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Abstract 25 
 
Desert dust accounts for most of the atmosphere’s aerosol burden by mass and produces numerous 
important impacts on the Earth system. However, current global climate models (GCMs) and land surface 
models (LSMs) struggle to accurately represent key dust emission processes, in part because of inadequate 
representations of soil particle sizes that affect the dust emission threshold, surface roughness elements 30 
that absorb wind momentum, and boundary-layer characteristics that control wind fluctuations. 
Furthermore, because dust emission is driven by small-scale (~1 km or smaller) processes, simulating the 
global cycle of desert dust in GCMs with coarse horizontal resolutions (~100 km) presents a fundamental 
challenge. This representation problem is exacerbated by dust emission fluxes scaling nonlinearly with 
wind speed above a threshold wind speed that is sensitive to land surface characteristics. Here, we address 35 
these fundamental problems underlying the simulation of dust emissions in GCMs and LSMs by 
developing improved descriptions of (1) the effect of soil texture on the dust emission threshold, (2) the 
effects of nonerodible roughness elements (both rocks and green vegetation) on the surface wind stress, 
and (3) the effects of boundary-layer turbulence on driving intermittent dust emissions. We then use the 
resulting revised dust emission parameterization to simulate global dust emissions in a standalone model 40 
forced by reanalysis meteorology and land surface fields. We further propose (4) a simple methodology 
to rescale lower-resolution dust emission simulations to match the spatial variability of higher-resolution 
emission simulations in GCMs. The resulting dust emission simulation shows substantially improved 
agreement against regional dust emissions observationally constrained by inverse modeling. We thus find 
that our revised dust emission parameterization can substantially improve dust emission simulations in 45 
GCMs and LSMs. 
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1 Introduction 
 50 

Desert dust accounts for more than half of the atmospheric mass loading of particulate matter (PM) 
(Kinne et al., 2006; Kok et al., 2017) and produces a wide range of important impacts on multiple 
components of the Earth system (Shao et al., 2011a). Like other aerosols, dust changes Earth’s radiative 
budget and atmospheric dynamics directly by scattering and absorbing radiation (Sokolik and Toon, 1996; 
Miller and Tegen, 1998) and indirectly by mediating cloud formation (Rosenfeld et al., 2001; Shi and Liu, 55 
2019; McGraw et al., 2020; Froyd et al., 2022). These dust–radiation interactions and dust–cloud 
interactions also drive day-to-day variability in large-scale circulation patterns and local weather events 
such as monsoons and rainfall (Jin et al., 2021; Parajuli et al., 2022). Dust further impacts biogeochemistry 
by delivering nutrients such as iron and phosphorus to ocean and land ecosystems (Mahowald et al., 2010; 
Hamilton et al., 2020).  60 

 
In recent decades, modelers have made substantial progress in developing various 

parameterizations for the main dust cycle processes including emission (e.g., Shao et al., 1993; 
Marticorena and Bergametti, 1995; Marticorena et al., 1997; Tegen and Fung, 1995; Klose and Shao, 
2013), advection (e.g., Prospero, 1999; Lin, 2004; Van der Does et al., 2018), deposition (e.g., Barth et 65 
al., 2000; Liu et al., 2001; Zhang et al., 2001; Petroff and Zhang, 2010), as well as its biogeochemical 
effects (e.g., Jickells et al., 2005; Mahowald et al., 2005, 2010; Hamilton et al., 2020), optics (e.g., Sokolik 
and Golitsyn, 1993; Linke et al., 2006; Adebiyi et al., 2020), and radiative effects (e.g., Di Biagio et al., 
2020; Li et al., 2021). Despite substantial progress in dust modeling, current global climate models (GCMs) 
and Earth System Models (ESMs) still struggle to adequately simulate the dust cycle, which impedes an 70 
accurate assessment of dust impacts (Huneeus et al., 2011; Wu et al., 2020; Zhao et al., 2022). For instance, 
model simulations still show large discrepancies when compared against observations of the spatial and 
temporal characteristics of the dust cycle, including dust emission (Kok et al., 2014a; Pierre et al., 2014a), 
dust PM concentration (Wu et al., 2019; Pu et al., 2020; Li et al., 2022), dust aerosol optical depth (DAOD 
or DOD) (Ridley et al., 2012; Kok et al., 2014b; Pu and Ginoux, 2018; Parajuli et al., 2019), dust 75 
deposition (Ginoux et al., 2001; Albani et al., 2014; Kok et al., 2014b; Li et al., 2022), and dust size 
distributions (Parajuli et al., 2019; Adebiyi and Kok, 2020; Li et al., 2022). Also, models struggle to 
capture the observed interannual and decadal variability of dust (Ridley et al., 2014; Smith et al., 2017; 
Evan, 2018; Kok et al., 2018) as well as the sensitivity of dust to climate changes (Evan, 2018; Kok et al., 
2018). An improved quantification of dust impacts on the Earth system thus requires improvements in 80 
how dust is simulated in models. 
 

One key piece of physics that models struggle to parameterize is the dust emission threshold. The 
dust emission threshold 𝑢∗" is defined as the threshold wind stress/speed above which winds initiate, or 
below which winds cease, the lifting of sand particles whose impacts on the soil surface emit dust aerosols 85 
(Kok et al., 2012; Comola et al., 2019b). The dust emission threshold is a function of soil properties and 
atmospheric conditions like particle size distribution, soil moisture, and air density. There are various 
reasons for the inadequate parameterization of the dust emission threshold. First, many models assume a 
globally constant soil particle size in calculating a spatially varying dust emission threshold (Zender et al., 
2003a; Darmenova et al., 2009; Kok et al., 2014b), whereas the actual soil particle size is likely a function 90 
of space and time and could depend on soil properties, such as texture, pH, and organic matter content 
since these variables modulate the cohesion between soil particles (Webb et al., 2016). Some models 
proposed that soil particle sizes are related to the soil texture and therefore represent the soil particle size 
as a global map (Tegen et al., 2002; Darmenova et al., 2009; Menut et al., 2013; Klose et al., 2021), but 
these maps either have not yet been thoroughly validated against observations or are based upon 95 
extrapolation of a limited amount of observations. Second, most current models use the fluid threshold 
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(also named static threshold or initiation threshold) above which saltation is initiated as the dust emission 
threshold, but it is well known that dust emission is governed by both the larger fluid threshold and the 
smaller impact threshold (also named dynamic threshold or cessation threshold) below which saltation is 
terminated (Bagnold, 1941; Shao, 2008; Martin and Kok, 2018; Comola et al., 2019a, b; Pähtz et al., 2020). 100 
Moreover, dust emission is a nonlinear process (i.e., it varies with the wind speed to the second to fifth 
power per Kok et al., 2014a) and the emission flux is particularly sensitive to the magnitude of the 
emission threshold (Kawai et al., 2021). Thus, land surface models (LSMs) within GCMs and ESMs need 
to parameterize the emission threshold correctly to get an adequate spatiotemporal variability of the 
modeled atmospheric dust. 105 
 

The second key dust emission physics that LSMs struggle to represent is the partitioning of the 
wind stress. Wind drag is partitioned into the part absorbed by surface roughness elements (mainly rocks 
and plants) and the part exerted on the bare soil that drives dust emissions. This drag partitioning effect is 
modeled by several dynamical schemes (Raupach et al., 1993; Marticorena and Bergametti, 1995; Okin, 110 
2008), and is accounted for in some models (LeGrand et al., 2019; Klose et al., 2021; Tai et al., 2021) but 
not others (e.g., Kok et al., 2014b; Evans et al., 2016). One major challenge in modeling drag partition is 
to quantify the amount of rocks (which includes rocks, pebbles, and gravel in this study) and their 
corresponding partition effect, because there are few measurements of rock roughness. To cope with this 
issue, studies have used in-situ and/or remote sensing scatterometer measurements to quantify the small-115 
scale land surface roughness (e.g., Greeley et al., 1997; Roujean et al., 1997; Marticorena et al., 2004; 
Prigent et al., 2005, 2012), especially over arid desert regions over which rocks, pebbles, and gravel 
dominate the roughness. However, with a few recent notable exceptions that attempted to represent both 
the roughness effects of rocks and vegetation (e.g., Darmenova et al., 2009; Foroutan et al., 2017; Klose 
et al., 2021), studies often omitted the drag partition effect either due to vegetation (e.g., Menut et al., 120 
2013) or due to rocks (e.g., Wu et al., 2016; LeGrand et al., 2019; Tai et al., 2021). To resolve these issues, 
we propose a new approach that combines the drag partition effects of both elements, leveraging satellite 
scatterometer measurements to quantify the surface rock roughness, and using observable vegetation and 
land surface variables to quantify the surface vegetation roughness. 
 125 

The third key piece of fundamental dust emission physics not accounted for by many models is 
the effect of turbulence-driven high-frequency wind variability on dust emissions. Most current GCMs 
assume a constant wind speed (and thus a constant emission flux) within the relatively large model time 
step, e.g., 30 minutes (e.g., Rahimi et al., 2019; Dunne et al., 2020). However, in reality, high-frequency 
turbulent fluctuations cause the wind speed to fluctuate within a time step (from seconds to minutes). 130 
Because dust emissions scale nonlinearly with wind speed, this causes highly uneven and fluctuating dust 
emission fluxes (Durán et al., 2011). Even more importantly, wind turbulent fluctuations can sweep across 
the dust emission threshold multiple times and shut off dust emissions intermittently within one model 
time step, resulting in strong dust emission intermittency (Comola et al., 2019b). Even regional climate 
models (RCMs), which typically use a smaller time step (e.g., < 1 minute), do not resolve turbulence 135 
unless they are run in the computationally expensive large-eddy simulation (LES) mode (e.g., WRF–LES). 
Omitting turbulence by GCMs and RCMs thus causes either an overestimate or an underestimate of dust 
emissions, especially over marginal source regions where winds fluctuate around the high emission 
threshold, as models do not account for the cessations or initiations of dust emissions due to turbulent 
fluctuations. To account for the instantaneous wind fluctuations, a dynamical approach is to derive a 140 
probability density function (PDF) for the instantaneous momentum flux using LES, which is then used 
for quantifying instantaneous dust emission fluctuations (Klose and Shao, 2012; Klose et al., 2014). A 
parameterization approach is to use the Monin-Obukhov similarity theory (MOST) to relate the standard 
deviation of the instantaneous wind to the boundary-layer dynamical variables (Comola et al., 2019b). In 
this study, we will account for turbulent dust emissions by following Comola et al. (2019b), which showed 145 
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significant improvements in representing the small-magnitude saltation and dust fluxes that are 
particularly important over marginal source regions. 
 

In addition to these issues of models missing some of the fundamental physics of dust emission, a 
central issue in modeling the global dust cycle is that dust emissions are grid resolution-dependent because 150 
of the nonlinear dependence of dust emissions to meteorological fields and land-surface variables. Since 
dust emission varies nonlinearly with wind speed and has an even more complex relation to the soil 
moisture (Gillette and Passi, 1988; Fécan et al., 1999; Shao, 2001; Kok et al., 2014a), the total regional 
and global emissions can vary significantly with grid resolution (Ridley et al., 2013; Meng et al., 2021). 
For instance, modeled emissions were found to increase by ~29 % from a 1° × 1° to 0.25° × 0.25° 155 
resolution (Ridley et al., 2013; Feng et al., 2022). As a consequence, GCMs and ESMs often need to tune 
emissions separately for different grid resolutions to match observational dust budgets (Ginoux et al., 2001; 
Zender et al., 2003a; Albani et al., 2014; Kok et al., 2014b; Chappell et al., 2021). This issue occurs 
because current GCM grid sizes of ~1° or 100 km cannot resolve the spatial scales of ~1 m to ~1 km over 
which soil properties and wind speeds change (Ridley et al., 2013). When adopting coarse grid resolutions, 160 
coarser modeled meteorological fields (for GCMs) or spatially averaged input meteorological fields (for 
chemical transport models or CTMs) will smooth out the local wind extrema, possibly causing wind 
speeds to fall below the dust emission threshold. As a result, the coarse modeled winds usually result in 
strong GCM emissions underestimations (Ridley et al., 2013). The same smoothing problem also occurs 
for soil moisture for instance, with its maxima smoothed out leading to an overestimation of dust emissions. 165 
Thus, although some GCMs and ESMs recently implemented more physical schemes (Zhao et al., 2022), 
their inability to resolve the small scales still causes challenges for capturing the accurate spatial 
distributions of dust emissions (Meng et al., 2021). For the same reason GCMs tend to neglect small-scale 
emissions over marginal source regions. In this study, we will analyze the scale-dependence of our dust 
emission scheme given specific input datasets and propose a method of upscaling the coarse dust 170 
emissions to alleviate the scale-dependence problem. 

