2 = 64 %. This 1655 
indicates that adding the missing aeolian physics into the existing emission schemes is critical to correctly 
capturing the dust emission spatial variability, and that our scheme displayed almost identical regional 
charactistics as the inverted multimodel emissions. Our emission map also show more distinctively the 
major dust sources including the Bodélé Depression, El Djouf, the Arabian Desert, the Australian Desert, 
and Patagonia. In our companion paper (Leung et al., in prep.), we will examine the dust cycle simulations 1660 
of this newly proposed dust emission scheme in CESM and evaluate its performance with other dust cycle 
variables such as dust PM concentration, dust AOD, lifetime, and deposition flux. 

Finally, we note that although our scheme employs a specific emission threshold scheme (i.e., 
Shao and Lu, 2000) and a specific dust emission equation of Kok et al. (2014b), the modifications we 
proposed could be applied to different dust emission schemes. For instance, one could use Iversen and 1665 
White (1982) as a threshold scheme with our newly proposed soil median diameter 𝐷&%. One could also 
use Ginoux et al. (2001), Tegen et al. (2002), or any other dust emission equation to combine with the 
Comola et al. (2019b) intermittency scheme and our hybrid drag partition scheme. Therefore, our 
formulation in this paper is highly versatile and adaptable to most of the existing GCMs and CTMs. As 
such, the new dust emission parameterization presented here can improve the global dust cycle in most 1670 
GCMs, ESMs, and CTMs.  
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