 
To tackle the above problems and improve simulations of the global dust cycle, we propose a new 

emission scheme for global models that includes key dust emission physics missing from current models. 
Specifically, we (1) account for the effects of the soil particle size distribution (PSD) on the dust emission 175 
threshold, (2) draw on satellite data and physically explicit models to account for wind momentum 
absorption by both rocks and vegetation, and (3) account for turbulence-driven intermittency in dust 
emission fluxes. After we review current dust emission schemes in Sect. 2, we present our new scheme in 
Sect. 3. In Sect. 4, we code the new dust emission scheme as a standalone sandbox model (see Sect. 2.4) 
and examine the resulting spatiotemporal variability of the new dust emissions. We then examine the grid 180 
scale-dependence of dust emissions and derive a correction map for coarser dust emission simulations to 
correct their spatial variability to high-resolution simulations. Sects. 5 and 6 discuss and summarize the 
main findings of this paper. In our companion paper (Leung et al., in prep.), we will implement this new 
scheme in the state-of-the-art Community Earth System Model version 2 (CESM2) and evaluates its 
performance against observations. 185 
 
2 Current dust emission schemes and their input variables  
 

This section provides a basic review of current GCM’s dust emission schemes, as well as their 
required input meteorological variables. Broadly speaking, dust emission schemes consist of a 190 
parameterization of the dust emission threshold (Sect. 2.1), a parameterization of the reduction of the wind 
drag on the bare soil surface due to momentum absorption by surface roughness elements (Sect. 2.2), and 
a parameterization of dust emission flux given wind speed, threshold wind speed, and drag absorption 
(Sect. 2.3). We will develop an improved emission scheme for GCMs in Sect. 3 by improving upon each 
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of these three core ingredients of dust emission schemes. We also provide a brief description of 195 
meteorological data used for computing the dust emission schemes in Sect. 2.4. 
 
2.1 Parameterization of the dust emission thresholds 

There have been extensive studies on the dust emission threshold 𝑢∗", defined as the wind speed 
or drag that corresponds to the initiation or cessation of dust emission. Dust emission is caused by saltation, 200 
a process by which sand particles (geometric diameter > 63 μm) on the surface are lifted by wind drag 
into the airstream (known as aerodynamic entrainment) and undergo ballistic trajectories (Anderson, 1989; 
Kok et al., 2012). The minimum wind friction velocity 𝑢∗  required for initiating saltation through 
aerodynamic entrainment is called the fluid threshold 𝑢∗#"  (McKenna Neuman and Sanderson, 2008). 
Once saltation is initiated, a smaller 𝑢∗ is needed to maintain saltation because saltation bombardment 205 
(saltating particles impacting on the granular bed) can create further saltation, which is more efficient than 
creating saltation solely through the wind drag. Saltation will be maintained at a slightly smaller 𝑢∗ called 
the impact threshold 𝑢∗$" (Bagnold, 1941; Martin and Kok, 2018). The ratio 𝑢∗$"/𝑢∗#" is about 0.8–0.85 
for loose dry sand and less for soils with other sources of cohesion (e.g., moisture, organic matter), because 
cohesion rapidly increases 𝑢∗#" but low-to-moderate levels of cohesion do not increase 𝑢∗$" as indicated 210 
by numerical simulations (Comola et al., 2019a; Ralaiarisoa et al., 2022) . It follows that dust emission 
can occur below 𝑢∗#", especially in marginal dust source regions with high soil moisture for which 𝑢∗$" 
can be much smaller than 𝑢∗#". 𝑢∗" is thus a general concept comprised of both 𝑢∗#" and 𝑢∗$". However, 
𝑢∗$" is not currently accounted for in most current GCMs, which simply use 𝑢∗#" as 𝑢∗". 

One challenge in parameterizing 𝑢∗#" and 𝑢∗$" lies in the representation of the effect of the soil 215 
particle size 𝐷% on both thresholds. These two thresholds are mainly governed by soil particle diameter 
𝐷%, air density 𝜌&, and soil moisture 𝑤 (Greeley et al., 1997; Shao and Lu, 2000). Although there are 
multiple data sources of globally gridded products for 𝜌&  and 𝑤 , there are relatively few efforts on 
obtaining globally gridded 𝐷% since there are no methods for satellites to observe and derive surface 𝐷% 
observations. With few comprehensive field studies of saltation dynamics over polydisperse soils, past 220 
saltation studies either assumed that particles of different sizes saltate independent of each other 
(Marticorena and Bergametti, 1995; Shao et al., 1996; Alfaro and Gomes, 2001; Zender et al., 2003a), or 
assumed that a single grain size (e.g., the median) could be used to represent the whole PSD of the soil 
bed (Elbelrhiti et al., 2005; Andreotti et al., 2010). The dispute of whether the assumption of “independent” 
saltation (Shao, 2008) or “representative” saltation (Claudin and Andreotti, 2006) is more appropriate was 225 
informed by Martin and Kok (2019), which showed that modeling the threshold using a single particle 
size (“representative” saltation) is more realistic than assuming no interactions between saltation of 
different particle sizes. They argued that the median particle diameter 𝐷&% of the PSD should be used for 
calculating the threshold of a mixed soil, and the emission should then be calculated for the whole soil 
bed using the median instead of using a “spectral / independent” approach of calculating emissions of 230 
different particle sizes separately.  

 
To model 𝑢∗#", current models assume that 𝑢∗#" is mainly dependent on the soil PSD and soil 

moisture (Iversen and White, 1982; Marticorena and Bergametti, 1995; Zender et al., 2003a): 
𝑢∗#" = 𝑢∗#"'(𝐷%, 𝜌&)𝑓((𝑤)          (1) 235 
where 𝑢∗#"' is the “dry” fluid threshold friction velocity (in m s-1) on a smooth and bare surface as a 
function of air density 𝜌&(lon, lat, 𝑡) (longitude, latitude, time) and 𝐷%(lon, lat), which in this study will 
be the median diameter 𝐷&% of a polydispersed, mixed soil PSD. 𝑓( is the correction factor for the presence 
of soil moisture 𝑤(lon, lat, 𝑡); 𝑓( ≥ 1 such that soil moisture protects soil particles from being lifted. 𝑢∗#" 
is the “wet” fluid threshold accounting for the moisture effect. Other factors can also affect 𝑢∗#", such as 240 
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salt concentration, organic matter, electrostatic effects, and surface crusts, but they are not included in 
most studies because they are not well understood and modeled (Shao et al., 2011; Foroutan et al., 2017).  

𝑢∗#"'  is parameterized by considering the balance between aerodynamic drag and lift against 
gravity and interparticle cohesion on a soil particle. The Shao and Lu (2000) (hereafter S&L00) scheme 
derived a simple solution to the force balance (also see Kok et al., 2012), assuming that the cohesive force 245 
is proportional to particle size. Using wind tunnel measurements (e.g., Greeley and Iversen, 1985) they 
obtained an equation with fitting parameters: 
𝑢∗#"' = 4𝐴(𝜌%𝑔𝐷% + 𝛾/𝐷%)	𝜌&)'.+         (2) 
where g = 9.81 m s-2 is the gravitational acceleration, ρp = 2650 kg m-3 is the typical soil particle density, 
𝜌& is in kg m-3, and 𝐴 = 0.0123 as well as 𝛾 = 1.65 × 10),	kg	s)- are empirical constants accounting for 250 
the aerodynamic forces and interparticle forces, respectively. Assuming an air density 𝜌& = 1.225	kg	m)., 
Eq. 2 will yield the smallest 𝑢∗#"' of 0.21 m s-1 at 𝐷% = 80	𝜇m. For larger sizes the particles are heavier 
to lift; for smaller sizes the particles are more strongly bound by interparticle forces.  
 An alternative parameterization for 𝑢∗#"'  is the Iversen and White (1982) scheme (hereafter 
I&W82). They derived a similar solution as S&L00 but further considered the effects of soil particle size 255 
to the airflows, characterized by the particle Reynolds number Re% . I&W82 calculates 𝑢∗#"' =
𝑢∗#"'H𝜌%, 𝜌& , 𝑔, 𝐷%, Re%I in a similar form to S&L00 (see the detailed solution in I&W82 or Kok et al., 
2012), with 
Re% = 𝑢∗#"'𝐷%/𝜈           (3) 
where 𝜈 is the kinematic viscosity of air. Since 𝑢∗#"' is a function of Re%, which itself is a function of 260 
𝑢∗#"', 𝑢∗#"' is an implicit function of itself and the calculation needs to be iterated a few times given ρa 
and Dp in calculation.  

Regardless of whether S&L00 or I&W82 is used, different models make different assumptions for 
soil particle sizes 𝐷%, including a globally constant value (e.g., Zender et al., 2003a), a function of soil 
texture (e.g., Menut et al., 2013), or other forms. For instance, the Community Land Model (CLM), the 265 
land component of CESM, uses a global optimal soil diameter of 𝐷% = 75 μm for the threshold calculation 
following Zender et al. (2003a) (Oleson et al., 2013; also see the latest version of CLM5.0 technical note 
on https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html; last access on 
3 October 2022), and thus 𝑢∗#"' becomes solely a function of 𝜌& in CESM (e.g., 𝑢∗#"' = 	0.21	m	s)/ for 
𝜌& = 1.225	kg	m). at 𝐷% = 75 μm).  270 

Most models parameterize the effect of soil moisture 𝑓( on 𝑢∗#" following Fécan et al. (1999): 
𝑓( = 41 + 1.21(𝑤 − 𝑤")'.01     for 𝑤 > 𝑤"     (4a) 
𝑤" = 𝑎(17𝑓23&4 + 14𝑓23&4							-) = 𝑎(0.17(%clay) + 0.0014(%clay)-)    (4b) 
where 𝑤(lon, lat, 𝑡) is the gravimetric soil moisture (kg / kg) in the shallowest soil layer (see Sect. S1 and 
Fig. S1 for the relation between volumetric and gravimetric moisture), 𝑤"(lon, lat)  is the threshold 275 
gravimetric water content above which 𝑢∗#" increases, 𝑓23&4(lon, lat) is the fraction of clay content in the 
topmost layer of soil between zero and one, %clay = 100𝑓23&4 is the corresponding clay percentage, and 
𝑎, a tunable constant usually of order one, was introduced by Zender et al. (2003a) to account for the 
mismatch in the small scales for which Fécan et al. (1999) obtained their parameterization and the large 
scales on which it is used in climate models (e.g., Zender et al., 2003a; Mokhtari et al., 2012; Kok et al., 280 
2014b). 𝑤" increases with soil clay content as water adsorbs onto clay such that more moisture is needed 
to enhance 𝑢∗#". 

Another essential dust emission threshold for this study is the dynamic or impact threshold 𝑢∗$", 
which is the lowest wind speed or stress to maintain saltation (Kok et al., 2012; Comola et al., 2019b): 
𝑢∗$" = 𝐵$"𝑢∗#"'           (5) 285 
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where 𝐵$" = 0.82 is approximately constant with soil properties and particle size (Bagnold, 1937; Kok et 
al., 2012). Eqs. 2–5 imply that 𝑢∗#" ≥ 𝑢∗#"' > 𝑢∗$" and that 𝑢∗#" and 𝑢∗$" have different spatiotemporal 
variability. Also, the difference between 𝑢∗#" and 𝑢∗$" could be much larger in nonarid regions because 
𝑓( is much larger than one. In this study, we propose that dust emission models should use 𝑢∗$" instead of 
𝑢∗#" for dust emission equations (e.g., Eq. 10 and Eq. 13), which will cause substantial changes in the 290 
simulated spatiotemporal variability of dust emission (see Sect. 4.1). This is needed to allow dust emission 
when the 𝑢∗ is intermediate between 𝑢∗$" and 𝑢∗#", which is especially common in marginal dust source 
regions. Additionally, this is more physically correct as the dust emission threshold is the minimum 
friction velocity at which the saltation and dust emission fluxes are non-zero, which is true at 𝑢∗$" but not 
true at 𝑢∗#" (Martin and Kok, 2018; Comola et al., 2019b; Pähtz et al., 2020).  295 
 
2.2 Parameterization of drag partition effects 
 Apart from the dust emission threshold, another essential parameter for determining the dust 
emission flux is the wind drag partition effect, 𝐹6## , due to the existence of land-surface roughness 
elements covering the desert surfaces (Raupach, 1992; Marticorena and Bergametti, 1995). It is crucial to 300 
account for this effect for accurately simulating the magnitude and spatial pattern of dust emissions. Many 
past modeling studies treated this effect as increasing the dust emission threshold 𝑢∗#" (e.g., Raupach, 
1992; Marticorena and Bergametti, 1995; Darmenova et al., 2009; Menut et al., 2013), such that the 
relation is expressed as (Raupach et al., 1993; Marticorena and Bergametti, 1995; Marticorena et al., 1997, 
2006; Foroutan et al., 2017; Webb et al., 2020): 305 
𝑢∗#" = 𝑢∗#"'(𝐷%, 𝜌&)𝑓((𝑤)/𝐹6##         (6a) 
where 𝐹6## < 1 when roughness elements are present, such that roughness elements increase 𝑢∗#" and 
decrease the dust emission. However, this approach is physically incorrect because roughness elements 
reduce the wind stress exerted on the bare soil and do not increase the forces resisting particle lifting that 
determine 𝑢∗#" (Kok et al., 2014a; Webb et al., 2020). As a consequence, Webb et al. (2020) showed that 310 
dust models using Eq. 6a will overestimate the dust emission flux compared to those using Eq. 6b. A 
correct emission modeling approach should instead combine Eq. 1 for 𝑢∗#" with the effect of drag partition 
𝐹6## to 𝑢∗: 
𝑢∗7 = 𝑢∗𝐹6##            (6b) 
where 𝑢∗7 is called the soil surface friction velocity (Webb et al., 2020). Dust emissions should thus be a 315 
function of 𝑢∗7 instead of 𝑢∗. 
 
 There are different schools of drag partition schemes. A major school of drag partition 
parameterization originated from Arya (1975) and later Marticorena and Bergametti (1995) (hereafter 
M&B95), who primarily used the roughness length 𝑧'  to quantify roughness. Because of the large 320 
differences in the length scales between mountains/orography, rocks and plants, as well as down to soil 
particles, Menut et al. (2013) distinguished three distinct roughness lengths describing different sizes of 
roughness. First, the aerodynamic momentum roughness length 𝑧'( mainly represents roughness due to 
large-scale orography, forests, and/or urbanization (with sizes of 10–103 m) with values ranging from ~1 
cm to 1 m (Menut et al., 2013). Second, the aeolian roughness length 𝑧'& quantifies the roughness due to 325 
smaller elements such as rocks and vegetation, with a typical order of magnitude of 10-3 to 10 cm (Prigent 
et al., 2005; Prigent et al., 2012). 𝑧'& is the relevant roughness length that informs the partition of the wind 
stress when considering the near-surface (~ 1 m) flows in which saltation occurs. Third, the smooth 
roughness length 𝑧'7 quantifies the roughness of a bed of fine soil particles in the absence of roughness 
elements. 𝑧'7 characterizes the roughness of mobile, erodible soil particles over an exposed surface. 𝑧'7 330 
is directly related to the particle diameter Dp by (Nikuradse, 1950; Sherman, 1992; Pierre et al., 2014b): 
𝑧'7 = 2𝐷%/30            (7) 
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M&B95 proposed their drag partition scheme by arguing that behind a roughness element (obstacle), an 
internal boundary layer (IBL) grows and the wind within the IBL follows the log law of the wall as a 
function of 𝑢∗7 and the local roughness length 𝑧'7. They then pointed out that without the obstacle, the 335 
planetary boundary layer (PBL) wind profile would follow the log law as a function of 𝑢∗ and 𝑧'&. By 
arguing that the two wind speeds must be equal at the IBL height 𝛿, they derived 𝐹6## as a function of 𝑧'& 
and 𝑧'7: 

𝐹6## = 1 −
89:!"#!"$

;

89: %
!"$

;
           (8) 

Later studies improved this equation based on more observations for calibrating several parameters 340 
(MacKinnon et al., 2004; King et al., 2005; Darmenova et al., 2009; see Eq. 15 in Sect. 3.2). Historically 
this scheme has been employed by Marticorena and others to represent the roughness due to rocks (e.g., 
Marticorena et al., 1997; Darmenova et al., 2009; Menut et al., 2013). 
 Another major school of drag partition parameterization originated from Raupach (1992) and 
Raupach et al. (1993) (hereafter R93), which primarily used the roughness density 𝜆 to quantify roughness. 345 
𝜆 is defined as the total frontal area of roughness elements divided by the area of land A: 𝜆 = 𝑛ℎ𝑏/𝐴, 
where ℎ and 𝑏 are the obstacle height and width and 𝑛 is the number of obstacles within the area. Knowing 
the geometric and aerodynamic properties of the roughness elements, R93 showed that the drag force of 
the exposed area 𝜏<′ is related to the total drag force 𝜏, given 𝜆, the roughness-element basal area-to-
frontal area ratio 𝜎, as well as the ratio of the roughness element-to-surface drag coefficient 𝛽: 350 
=&
'

=
= /

(/)(?@)(/B(C@)
           (9a) 

where 𝑚 is a geometric parameter to account for the spatial variability of 𝜏<′ on the erodible surface. 
Raupach then applied this ratio to the dust emission threshold (per Eq. 6a).  

Many later studies used the R93 parameterization for plants (specifically shrubs) with prescribed 
𝜎, 𝑚, and 𝛽 (Darmenova et al., 2009; Xi and Sokolik, 2015). 𝜆, however, is related to the abundance of 355 
obstacles and is thus spatially variable, and thus far there is no globally gridded datasets of 𝜆 available. 
Most studies thus related grid-scale 𝜆 to other grid-scale properties; for instance, Shao et al. (1996) linked 
𝜆 to the vegetation cover fraction 𝑓D using in-situ observations: 
𝜆 = 𝑐@ln	(1 − 𝑓D)           (9b) 
where 𝑐@ is a proportionality constant. Gridded 𝜆 could thus be obtained from gridded satellite retrievals 360 
of vegetation cover (Gutman and Ignatov, 1998; Wu et al., 2016; Foroutan et al., 2017) or parameterized 
as a function of other gridded land-surface variables such as the leaf area index (LAI) (e.g., Klose et al., 
2021). Later studies have attempted to improve Raupach’s parameterization and newer schemes relating 
𝐹6## and 𝜆 have emerged (e.g., Okin, 2008). 
 Many previous modeling studies have not accounted for the drag partition effects of both rocks 365 
and vegetation on dust emissions (e.g., Ginoux et al., 2001; Tegen et al., 2002; Zender et al., 2003a; Kok 
et al., 2014b). Many past studies either accounted for only the drag partitioning by rocks (e.g., Marticorena 
et al., 2006; Menut et al., 2013) or by vegetation (e.g., Shao et al., 2011b; Wu et al., 2016), mainly because 
it is very challenging to use proxies of both rocks and vegetation in either the M&B95 or R93 scheme. 
For instance, R93 was historically mostly used for modeling vegetation but not rock drag partitioning 370 
because there was no dataset of the 𝜆 due to rocks. Similarly, vegetation roughness is historically mostly 
represented by 𝜆 rather than 𝑧'&, so there is no globally gridded 𝑧'& observations for vegetation that can 
be fed into the M&B95 scheme. Some modeling studies (e.g., Klose et al., 2021) generated globally 
gridded vegetation 𝑧'& by relating plant 𝜆 with 𝑧'& (e.g., Minvielle et al., 2003; Shao and Yang, 2005; 
Marticorena et al., 2006; Foroutan et al., 2017; Klose et al., 2021), but these studies all found slightly 375 
different relations between 𝜆 with 𝑧'&, and often the in-situ obstacle height ℎ is required by the relation. 
It is thus very challenging to model vegetation drag partitioning using M&B95 by converting 𝜆 to 𝑧'& 
when globally gridded ℎ (short vegetation height but not canopy height) is mostly unknown in GCMs or 
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possesses strong subgrid variability. A more recent approach quantifies surface roughness by detecting 
the shadow (sheltered area) behind a roughness element using satellite-derived albedo (Chappell and 380 
Webb, 2016). This approach could potentially capture both rock and vegetation roughness and was also 
employed by later dust modeling studies (e.g., LeGrand et al., 2022). To our knowledge, there are a few 
studies that attempted to represent both rock and vegetation roughness in one drag partition scheme (e.g., 
Darmenova et al., 2009; Foroutan et al., 2017; Klose et al., 2021), but all were affected by important 
limitations (see Sect. S2 for a discussion on their approaches). In Sect. 3.2, we will propose a novel 385 
approach that incorporates both roughnesses of rocks and plants and equally respects the 𝑧'& and 𝜆 from 
both schools of drag partition parameterizations, quantifying the drag partitions of rocks and plants into 
one hybrid drag partition factor 𝐹6##. 
 
2.3 Parameterization of dust emission flux 390 
 

There are multiple available dust emission equations (e.g., Gillette and Passi, 1988; Shao et al., 
1996; Alfaro and Gomes, 2001; Ginoux et al., 2001; Tegen et al., 2002; Zender et al., 2003a; Shao, 2004; 
Kok et al., 2014b; Evans et al., 2016; and more) implemented in GCMs and ESMs to calculate dust 
emission fluxes. For example, the Zender et al. (2003a) scheme (hereafter Z03) is based on the 395 
Marticorena and Bergametti (1995) dust emission equation and is a popular dust emission scheme adopted 
by many GCMs (e.g., Miller et al., 2004; Oleson et al., 2013; Meng et al., 2021). Z03 calculates dust 
emission as follows: 
𝐹E = 𝑆𝑇𝐶FG𝜑𝑓H&I6

J#
K
𝑢∗7		. g1 −

L∗)
		+

L∗$		+
h g1 − L∗)

L∗$
h  for 𝑢∗7 > 𝑢∗"    (10) 

where Fd is the emission flux (in kg m2 s-1), 𝐶FG is a proportionality constant for bridging the gap between 400 
local-scale and large-scale dust fluxes, 𝜑 = 10/..,#,-#.)0 is the sandblasting efficiency, the amount of 
dust flux produced per unit of horizontal saltation flux as a function of soil clay fraction 𝑓23&4, 𝑢∗" is the 
dust emission threshold (in m s-1; Z03 used 𝑢∗#" as 𝑢∗"), and 𝑓H&I6 characterizes the fraction of land not 
covered by vegetation. 𝑆(lon, lat) is an empirical “source function” (Ginoux et al., 2001; Zender et al., 
2003a, b; Koven and Fung, 2008) to characterize soil erodibility and thus preferential source regions where 405 
fluvial sediment accumulates and scale down emission flux out of desert regions. For 𝑓H&I6, Mahowald et 
al. (2006) used a simple parameterization in which 𝑓H&I6 is a pure function of LAI (neglecting the effects 
of other objects such as snow, rocks, buildings, etc.):  
𝑓H&I6 = 1 − LAI/LAIMNO    for LAI ≤ LAIMNO    (11a) 
𝑓H&I6 = 0      for LAI > LAIMNO    (11b) 410 
While Mahowald et al. (2006) took LAIMNO = 0.3, we take LAIMNO = 1 in this study instead because 1) 
observations show that there could be dust emitted from semiarid regions with LAI > 0.3 (Okin, 2008); 
and 2) Mahowald et al. (2006) did not account for wind drag partitioning due to plants, and thus by setting 
a small LAIMNO, emission (𝐹E ∝ 𝑓H&I6) drops more rapidly with LAI such that the drag partition effect is 
also incorporated in the 𝑓H&I6 term. However, since we are considering 𝐹6## in this study, we can set a 415 
more realistic LAIMNO value such that 𝑓H&I6 becomes less sensitive to LAI. 

In this study, we use the Kok et al. (2014b) dust emission equation (hereafter K14) which is 
increasingly adopted by more GCMs (e.g., Evan et al., 2015 ; Ito and Kok, 2017; Mailler et al., 2017; Tai 
et al., 2021; Li et al., 2021, 2022; Klose et al., 2021). One key advance of K14 over Z03 is that K14 
eliminated the need to use an empirical, time-invariant source function 𝑆 to tune the spatial variability of 420 
dust emissions. K14 proposed that a dynamical and time-varying soil erodibility (named 𝐶E in K14) can 
be physically parameterized using the standardized fluid threshold 𝑢∗7" = 𝑢∗#"4𝜌&/𝜌&', which is 𝑢∗#" 
scaled to the standard air density of 𝜌&' = 1.225	kg	m).: 
𝐶E = 𝐶E' exp g−𝐶6

L∗$))L∗$)"
L∗$)"

h,         (12) 
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where 𝐶E(lon, lat, 𝑡) is the time-varying dust emission coefficient or soil erodibility coefficient, 𝐶E' =425 
(4.4 ± 0.5) × 10)+ , 𝐶6 = 2.0 ± 0.3 , and 𝑢∗7"' = 0.16	𝑚	𝑠)/ . Furthermore, K14 derived a new dust 
emission equation for 𝐹E (kg	m)-s)/): 
𝐹E = 𝐶"LP6𝐶E𝑓H&I6𝑓23&4

J#QL∗$		+)L∗)		+R
L∗$)

gL∗$
L∗)
h
S
	 for 𝑢∗ > 𝑢∗"      (13a) 

𝜅 = 𝐶S
(L∗$))L∗$)")

L∗$)"
           (13b) 

where 𝐶S = 2.7 ± 1.0, 𝐶"LP6 = 0.05 is the proportionality constant, 𝑓H&I6 is modeled by Eq. 11, and 𝑢∗" 430 
is again the emission threshold (K14 assumed for simplicity that 𝑢∗" = 𝑢∗$" = 𝑢∗#") . 𝜅  is the 
fragmentation exponent which quantifies the sensitivity of 𝐹E to 𝑢∗7. Here we limit the value of 𝜅 to 3 in 
order to prevent excessive sensitivity of the model to wind speeds, which can be problematic around 
topography. From Eq. 12, 𝐶E  increases exponentially with 𝑢∗7"  and thus K14 dust emission is very 
sensitive to 𝑢∗#". K14 showed improvements compared with Z03 when evaluated against ground-based 435 
DAOD measurements (Kok et al., 2014a, b; Li et al., 2022).  
 
2.4 Input required by dust emission schemes 
 Calculating the above dust emissions and aeolian processes requires meteorological and land 
surface variables as inputs. We employ the required input data from the Modern-Era Retrospective 440 
Analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 2017). MERRA-2 is a 
reanalysis dataset provided by NASA’s Global Modelling and Assimilation Office (GMAO). MERRA-2 
has a native resolution of 0.5° × 0.625° and hourly data assimilation. All MERRA-2 modeled fields and 
other input variables in this study are listed in Table 1. In this study, we code the dust emission scheme 
with all new aeolian processes in the statistical programming language R (v4.2.1) as an offline (outputs 445 
do not feedback onto input forcings), standalone sandbox model. In this study, we use the standalone 
model to read in all input atmospheric and land surface forcings for year 2006 and employ equations in 
Sects. 2 and 3 to compute 2006 dust emissions as outputs and results for Sects. 3 and 4.  
 
 450 
Table 1. Input meteorological and land-surface variables employed for running the standalone dust 
emission model in this study. 
 

Variable Meteorological parameter (SI unit) 

𝑢∗ MERRA-2 friction velocity (m s-1) 

𝜃 MERRA-2 volumetric soil moisture (m3 water / m3 soil) 

LAI MERRA-2 leaf area index (m2 leaf / m2 land) 

𝜌& MERRA-2 air density (kg m-3) 

𝑧$ MERRA-2 planetary boundary layer height (m) 

𝑇 MERRA-2 air temperature (K) 

𝐻 MERRA-2 Sensible heat flux over land (W m-2) 



 11 

𝜑 MERRA-2 porosity (dimensionless) 

𝑓23&4 SoilGrids clay fraction (fraction) 

𝑓7$3" SoilGrids silt fraction (fraction) 

𝑧'& Prigent et al. (2005) aeolian roughness length (m) 

𝐴I Rock and bare soil land cover derived from the European Space 
Agency land cover dataset (fraction) 

𝐴D Vegetation land cover derived from the European Space Agency land 
cover dataset (fraction) 

𝑆 Ginoux et al. (2001) or Zender et al. (2003b) source function 

 
 455 
 
3 Physics-based parameterization of dust emission threshold 
 

In this section, we propose additions and improvements to several parameterizations of dust 
emission physics, which include 1) deriving a more realistic soil median diameter map and including it in 460 
the 𝑢∗#"  calculation, 2) proposing a new hybrid approach to incorporate the drag partition 
parameterizations of both rocks and vegetation, and 3) implementing a parameterization of the effects of 
turbulence on the intermittency of dust emissions. We will use the improved model from this section to 
compute hourly dust emissions in Sect. 4, driven by meteorological and land surface fields.  

 465 
3.1 Improving the description of soil particle size parameter 

 
The PSD of the soil bed is a critical factor to determine the dust emission threshold. In this section, 

we focus on deriving a new global soil median diameter (a good proxy for the soil PSD) (Martin and Kok, 
2019) as a parameter for computing the dust emission thresholds. Section 5 discusses the caveats and 470 
limitations of this approach. 
 
3.1.1 Motivation and literature compilation of soil particle size distribution 
 

As discussed in Sect. 2.1, Martin and Kok (2019) argued that 𝑢∗#"  of a mixed soil should be 475 
determined by the median diameter 𝐷&% of the soil PSD. Thus, we ideally need a global gridded map of 𝐷&% 
to calculate 𝑢∗$" and 𝑢∗#" over the globe. However, there are only very limited in-situ measurements of 
soil PSDs (e.g., see Table S1) that are insufficient to compile a global 𝐷&% map. Meanwhile, extensive 
studies have compiled global maps of many other soil properties, such as soil texture, soil bulk density, 
pH value, soil organic carbon (SOC), cation exchange capacity, and more (e.g., FAO/IIASA/ISRIC/ISS-480 
CAS/JRC, 2012; Shangguan et al., 2014; Hengl et al., 2017; Dai et al., 2019). Therefore, to determine and 
predict 𝐷&% , we use a compilation of literature measurements to explore and construct relationships 
between 𝐷&% with other soil properties such as the clay and silt fractions.  

However, many past laboratory studies used the wet sedimentation or wet sieving technique to 
measure the texture of the soil samples. Wet sieving effectively breaks down soil microaggregates into 485 
disaggregated particles and can dissolve soluble minerals (Chatenet et al., 1996), thereby disturbing the 
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estimations of the in-situ soil median particle sizes. In contrast, dry sieving causes a minimal disruption 
to soil microaggregates and thus Chatenet et al. (1996) argued that the dry-sieved soil PSDs are more 
representative of the in-situ, aggregated soil PSDs. Although the soil texture is a disaggregated soil 
property, 𝐷&% might depend on soil texture 𝑓& and other soil properties because the strength of interparticle 490 
forces is contingent upon soil texture (the clay and silt content), which govern the extent of soil 
aggregation. Here, we use measurements from past laboratory studies (see Table S1), which contain site-
scale, dry-sieved soil PSDs, wet-sieved soil texture 𝑓& , and other soil properties to investigate their 
statistical relations and infer a new global distribution of 𝐷&%. All studies listed in Table S1 have dry-sieved 
soil PSD measurements, as well as the wet-sieved sand, silt, and clay fractions. Many studies have 495 
recorded soil organic carbon (SOC, %), as well as other properties such as calcite (CaCO3, %), pH value, 
and bulk density (g cm-3). Figure 1a shows the locations of the measurements of the employed soil studies, 
and the colors show the aridity where the sites are located. Some studies obtained measurements over a 
relatively large spatial domain and we plot only one symbol at the domain centroid representing multiple 
measurements. Many studies reported PSD measurements extending to diameters in excess of 6000 μm, 500 
but we used only PSD measurements in the diameter range of 0 and 2000 μm that is relevant to dust 
emission (Zender et al., 2003a). For each dry soil PSD measurement, we obtain the aggregated 𝐷&% by 
calculating the 50th percentile of the dry soil PSD.  
 
3.1.2 Deriving a global soil median diameter map 505 
 

We classify the datasets into arid and nonarid groups, since we are primarily interested in 𝐷&% over 
desert regions (although we also display the soil behaviours over nonarid regions). We follow past studies 
(Mahowald et al., 2006, 2010; Kok et al., 2014b) which defined arid (or dust emission) regions using the 
criterion of LAI smaller than a threshold LAIthr, which we take to be 1 (see Sect. 2.3). Section 3.2.2 also 510 
describes the MERRA-2 LAI we used in this study to identify the world’s arid regions.  

After dividing the data into median dry diameters for arid and non-arid soils, we examine the 
statistical relationships between 𝐷&% and the soil properties (see Fig. 1b and Fig. S2). Figure 1b shows a 
scatterplot of 𝐷&% versus the sum of the soil component that produce substantial cohesion, namely the silt 
and clay fractions (𝑓7$3"B23&4 = 𝑓7$3" + 𝑓23&4). The data exhibits distinctly different trends for non-arid 515 
versus arid soils: for non-arid soils, 𝐷&% increases from 100 μm to greater than 1000 μm with 𝑓7$3"B23&4 
(regression p-value = 7.3 × 10)0), likely due to increasing cohesion with increasing clay and silt content. 
In contrast, 𝐷&% for arid soils shows a small and statistically insignificant increasing trend with 𝑓7$3"B23&4 
(p-value = 0.77) with a smaller 𝐷&% variability (50–250 μm). This flat trend indicates that 𝑓7$3"B23&4 does 
not effectively explain the median diameter of aggregated soil particles in arid regions. We examined the 520 
relationships of 𝐷&% with the individual fractions of sand, silt, and clay, as well as with other soil properties 
including SOC, pH, and CaCO3 (Fig. S2), but these relationships are not statistically significant. We obtain 
a surprisingly simple finding from the available measurements that there is limited variability in the 
aggregated 𝐷&%  over the arid regions across different soil textures. We thus use a constant 𝐷&%'  as an 
approximation for arid regions. From Fig. 1b, we summarize the relationship between 𝐷&% and 𝑓7$3"B23&4 525 
as: 

𝐷&% = u
𝛹' +𝛹/𝑓7$3"B23&4

𝐷&%'	
,							 								𝑓𝑜𝑟	LAI > LAIMNO	

								𝑓𝑜𝑟	LAI ≤ LAIMNO	
      (14) 

where 𝛹' = 7.8 ± 3.7	𝜇m, 𝛹/ = 124 ± 36	𝜇m, 𝐷&%' = 127 ± 47	𝜇m, and LAIMNO = 1 as specified in Eq. 
11. This empirical formula suggests that some models’ assumptions of the relationship between 𝐷&% and 
soil texture was inaccurate (e.g., Table 2 of Laurent et al., 2008 assumed 𝐷&% decreases with 𝑓7$3"B23&4), 530 
and this result could substantially simplify model parameterizations. Additionally, our diameter of 
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127	𝜇m over arid regions is larger than Z03’s assumption of a globally constant optimal diameter of 
75	𝜇m . This translates to a modest increase of 𝑢∗#"'  from 0.204 m s-1 to 0.216 m s-1 (given 𝜌& =
1.225	kg	m).), which slightly decreases global dust emissions by 18 % (see Sect. 4.1). The uncertainty 
in 𝐷&%' = 127 ± 47	𝜇m translates to an uncertainty of 𝑢∗#"' between 0.204	m	s)/ to 0.234	m	s)/. 535 
 

 
 

Figure 1. Constructing a global map of the median diameter 𝐷% of aggregated soil particles using soil 
particle size and texture data. (a) The locations of literature measurements, with symbols indicating the 540 
names of the studies and the color indicating the aridity of the locations; a site is classified as arid (red 
color) if its location has MERRA-2 LAI < 1 and otherwise nonarid (blue color). (b) Literature 
measurements of soil dry median diameter 𝐷% versus silt + clay fraction (𝑓7$3"B23&4). (c) The predicted soil 
dry median diameter 𝐷&% map (in μm) derived by projecting our derived 𝐷&%–𝑓7$3"B23&4 relationship of Eq. 
14 on the SoilGrids (Hengl et al., 2017) soil texture data (Fig. S3). The circles represent the locations of 545 
the sites same as panel (a) and their colors show the measured median diameter 𝐷&% at those sites. (d) The 
predicted 𝐷&% using Eq. 14 versus measured 𝐷&% from past studies.  
 

We then project our derived relation between 𝐷&% and 𝑓7$3"B23&4 on the available soil texture and 
properties database. We employ global soil properties data from the SoilGrids database (Hengl et al., 2014, 550 
2015, 2017), a global soil mapping project that used machine learning (random forest) to regress in-situ 
measurements of soil variables (moisture, temperature, nutrients, etc.). SoilGrids provides global maps of 
soil texture and other soil properties with a horizontal resolution of 250 m and eight soil depths down to 
200 cm (Hengl et al., 2017). We use SoilGrids instead of other available soil databases as it shows better 
performance against observed soil profiles than other soil databases (Dai et al., 2019). Figure S3 shows 555 
the SoilGrids relative fractions of sand, silt, and clay with a 0.1° × 0.1° horizontal resolution for the 
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topmost soil layer. Fig. 1c shows our global 0.1° × 0.1° soil median diameter 𝐷&% map. Following Eq. 14, 
the arid and semi-arid regions are set to have a 𝐷&%' of 127 μm, whereas for nonarid regions 𝐷&% increases 
with 𝑓7$3"B23&4 . Our derived 𝐷&% are largely consistent with the site 𝐷&% measurements from past studies 
(overlaid points), showing a similar spatial distribution, with a fit-line slope of 0.98 (p-value = 0.007), and 560 
an R2 of 81% (Fig. 1d). Note that, since the predictions for arid regions (red points) are a constant without 
variability, the agreement between the predictions and observations is essentially dominated by the linear 
𝐷&%–𝑓7$3"B23&4 relation over nonarid regions (blue points). Figure 1d shows that Eq. 14 gives satisfactory 
agreement in predicting global 𝐷&%, but dust emission modeling will depend exclusively on the predicted 
𝐷&% over arid regions. We anticipate that as more measurements emerge in the future, more statistical or 565 
machine learning modeling approaches can more robustly decipher the intricate relationships between 𝐷&% 
and various soil properties over arid regions.  
 Since nonarid regions of LAI > 1 will generate zero emissions (Eq. 11), we simplify Eq. 14 and 
Fig. 1c by imposing a globally constant 𝐷&%' = 127 μm. 
 570 
3.2 A wind drag partition scheme for decreasing wind stress and erosion 
 

We now present a methodology to account for the wind drag partition effect due to nonerodible 
roughness elements including vegetation and rocks that protect the bare soil by absorbing part of the 
surface wind stress. We calculate the rock drag partition 𝑓6##,I using 𝑧'& since global 𝑧'& observations are 575 
available, and calculate the vegetation drag partition 𝑓6##,D using vegetation cover which is a proxy of 𝜆 
(e.g., Shao et al., 1996; Okin, 2008) since gridded plant cover is often parameterized in GCMs (e.g., Wu 
et al., 2016; Foroutan et al., 2017; Meier et al., 2022). Here we use two separate drag partition schemes 
(Marticorena and Bergametti, 1995; Okin, 2008) to quantify the roughness effect of rocks (Sect. 3.2.1) 
and vegetation (Sect. 3.2.2), respectively. Then, we propose a unifying approach to combining the two 580 
effects into a hybrid factor 𝐹6## (Sect. 3.2.3). 
 
3.2.1 Drag partition due to roughness of rocks 

In this study, we use the aeolian roughness length 𝑧'& to quantify the drag partition effect due to 
rocks. Whereas the smooth 𝑧'7 and the aerodynamic momentum 𝑧'( can be derived from pre-existing 585 
datasets, it is more challenging to quantify the aeolian 𝑧'&. Existing efforts employed satellite and field 
measurements to quantify the roughness over deserts (e.g., Greeley et al., 1997; Roujean et al., 1997; 
Marticorena et al., 2004; Laurent et al., 2005; Prigent et al., 2005; Marticorena et al., 2006; Prigent et al., 
2012). For instance, Marticorena et al. (1997) and Callot et al. (2000) developed a 1° × 1° 𝑧'& map over 
Africa and the Middle East by combining topographic data, geological information, aerial pictures and in-590 
situ observations. Prigent et al. (2005) and Prigent et al. (2012) further used radar measurements to yield 
global maps of backscatter coefficient, which is a measure of surface roughness because rougher surfaces 
generally scatter more radar signals to different directions and reduce the backscattering. Comparisons 
between satellite backscattering signals and field measurements of 𝑧'& yielded an empirical formula for 
extrapolating a global dataset of backscattering signal to global 𝑧'&. We use here the global aeolian 𝑧'& 595 
dataset from Prigent et al. (2005) (hereafter Pr05), which contains the climatological monthly mean 𝑧'& 
(12 monthly values per grid) derived from the backscatter coefficient observed by the scatterometer at 5.3 
GHz on board the European Remote Sensing (ERS) satellite. Since satellite 𝑧'&  measurements could 
quantify both the roughness of rocks as well as vegetation, we take the minimum value out of the 12 
months for all grids to obtain a static aeolian 𝑧'& map to eliminate as much as possible the vegetation 600 
effect on the inferred roughness. Furthermore, we apply this map over arid regions only (LAI < 1), where 
the backscatter signal is mostly generated by rocks with little contribution from vegetation roughness. The 



 15 

resulting 2-D map of 𝑧'& (in cm) thus mostly represents time-invariant rock roughness and is plotted in 
Fig. 2a.  

Marticorena and Bergametti (1995) derived a parameterization to quantify the drag partition effect 605 
using both 𝑧'& and 𝑧'7. They assumed that this equation is valid for roughness elements that are not too 
closely spaced (small wake), i.e., 𝑧'& < 1	cm (Darmenova et al., 2009). Here we use their semi-empirical 
equation to quantify the drag partition due to rocks, 𝑓6##,I (also see Eq. 8): 

𝑓6##,I = 1 −
89:!"#!"$

;

89U&: /
!"$

;
0
V
          (15) 

where 𝑋 is the distance downstream the point of discontinuity in roughness, a length parameter that scales 610 

with the IBL height 𝛿  behind the obstacle in Eq. 8, i.e., W
X"$
= 𝑎 g Y

X"$
h
H

 following Marticorena and 
Bergametti (1995), and 𝑎 = 0.7 and 𝑏 = 0.8 are empirical constants (King et al., 2005; Darmenova et al., 
2009). 𝑋 should be a function of land type and implicitly space and time, but thus far most dust modeling 
studies have used a global constant for 𝑋 (e.g., Darmenova et al., 2009 used a globally constant 𝑋 =
0.1	m). We use a globally constant 𝑋 = 10	m in this study, which is different from what the past studies 615 
suggested, because the scale of the rocks and plants we focus on in deserts are larger and are of the order 
of 100–101 m. Some studies considered even larger roughness and used 𝑋~122	m for vegetated deserts 
(MacKinnon et al., 2004). We then obtain 𝑧'7 from our derived global dataset of 𝐷&% in Sect. 3.1 using Eq. 
7. When nonerodible roughness elements are abundant over a surface, 𝑧'& ≫ 𝑧'7 and 𝑓6##,I ≪ 1, causing 
the sheltering of the bare soil from the wind; when there are few roughness elements, 𝑧'& is small and 620 
close to 𝑧'7  and thus 𝑓6##,I  approaches 1. In Fig. 2a, the red areas with very small 𝑧'&  are the most 
susceptible regions for dust emission. Figure 2a also shows that most arid and semiarid regions have 𝑧'& <
0.2	cm, such that Eq. 15 can be well following the criterion (𝑧'& < 1	cm) in Darmenova et al. (2009). 
Figure 2b shows the global 𝑓6##,I over arid regions, which is dominated by the spatial pattern of 𝑧'& in 
Fig. 2a given 𝑓6##,I is governed purely by 𝑧'&.  625 
 
 

 

 
Figure 2. Global roughness length and rock drag partition factor maps at a horizontal resolution of 0.25° 630 
× 0.25°. (a) Global mesoscale aeolian roughness length 𝑧'& (in cm) derived by Prigent et al. (2005). (b) 
Global static rock drag partition factor 𝑓6##,I derived by Eq. 15 following Marticorena and Bergametti 
(1995), derived over arid and semi-arid regions defined as MERRA-2 LAI < 1 in this study. The color 
schemes are set such that the most erodible regions appear red. 
 635 
 
3.2.2 Drag partition due to roughness of vegetation 
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Unlike the very static and slowly evolving rock roughness, vegetation changes temporally. To 

include the effect of these dynamic vegetation changes on the drag partition, we follow the approach of 640 
Okin (2008) (hereafter O08), which uses unvegetated gap size (the distance between neighboring plants) 
to characterize the variability of the reduced wind stress. O08 argued that his scheme represents an 
advancement over the classical R93 scheme, since R93 uses the roughness density (or lateral cover) 𝜆, 
which only quantifies how much roughness is on a surface but not how that roughness is spatially 
distributed. O08 pointed out that, given the same 𝜆, roughness elements divided into small blocks spread 645 
over the soil surface would be more effective than elements stacked up like a telephone pole in partitioning 
wind stress (see Fig. 3 in Okin, 2008). Okin argued that since Raupach’s model neglects the spatial 
variability of 𝜆, the resulting simulated emission flux using the R93 scheme in Okin’s paper decreased 
rapidly with increasing 𝜆 and unrealistically reached zero at relatively low 𝜆. To partially compensate this 
error, R93 introduced a tuning parameter 𝑚  (Eq. 9a), serving to reduce the effective λ and thereby 650 
reducing the rapid decrease in dust flux. However, 𝑚  is a tuning parameter not derived from first 
principles, and it is not clear how 𝑚 changes over different surface conditions. Therefore, we use the O08 
model here to better characterize the spatial variability of wind stress and the resulting dust emissions. 

Here we describe the O08 scheme and adapt it for use in LSMs and GCMs. O08 assumes 𝑢∗ drops 
significantly when encountering a roughness element (plant), and gradually recovers at the lee (downwind 655 
region) of the plant as a function of distance 𝑥, following: 

𝑢∗7(𝑥/ℎ) = 𝑢∗[𝑓' + (1 − 𝑓')(1 − 𝑒
)1/3, )]        (16a) 

where 𝑥/ℎ is the dimensionless downwind distance from an obstacle normalized by vegetation height ℎ 
(m), 𝑓' =

L∗$
L∗
|Z[' is the friction velocity ratio immediately behind the obstacle, and 𝑐 is the dimensionless 

e-folding distance (normalized by ℎ) over which 𝑢∗7 locally recovers to 𝑢∗. In this formulation, the local 660 
drag partition factor due to vegetation as a function of distance 𝑥 is:  

𝑓3\2&3 g
Z
]
h = L∗$

L∗
= 𝑓' + (1 − 𝑓')(1 − 𝑒

)1/3, )         (16b) 
Note that in the limit of 𝑥/ℎ → ∞,	𝑢∗7 → 𝑢∗. O08 used measurements from Bradley and Mulhearn (1983) 
and fitted 𝑓' = 0.32 and 𝑐 = 4.8 (i.e., the e-folding distance of 𝑢∗7 recovery to 𝑢∗ is 4.8 times the plant 
height ℎ) for semiarid regions. 665 

In order to use Eq. 16b to obtain the drag partition 𝑓6##,D relevant to a regionally vegetated area 
that is more applicable to GCMs, one needs to calculate an integral for the averaged and aggregated effect 
of drag partitioning 𝑓6##,D  (see Eq. 20a) instead of a locally varying 𝑓3\2&3  (Eq. 16b). Therefore, Okin 
employed a probability distribution function as a function of distance 𝑥/ℎ to indicate the importance (or 
weight) of 𝑓3\2&3 at any 𝑥/ℎ to the averaging of 𝑓6##,D (McGlynn and Okin, 2006; Okin, 2008). The PDF 670 
is an exponential decay such that the weight of 𝑓3\2&3  decreases with distance 𝑥/ℎ , so 𝑓3\2&3  at the 
immediate lee of the obstacle (which is smaller and close to 𝑓') has more weight than the 𝑓3\2&3 farther 
away (which is larger and tends to one). From McGlynn and Okin (2006), the PDF is a function of 
normalized distance 𝑥/ℎ: 

𝑃E(𝑥/ℎ) =
/
^
𝑒)

1/3
4            (17a) 675 

𝐾 ≡ 𝐿/ℎ            (17b) 
where 𝐿 (m) is the mean gap length between obstacles (plants), which is conceptually related to 𝑓D; and 𝐾 
is the normalized gap length, which is the gap length 𝐿 scaled by the plant height ℎ. Physically, 𝑃E is the 
probability that there is not another obstacle present within a downwind distance 𝑥/ℎ. This exponential 
decay implies that, the farther away from a plant (larger 𝑥/ℎ), the higher the likelihood that there is another 680 
plant present within the downwind distance 𝑥/ℎ, with the normalized gap length 𝐾 quantifying the e-
folding distance of the probability. This PDF governs the spatial domain over which 𝑢∗7 recovers. 
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For O08, the mean gap length between obstacles 𝐾 is the only required input for calculating the 
drag partition, since 𝑓' and 𝑐 are assumed to be invariant to surface conditions and desert biome. 𝐾 can 
be expressed as a function of 𝑓D using some simple assumptions. First, O08 argued that vegetation cover 685 
fraction is simply 𝑓D ≡

_
`B_

, where 𝐿 is the mean gap length and 𝑊 is the mean width of the plants within 
that vegetated area. Rearranging gives 
𝐿 = 𝑊( /

#5
− 1)           (18a) 

Then we assume plants in arid regions (e.g., shrubs) are approximately hemispheres with radius R. Then, 
the plant height ℎ = 𝑅 and width 𝑊 = 2𝑅 are related by 𝑊 = 2ℎ, which can be substituted into Eq. 18a 690 
to yield 
𝐾 ≡ `

]
= 2 g/

#5
− 1h           (18b) 

and thus we related 𝐾 to 𝑓D. 𝑓D could be measured at the local level and thus O08 was frequently applied 
in field studies (e.g., Li et al., 2013; Pierre et al., 2014a). However, what is novel in our study is that we 
are the first to propose the implementation of O08 into LSMs, because Eq. 18b shows us that O08 could 695 
be formulated as a function of 𝑓D , which is a grid-level parameter. Here we propose to follow the 
Mahowald et al. (2006) assumption in Eq. 11 and approximate vegetation cover fraction as 𝑓D = 1 −
𝑓H&I6 = LAI/LAI"]I, Eq. 18b becomes  
𝐾 ≡ `

]
= 2 g/

#5
− 1h = 2( /

abc/abc678
− 1)        (18c) 

where we assume LAI"]I = 1 (in Eq. 11). The assumption of 𝑓D~LAI is valid if we reasonably assume that 700 
leaf areas over arid regions overlap relatively little with each other. We note that by using LAI to quantify 
𝑓D in Eq. 18c, we are only accounting for the vegetation drag partitioning due to green (photosynthetic) 
vegetation and miss that due to brown (non-photosynthetic) vegetation. In the future, it is warranted that 
Eq. 18b includes other proxies of brown vegetation drag partitioning, such as the vegetation cover 
quantified by Guerschman et al. (2015), which was adopted by later dust modeling studies such as Klose 705 
et al. (2021) and Huang and Foroutan (2022).  
 

To estimate the reduced emission flux, O08 uses an integration approach without quantifying 
𝑓6##,D. O08 calculates the reduced dust emission flux 𝐹I6E (kg m-2 s-1) by locally integrating the emission 
𝐹E following the spatially varying 𝑢∗7 over the normalized distance 𝑥/ℎ: 710 
𝐹I6E = ∫ 𝑃E g

Z
]
h 𝐹E �𝑢∗7 g

Z
]
h� 𝑑 gZ

]
he

Z/]['         (19a) 
where 𝐹E (kg m-2 s-1) is the local emission as a function of 𝑢∗7 which is itself a function of 𝑥/ℎ. In the 
integration, 𝐹E  needs to be weighted by 𝑃E  (which means 𝐹E  at large 𝑥/ℎ  has proportionally less 
importance) because as 𝑥/ℎ increases, the likelihood of the presence of another obstacle gets larger and 
larger, which will hinder the recovery of 𝑢∗7 to 𝑢∗. Integrating the emission flux 𝐹E from zero to infinity 715 
gives a reduced emission flux 𝐹I6E , which will be smaller than the emission flux without roughness 
elements, defined as 𝐹H&I6 = ∫ 𝑃E g

Z
]
h 𝐹E(𝑢∗)𝑑 g

Z
]
h = 𝐹E(𝑢∗)

e
Z/][' , in which 𝐹E  is a constant in space 

since 𝑢∗7 = 𝑢∗ is a constant without obstacles.  
However, since we need to also combine the vegetation drag partition with the rock partition 

effects, we need to quantify 𝑓6##,D in order to form a hybrid drag partition factor for LSMs. Instead of 720 
directly implementing Eq. 19a into LSMs, we require an alternative approach of quantifying 𝑓6##,D such 
that 𝐹EH𝑓6##,D𝑢∗I = 	𝐹I6E. Quantifying 𝑓6##,D for O08 can be useful for comparisons against 𝑓6##,D from 
other schemes such as R93 and Klose et al. (2021). In addition, quantifying 𝑓6##,D  for O08 makes it 
possible to generate a high-resolution, diagnostic 𝑓6##,D  dataset for mechanistic models with different 
resolutions as a model input.  725 
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An approach of evaluating 𝑓6##,D from O08 was proposed by Pierre et al. (2014a). They obtained 
the expected value of the shear stress ratio 𝑢∗7/𝑢∗ (SSR in Okin, 2008) between obstacles by evaluating 
the integral of 𝑢∗7/𝑢∗  weighted by 𝑃E , which represents the averaged 𝑓3\2&3  (in Eq. 16b) across the 
vegetated area and perfectly fits our purposes for implementing 𝑓6##,D into LSMs: 

𝑓6##,D = ∫ 𝑃E g
Z
]
h �

L∗$:
1
3;

L∗
� 𝑑 gZ

]
he

Z/][' = ∫ 𝑃E g
Z
]
h 𝑓3\2&3 g

Z
]
h 𝑑 gZ

]
he

Z/]['     (20a) 730 

Substituting Eq. 17 for 𝑃E into Eq. 20a and analytically evaluating the integral gives a simple algebraic 
equation for 𝑓6##,D (Pierre et al., 2014a), representing the aggregated vegetation drag partition effect at the 
grid level: 
𝑓6##,D =

^B#"2
^B2

            (20b) 
This elegant formula conveys a clear physical intuition: If the obstacle does not effectively dissipate 735 
momentum (𝑓' → 1), 𝑓6##,D → 1; if land is densely covered by vegetation (gap length 𝐾 → 0), 𝑓6##,D →
𝑓'(= 0.32), the shear stress ratio at the immediate lee of the obstacle. An advantage of this approach is 
that it can be easily adopted by gridded models since modelers only need to code an algebraic equation 
instead of an integral. 

We calculate 0.5° × 0.625° global hourly 𝑓6##,D data for Okin’s model, using Eq. 18c and Eq. 20b 740 
with hourly MERRA-2 LAI. We note that MERRA-2 LAI is based on the Advanced Very High Resolution 
Radiometer (AVHRR) observations (Reichle et al., 2017). Figure 3a shows the annually averaged 
MERRA-2 LAI for year 2006 over arid regions with LAI < 1 (seasonal LAI maps are also shown in Fig. 
S4), and Fig. 3b shows the corresponding mean 𝑓6##,D for areas where LAI < 1. The LAI plot shows the 
most erodible regions on Earth.  745 
 
 
 

 
Figure 3. Vegetation drag partition factor 𝑓6##,D derived from the Okin (2008) and Pierre et al. (2014) drag 750 
partition model for year 2006 on a 0.5° × 0.625° grid. (a) Annual mean MERRA-2 LAI, with colorbar 
saturated at a value of 1. (b) Annually averaged 𝑓6##,D derived using the Okin (2008) and Pierre et al. 
(2014) drag partition model. White areas indicate water body, ice/snow, or LAI > 1. 
 
 755 
3.2.3 Combining drag partition factors of rocks and vegetation 
 

After obtaining both the static 𝑓6##,I map of rocks and the time-varying 𝑓6##,D map of vegetation, 
we now propose a methodology to combine the two drag partition sources to capture and represent the 
total drag partition effect for dust emission. LSMs need a single drag partition factor capturing all 760 
roughness effects to estimate the total reduction of the surface winds. Thus, we compute a hybrid drag 
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partition factor map 𝐹6## that can be used as input for dust modules in GCMs. To achieve this, we need 
to know the fractions of a grid that consists of areas dominated by rocks and areas dominated by plants, 
which can be obtained from several recent studies (Lawrence et al., 2016; ESA, 2017; Klein Goldewijk et 
al., 2017; Kobayashi et al., 2017). We obtained this data from the European Space Agency Climate Change 765 
Initiative (ESA CCI) dataset (https://www.esa-landcover-cci.org/?q=node/164, last access: 21 June 2022). 
The land cover product classifies the land cover of the whole globe into 37 categories (Li et al., 2018), 
with relevant land cover over arid regions such as shrub, herbaceous, sparse vegetation, cropland, 
grassland, as well as consolidated (gravels and rocks) and unconsolidated (soil) bare land. This dataset 
has a horizontal resolution of 300 m, making the dataset capable of counting the portion of the grid 770 
consisting of rocks and vegetation over a larger MERRA-2 0.5° × 0.625° gridbox (a MERRA-2 grid box 
consists of ~35000 grids of 300 m). This dataset gives a representation to the annually varying land covers, 
so the rock and vegetation area fractions	we use are a function of space only within the simulation year of 
2006. We describe our approach to synthesizing the ESA CCI land cover maps and drag partition datasets 
in the following. 775 
 

We incorporate the drag partition effects by identifying two roughness regimes using the ESA CCI 
dataset. The first regime is the rock regime (Fig. 4a), for which we combine the consolidated (gravel and 
rocks) and unconsolidated (soil) bare land types (types 34–36). This regime is subject to the rock drag 
partition effect. The second regime is the vegetation regime (Fig. 4b), which includes different vegetation 780 
types such as shrubland and herbaceous (types 19–23, 28–29, 32), sparse vegetation (types 26–27), 
cropland (types 2–5), grassland (type 24), mixed vegetation (type 18), and other vegetation mosaic (types 
6–7). Since O08 does not specify the differences in drag partition for different plant functional types 
(PFTs), here we assume all PFTs produce the same drag partition effect. The overall drag partition effect 
𝐹6## for a grid is thus defined by the summation of emissions, with emission 𝐹E,I over the rock regime 785 
with a fractional area of 𝐴I, and emission 𝐹E,D over the vegetation regime with another fractional area 𝐴D: 
𝐹EH𝑢∗𝐹6##I = 𝐴I𝐹E,I + 𝐴D𝐹E,D = 𝐴I𝐹E(𝑢∗𝑓6##,I) + 𝐴D𝐹E(𝑢∗𝑓6##,D)    (21a) 
Given that dust emissions approximately scale with the cube of 𝑢∗7 (Zender et al., 2003a; Kok et al., 2014b) 
and neglecting the effect of the dust emission threshold, Eq. 21a can be simplified to 
𝐹6##					. = 𝐴I 	𝑓6##,I								. + 𝐴D	𝑓6##,D									.          (21b) 790 
such that 𝐹6##  is simply the weighted mean of drag partition effects. The fractional areas are simply 
calculated by counting the total occupied area of the ESA CCI land cover corresponding to a certain 
regime, and then dividing by the total area of the gridbox. We use Eq. 21b to obtain the spatiotemporally-
varying 𝐹6##(lon, lat, 𝑡), given 𝑓6##,D(lon, lat, 𝑡) as well as 𝐴I , 𝐴D , and 𝑓6##,I  as functions of (lon, lat). 
We then apply the obtained 𝐹6## here to Eq. 6 to yield 𝑢∗7 for the dust emission equation. We discuss in 795 
Sect. 5 and Sect. S6.2 the caveats and limitations of this hybrid drag partition scheme. 
 

Figures 4a–b show the fractional areas of the two regimes. The rock regime (Fig. 4a) is located 
mostly over the Sahara, the Middle East, and the Asian deserts. The vegetation regime (Fig. 4b) is 
concentrated mostly over Australia, the United States, South America and South Africa. Fig. 4c shows the 800 
resulting annually averaged 𝐹6##  using Eq. 21b. The regions with the highest 𝐹6##  are the Bodélé 
Depression, El Djouf, the Arabian Desert, and Taklamakan due to high 𝑓6##,I. The Strzelecki–Sturt Stony 
Deserts in Australia, the Kyzylkum and Patagonia also have high 𝐹6## (~ 0.7) due to high 𝑓6##,D. Regions 
with both high rock and vegetation roughness are located in parts of the Middle East and North America 
with low 𝐹6## values. 805 
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Figure 4. The 0.5° × 0.625° hybrid drag partition factor 𝐹6##  incorporated using the European Space 810 
Agency Climate Change Initiative (ESA CCI) dataset. (a–b) The fractional areas of (a) the rock regime 
(consolidated/unconsolidated land) and (b) the vegetation regime (shrubs, herbaceous plants, croplands, 
grassland, and sparse vegetation) over arid regions. (c) The hybrid drag partition factor 𝐹6##  by a 
combination of rock drag partition 𝑓6##,I and vegetation drag partition 𝑓6##,D for the year 2006. 
 815 
 
 
3.3 Parameterizing the dust emission intermittency  
 

The above improvements enable a more accurate calculation of emission when wind speeds are 820 
sufficient to initiate dust emission. Next, we will improve the calculation of the resulting dust emission 
flux by accounting for the effects of boundary-layer turbulence on dust emission intermittency. Dust 
emission intermittency exists because saltation is driven by turbulent surface winds, which exhibit strong 
spatiotemporal fluctuations in speed and direction. Instantaneous winds can thus pass within short 
timescales across the emission thresholds for initiating or ceasing saltation (Martin and Kok, 2018). 825 
Consequently, saltation can be highly intermittent (Comola et al., 2019b), with pronounced variability on 
timescales of seconds to hours (Dupont et al., 2013). In contrast, existing dust emission parameterizations 
describe saltation as uniform in time and space and driven by a constant downward momentum flux within 
a model time step. The disconnect between the reality of intermittent dust emissions and uniform 
emissions in current theories is likely contributing to the poor performance of dust emission simulations 830 
(Barchyn et al., 2014; Todd et al., 2008). Comola et al. (2019b) argued that the intermittency effect is 
more prevalent for regions with low intensity dust emissions when 𝑢∗7 is regularly fluctuating around the 
threshold to turn on or shut off dust emissions. Neglecting intermittent dust emissions in current models 
thus likely degrades the accuracy of dust emission simulations for arid regions during low-wind periods 
as well as for marginal dust source regions such as semi-arid areas (since soil cohesion increases 𝑢∗#" but 835 
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does not affect 𝑢∗$"), which dominate in much of the Southern Hemisphere (Ginoux et al., 2012; Ito and 
Kok, 2017).  

Accounting for the intermittency effect on dust emission fluxes is complicated by the hysteresis of 
dust emission due to the existence of double thresholds for dust emission physics. The instantaneous wind 
at the saltation level 𝑢�7 (we use the tilde to denote instantaneous quantities and take away the asterisk to 840 
denote winds at the saltation level of 𝑧fg8~0.1	m using Eq. S4a instead of a velocity scale) needs to exceed 
the fluid threshold 𝑢#" (also defined at the saltation level) to initiate saltation, but only needs to exceed a 
smaller impact threshold 𝑢$" to sustain it (Kok et al., 2012; Martin and Kok, 2018; Comola et al., 2019b). 
When 𝑢�7 at a moment lies between both thresholds (𝑢$" < 𝑢�7 < 𝑢#"), saltation is active if transport was 
more recently initiated (𝑢�7 > 𝑢#") and inactive if transport was more recently terminated (𝑢�7 < 𝑢$"). This 845 
process is known as hysteresis (Kok, 2010; Martin and Kok, 2018; Comola et al., 2019b). As a result, if 
𝑢7 (mean of 𝑢�7 within a model time step) is between 𝑢$" and 𝑢#", there will be fluctuating emission fluxes 
in reality, while models using a fluid threshold scheme would predict zero emission within a model time 
step, thereby underestimating the emissions. Meanwhile, models using an impact threshold scheme 
without considering turbulence will have uniform positive dust emission within the time interval. However, 850 
because in reality high-frequency winds can pass below 𝑢$" and shut off dust emissions, using average 𝑢7 
in an impact threshold scheme will overestimate dust emissions. It is thus important for GCMs to account 
for the effects of turbulence causing both intermittency and hysteresis of dust emission. 

As GCMs have a relatively large time step and a coarse horizontal resolution (e.g., ~30 minutes 
for a 1° GCM), they are not designed to resolve turbulence and cannot capture high-frequency (~0.1–5 855 
minutes) turbulent wind speed fluctuations. As a result, models cannot directly simulate the dust emission 
intermittency. Therefore, accounting for intermittent dust emission requires a parameterization that links 
the low-frequency (~30 minutes) variables of boundary-layer turbulence that are resolved in GCMs to the 
high-frequency intermittency dynamics. Comola et al. (2019b) formulated a parameterization (hereafter 
the C19 scheme) of intermittent saltation fluxes by quantifying wind fluctuations due to both shear-driven 860 
and buoyancy-driven turbulence in terms of resolved model parameters, including 𝑢$" and the Monin-
Obukhov length L. C19 showed that when a dust emission equation employs 𝑢$" and accounts for the 
intermittency effect, it can successfully capture the magnitudes of small dust fluxes otherwise missed by 
models using 𝑢#"  (Fig. 3 of Comola et al., 2019b). The C19 scheme will thus moderate the temporal 
variability of modeled dust emissions due to diurnal wind cycles continuously crossing the thresholds. 865 
Additionally, it will also capture more lower intensity emissions over marginal sources missed by many 
current models (Zhao et al., 2022).  

In the C19 scheme, the dust emission flux 𝐹E is calculated using 𝑢∗$" instead of 𝑢∗#". We update 
K14 (Eq. 13) with 𝑢∗" = 𝑢∗$" as the threshold, giving: 
𝐹E = 𝐶"LP6𝐶E𝑓H&I6𝑓23&4

J#QL∗$+ )L∗9)
		+ R
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gL∗$
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h
S
	    for 𝑢∗ > 𝑢∗$"   (22a) 870 

where 𝐶E is still a function of 𝑢∗7" and 𝑢∗7" = 𝑢∗#"4𝜌&/𝜌&' is the same standardized fluid threshold as in 
the default K14, and 𝑢∗$" is computed using Eq. 5. Because 𝑢∗$" < 𝑢∗#", this modified equation allows 
more small dust fluxes over the marginal source regions that are otherwise missed by employing 𝑢∗#" as 
the threshold (see Figs. 7g–h).  

Next, we account for the intermittency effect by introducing the intermittency factor η, which is 875 
the fraction of time that saltation is active in a model time step (e.g., ~30 minutes). 𝜂 corrects the horizontal 
sand saltation flux, which scales with dust emission flux (Shao et al., 1993), thereby also representing the 
fraction of time that dust emission is active in a model time step. C19 accounts for the effect of 
intermittency by multiplying dust emission by 𝜂: 
𝐹E,h = 𝜂𝐹E            (22b) 880 
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where 𝜂 ∈ [0,1]. Note that C19 parameterizes 𝜂 using wind information at the typical saltation height of 
𝑧fg8 = 0.1 m instead of the velocity scales. 𝜂 is thus formulated as a function of the wind speeds 𝑢7, 𝑢$", 
and 𝑢#" at height 𝑧fg8 (see Sect. S3 Eqs. S3–S6), as well as the standard deviation 𝜎Li$ of the instantaneous 
𝑢�7 (Eq. 23): 
𝜂 = 𝜂(𝑢7, 𝜎Li$ , 𝑢$" , 𝑢#")          (22c) 885 
𝜎Li$ is defined given that 𝑢�7 can be described by a normal distribution (Chu et al., 1996), with its mean 
being the model time step mean (at 0.1 m) 𝑢 and its standard deviation 𝜎Li$. From Eq. 22c, 𝜂 → 1 when 
𝑢7 ≫ 𝑢#" (active emission for the whole time step) and 𝜂 → 0 when 𝑢7 ≪ 𝑢$" (no emission for the time 
step). The further away 𝑢7  is from the thresholds 𝑢#"  and 𝑢$" , the smaller the probability of the 
instantaneous 𝑢�7 sweeping across the thresholds, and the more dichotomous 𝜂 behaves (either zero or one). 890 
If 𝑢7 is very close to 𝑢#" or 𝑢$", or is indeed between them (𝑢$" < 𝑢�7 < 𝑢#"), the frequency of crossing 
the threshold is determined by the magnitude of the turbulent fluctuation 𝜎Li$. 𝜎Li$ is parameterized using 
the similarity theory (Panofsky et al., 1977): 

𝜎Li$ = 𝑢∗7 g12 − 0.5
X9
`
h
//.

     for 12 − 0.5 X9
`
≥ 0   (23) 

where L is the Obukhov length and 𝑧$ is the modeled PBL height. Note that MERRA-2 does not provide 895 
𝐿 output, and in this study we computed 𝐿 from the MERRA-2 outputs of 𝑢∗, 𝜌&, sensible heat flux 𝐻, 
and temperature 𝑇 for our simulations (see Sect. S3). In boundary-layer dynamics, turbulence is generated 
by mechanical shear and buoyancy (Stull, 1988). From Eq. 23, high-frequency wind fluctuations 𝜎Li$ 
increase with shear (𝑢∗7 > 0) and buoyancy (L < 0). A larger 𝜎Li$ makes it easier for 𝑢�7 to sweep across 
𝑢$" and shut off dust emission, leading to 𝜂 < 1. In a time step, if 𝑢7 ≫ 𝑢#" + 𝜎Li$, 𝑢�7 will be unlikely to 900 
sweep across 𝑢$" and 𝜂 will approach 1. If 𝑢7 is slightly larger than 𝑢#", the instantaneous 𝑢�7 will be likely 
to sweep across 𝑢$", leading to 𝜂 < 1. In the hysteresis regime (𝑢$" < 𝑢7 < 𝑢#"), 𝜂 will be around 0.3–0.7 
since 𝑢�7 will sweep across both thresholds given 𝜎Li$, leading to a reduced emission flux (meanwhile, 
other parameterizations predict a zero emission flux since they use 𝑢#" only). When 𝑢7 < 𝑢$", 𝜂 could also 
be greater than zero when 𝜎Li$ is large enough so that the instantaneous 𝑢�7 sweeps across 𝑢$". However, 905 
C19 would not generate any emission according to Eq. 22a (which is a technical flaw of C19; see a 
discussion in Sect. S6.3). We note that Eq. 23 is not the traditional Monin-Obukhov similarity theory as 
the zonal fluctuation was shown to correlate poorly with 𝑧/𝐿 but relates much better with 𝑧$/𝐿 (Panofsky 
et al., 1977). We also note that Eq. 23 only applies to the convective PBL, but dust emission often occurs 
during the  daytime within the convective boundary layer (Yu et al., 2021). With the complete C19 scheme 910 
in Eqs. S3–S6, we can compute 𝜂 to yield the dust emission with intermittency effect 𝐹E,h as the final dust 
emission for the LSM. The full C19 intermittency scheme is described in Sect. S3 and also discussed in 
Comola et al. (2019b). See a discussion of the limitations of this scheme in Sect. 5 and Sect. S6.3.  
 
 Here we show some significant results from the intermittency scheme. Figure 5 shows the global 915 
dust emission thresholds in 2006 computed using MERRA-2 fields. Figure 5a shows 𝑢∗$", computed using 
a globally constant 𝐷&%' = 127	𝜇m. Its spatial variability is purely a function of 𝜌& (Eq. 2). 𝑢∗$" is around 
~0.16–0.24 m s-1, and higher 𝑢∗$" implies higher altitude. A lower 𝑢∗$" leads to a smaller aerodynamic 
drag force from the airflows given the same wind speed; conversely, there will be a large 𝑢∗$" for soils 
over low 𝜌&  regions. Figure 5b shows 𝑢∗#"  (Eq. 1). It varies between 0.2 and 0.9 m s-1. Its spatial 920 
variability is dictated by the spatial variability of soil moisture 𝑤 (see Fig. S1). Regions with the lowest 
𝑢∗#" are the driest places in the world, which are all deserts. Regions with the highest 𝑢∗#" are wet soils 
covered by rainforests, boreal forests, tundras/permafrosts, and snow. Figure 5c shows the ratio of 
𝑢∗#" /𝑢∗$" , for which the spatial variability is again dictated by that of 𝑤. The magnitude of the ratio 
conveys not only the strength of the soil moisture effect on the threshold but also the width of the hysteresis 925 
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regime. Deserts with 𝑢∗#"/𝑢∗$"	~	1/𝐵$" have a narrow hysteresis regime (𝑢∗$" < 𝑢∗7 < 𝑢∗#") and smaller 
thresholds, and thus tend to have more continuous dust emissions. Semiarid and nonarid regions with 
larger 𝑢∗#"/𝑢∗$" tend to have a wide hysteresis regime and thus dust emissions will be more intermittent. 
 
 930 

 
 

Figure 5. The dust emission thresholds using the (Shao and Lu, 2000) scheme for the year 2006 on a 0.5° 
× 0.625° grid. (a) the impact threshold 𝑢∗$"  calculated using 𝐷&%' = 127	𝜇m (Eq. 4), (b) the wet fluid 
threshold 𝑢∗#" (Eq. 1), and (c) the ratio between the wet fluid threshold and impact threshold which is the 935 
𝑓( / 0.81, where 𝑓( is the moisture effect on 𝑢∗#" (Eq. 3). The larger this ratio, the wider the range of wind 
speeds for which hystesis in dust emission occurs and the more important it is to account for intermittency 
in dust emissions. 
 

Figure 6a shows the 2006 annual mean intermittency effect over the Bodélé Depression as an 940 
example. Figure 6a shows hourly mean 𝜂  as a function of the hourly mean 𝑢7 . It demonstrates the 
properties of 𝜂 discussed above: e.g., when 𝑢7 > 𝑢#", 𝜂 → 1, and when 𝑢7 < 𝑢$", 𝜂 → 0. In both regimes, 
the behaviour of the dust emission intermittency is asymptotic to dichotomous (0 or 1) activity which is 
the same as that of the conventional emission schemes. Near the intermittency or hysteresis regime 𝑢$" <
𝑢7 < 𝑢#" , 𝜂  is intermediate between zero and one, and thus a scheme using 𝑢∗$"  gives a small finite 945 
emission flux while conventional schemes using 𝑢∗#" give a prediction of zero. The color code shows the 
strength of convection −𝑧$/𝐿. −𝑧$/𝐿 is positive (red) when buoyant convection is active (L < 0), and is 
negative (blue) when the PBL is statically stable (L > 0). The color shows that there is a modest correlation 
between −𝑧$/𝐿 and 𝑢7 but the correlation is not necessarily strong, and the strongest buoyancy (dark red) 
often happens when 𝑢7 (or shear 𝑢∗7) is moderate. The strongest buoyancy associates with moderate 𝜂 950 
values of ~0.5 only, and for the highest 𝜂 values −𝑧$/𝐿 is mildly unstable (light red). This means that the 
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turbulent fluctuation is primarily governed by shear 𝑢∗7 instead of controlled by buoyancy −𝑧$/𝐿, and the 
intermittency behavior is dictated by shear-driven instead of buoyancy-driven turbulence. Eq. 23 could 
essentially be simplified into 𝜎Li$ ≈ 12//.𝑢∗7.  

Figure 6b shows the global spatial distribution of the annual mean 𝜂 for year 2006, averaged across 955 
time steps during which saltation and dust emissions are occurring over the grid (and thus 𝜂 during time 
steps when 𝐹E = 0 are not counted). Most marginal sources have small 𝜂 < 0.3 (red color), indicating dust 
emissions are fluctuating and intermittent. These emissions may not be existent in other LSMs employing 
𝑢∗#" in the dust emission equation (but also dependent on their threshold tuning). Over these regions, 
because of the intermittent shut offs of emissions, the emissions need to be scaled down by the fraction of 960 
time 𝜂 which is also missed by other LSMs. Intermittency is thus critical in accounting for emissions over 
semiarid regions. Regions with high 𝜂 (more continuous emission; light blue color) include El Djouf, the 
Bodélé Depression, the Libyan–Nubian Desert over Libya, Egypt and Sudan, the Rub’ al-Khali Desert 
within the greater Arabian Desert, the Lut Desert in Iran, the Taklamakan Desert, and the Strzelecki Desert 
in Australia. During saltation, these regions tend to have wind episodes further away from the thresholds, 965 
leading to a high 𝜂 . However, regions with high 𝜂  are not necessarily regions with the highest dust 
emissions (Figs. 7a–b) because their saltation frequency could be low, or the strength of their emission 
fluxes is limited by other factors such as the fragmentation exponent and soil moisture. In Fig. S5, we 
further show the factor 𝜂 averaged over all time steps of 2006, including periods of no emissions over the 
grid. Since 𝜂 is close to 0 when there is no emission, Fig. S5 shows much smaller 𝜂 compared to Fig. 6b. 970 
 
 

 
 

 975 
Figure 6. Simulated dust emission intermittency effect for year 2006. (a) The hourly mean intermittency 
factor 𝜂 versus hour mean wind speed (m s-1) at 0.1 m height over the Bodélé Depression. The color 
indicates −𝑧$/𝐿 , with red indicating −𝑧$/𝐿 > 0  (unstable), blue indicating −𝑧$/𝐿 < 0  (stable), grey 
indicating −𝑧$/𝐿~0  (neutral). The two vertical dotted black lines indicate the annual mean impact 
threshold (left) and the fluid threshold (right) wind speed (m s-1) at 0.1 m. (b) The annual mean 980 
intermittency factor 𝜂, or equivalently the fraction of time within a time step that emission is active, 
averaged over times when emission is active (Fd > 0).  
 
 
4 Results of our new dust emission scheme 985 
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 In this section, we implement the three new parameterizations of key dust emissions processes 
with the K14 model into R to investigate the resulting spatial variability of dust emissions. The MERRA-
2 data and ESA CCI land cover data are for the year 2006. Other inputs in Table 1 (SoilGrids data, 
Prigent’s roughness, and source functions) are 2-D spatial datasets with no 2006 data available, but they 990 
are slowly time-varying variables and are generally used for present-day simulations in other years. In 
Sect. 4.1, we then compute the dust emissions and analyze their spatial characteristics. We examine the 
effects of each new modification on the simulated dust emissions by conducting different simulations with 
different individual parameterizations added. Then, in Sect. 4.2, we inspect the effects of the grid-
resolution of input data on simulating dust emissions, and propose a simple method to calibrate the spatial 995 
variability of low-resolution dust emissions to match the spatial variability of high-resolution emissions. 
 
4.1 Effects of different new physics on global dust emissions 

In this subsection, we show the effects of different modifications on the resulting dust emissions 
(in kg m-2 yr-1) in Fig. 7. We demonstrate the effect of each modification by creating a suite of sensitivity 1000 
experiments as follows: (I) First we simulate emissions using the default K14 scheme; (II) then we use 
the K14 scheme with our proposed globally constant soil diameter of 𝐷&%'	~	127	𝜇m for simulation; (III) 
we further add in the hybrid drag partition physics on top of (II); (IV) we switch from using the fluid 
threshold to the impact threshold in (III); and finally (V) we include the intermittency effect on top of (IV) 
for simulation. We note that past studies derived the approximate magnitude of the global total emission 1005 
(e.g., Tegen and Fung, 1995; Zender et al., 2004; Evan et al., 2014; Kok et al., 2021), but there are no 
global observations of dust emissions. In the field of dust modeling, there are currently no first principles 
that can derive the essential dust emission proportionality constants to constrain modeled emissions at a 
correct order of magnitude, which means scientists still have insufficient knowledge in aeolian physics to 
generate emissions predictions in the correct order of magnitude. Recognizing that the spatiotemporal 1010 
characteristics of the predictions are more credible, it is very common for dust modelers to rescale the 
emissions according to the known constraints of observed atmospheric dust mass or the global DAOD. 
For instance, Li et al. (2022) scaled all their simulations to achieve a global mean DAOD of 0.03, based 
on Ridley et al. (2016). Thus, what matters the most is how each modification changes the spatial 
variability and the relative magnitudes of dust emitted from one region compared to the others, and the 1015 
absolute magnitude changes are of secondary importance. In our experiments, we normalize all 
simulations to a global total of 5000 Tg yr-1, which is around the current constraint of global PM20 dust 
emission flux from past studies (Evan et al., 2014; Kok et al., 2021a, b). Fig. 7 shows the normalized 
emissions of K14 and our scheme (Figs. 7a–b), as well as differences between the normalized emissions 
from one modification to another (Figs. 7c–j). The left panels (Figs. 7c, e, g, i) show the normalized 1020 
emission differences, and the right panels (Figs. 7d, f, h, j) show the normalized emission ratios. The left 
columns show the regions with the greatest changes in absolute magnitude, which would mostly be 
dominated by hyperarid regions and primary sources, whereas the right columns show the regions with 
the biggest percentage changes with respect to their own order of magnitude. Figure S6 shows the original, 
unnormalized emission maps for all experiments, and Fig. S7 shows the differences in unnormalized 1025 
emissions between different experiments. Figure S8 shows the normalized emission maps for all 
experiments. Table S2 summarizes the global total changes in the normalized emissions done by all 
modifications. 

Figure 7a shows the normalized emissions from the default K14 scheme (experiment I) using 
MERRA-2 inputs. The emission map shows a similar spatial pattern compared with the K14 simulations 1030 
in Kok et al. (2014b) and Li et al. (2022) despite differences in the data used for different land surface 
fields (e.g., for LAI and soil moisture) and a larger LAI limit of one used in this study. The most significant 
emissions are over the Bodélé Depression in Chad, the Nubian Desert in Sudan and Egypt, the whole 
Arabian Peninsula, most of Iran, the Taklamakan Desert in China, and the Strzelecki Desert in Australia. 
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Over regions with emissions, the spatial variability of the emissions is dictated by the moisture 𝑤 (see Fig. 1035 
S1 and Fig. 5b), which fundamentally shapes the threshold 𝑢∗#" , the soil erodibility 𝐶E , and the 
intermittency 𝜂. Smaller emissions occur over South Africa, South America, and the western U.S. Without 
normalization, the simulated emissions in Fig. S6a gives a global total of ~29300 Tg yr-1 using the inputs 
in Table 1. 

Figures 7c–d show the effect of changing the global soil diameter from the current standard of 75 1040 
𝜇m to our new constraint of  𝐷&%' = 127	𝜇m (experiment II). As described in Sect. 3.1, a globally larger 
𝐷&% leads to heavier particles, resulting in higher thresholds and lower emissions across the globe. Figure 
7c shows that the normalized emission tends to redistribute from semiarid regions to hyperarid regions, 
but the changes are small overall. The color bar in Fig. 7c shows that the effect of employing a new global 
𝐷&%' is relatively mild (of the largest order of 0.001 kg m-2 yr-1) compared to the drag partition effect and 1045 
intermittency (Figs. 7e and g, of the largest order of ~0.1 kg m-2 yr-1). Fig. 7d shows the ratio map of the 
normalized emissions of experiment II to those of experiment I. Employing a new globally constant 𝐷&%' 
does not strongly impact the spatial pattern of the emissions, so the ratio map is of order one around the 
globe. While Fig. 7c more clearly shows that the largest emission changes in magnitude occur over the 
major sources, Fig. 7d shows that, after rescaling, there are some stronger emissions reductions in 1050 
percentage (in blue) over marginal regions (e.g., the Arctic) compared to the minimal increases over the 
major sources (in white and light red, e.g., over the Bodélé Depression). The major sources are less 
affected since in the high 𝑢∗7  regime 𝐹E  becomes more sensitive to 𝑢∗7  than to 𝑢∗#" . Thus, a uniform 
increase in 𝑢∗#" around the globe tends to eliminate small emissions more than large ones. The main effect 
of employing a larger 𝐷&% is therefore a very modest shift of emissions from the marginal regions toward 1055 
the arid areas. Summing up the absolute magnitude of changes in Fig. 7c, out of 5000 Tg yr-1 there are 
250 Tg yr-1 of dust redistributed within source regions. Fig. S6b shows the unnormalized global emission 
flux of ~23900 Tg yr-1, which is 18 % less than the unnormalized emission flux of experiment I as a result 
of globally increased thresholds. We note that the difference maps of unnormalized emissions in Fig. S7a 
show that larger emissions reductions occur over the major sources just because the emission magnitudes 1060 
are larger there.  

Figures 7e–f show the effect of including the hybrid drag partition effect 𝐹6## (experiment III). 
The clear contrast between major and marginal sources is shown in both Fig. 7e and Fig. 7f, which mirror 
the spatial pattern of 𝐹6##  in Fig. 4c. Compared with experiment II, experiment III has emissions 
redistributed from semiarid to hyperarid regions, since the drag partition effect leads to stronger inhibitions 1065 
of emissions over the nonarid regions than the arid regions. For example, normalized emissions increase 
(in red) over major sources such as the Bodélé Depression, El Djouf, and the Rub’ al Khali Desert; 
normalized emissions over the western U.S. and western Australia are significantly reduced. El Djouf is 
a significant dust source over Africa (Yu et al., 2018), yet K14 fails to represent its high emissions because 
of the strong moisture effect (see Fig. 5c) compared to other major sources such as the Bodélé Depression. 1070 
However, 𝐹6## highlights El Djouf as a highly erodible surface and helps mitigate the low emission issue 
over there. Similarly, the underrepresented emissions over the Taklamakan and the Arabian Desert by 
K14 are partially mitigated by accounting for the drag partitioning (light red in Fig. 7f). Summing up the 
absolute magnitude of changes in Fig. 7e, out of 5000 Tg yr-1 there are 3611 Tg yr-1 of dust redistributed 
within the source regions. This shows that the drag partition effect has a much bigger influence on the 1075 
spatial variability of dust emissions than changing 𝐷&% in Fig. 7c. For unnormalized emissions, the global 
total emission in experiment III decreases drastically by 85 % to ~2880 Tg yr-1 relative to that of 
experiment II. In Fig. S7b, many significant emissions reductions (in dark blue) occur over the Sahara 
where 𝐹6## < 0.7, such as Egypt, Sudan, and Western Sahara. K14 struggles to distinguish major sources 
(e.g., the Bodélé) from less significant sources (e.g., Sudan) and predicts similar levels of emissions. 𝐹6## 1080 
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effectively introduces the effect of surface roughness on mitigating emissions over secondary sources, 
reducing the emissions by at least one order of magnitude compared to Fig. S6b.  

Figures 7g–h show the effects of implementing the C19 intermittency scheme. It consists of 
employing 𝑢∗$" in K14 (experiment IV) and further multiplying the dust emission flux by the intermittency 
factor 𝜂 (experiment V). Figures 7g–h show their combined effects by comparing experiment V with 1085 
experiment III. As seen from Fig. 7g and Fig. 7h, emission schemes employing 𝑢∗$"  will have much 
stronger emissions over marginal sources. This is because not only 𝑢∗#"/𝑢∗$"  is bigger, but also the 
fragmentation exponent 𝜅 (which scales with 𝑢∗#") is also greater over marginal sources. As a result, the 
main feature in the spatial pattern of Fig. 7h is that the marginal sources (in red color) now have more 
emissions than experiments II and III. The most apparent emissions increases are over Patagonia, the Horn 1090 
of Africa (HOA), and western U.S. deserts. Another observable change is that there are many more high-
latitude dust emissions, such as over the Arctic, Canada, and Alaska. Studies reported that many models 
greatly underestimate high-latitude dust emissions (Bullard et al., 2016; Meinander et al., 2021), and the 
use of 𝑢∗$" will mitigate this issue. Fig. 7g shows that although the changes over nonarid regions are big 
in ratios (e.g., > 1000 times over Canada in Fig. 7h), the emission redistributions in magnitude are still 1095 
small (e.g., ~10-5 kg m-2 yr-1 in Canada) compared to the major sources (e.g., > 10-3 kg m-2 yr-1 in the 
Sahara) because the magnitudes in experiment III are too small over nonarid regions. The unnormalized 
total emissions (Fig. S6d) vastly increases to ~13200 Tg yr-1 when employing 𝑢∗$" instead of 𝑢∗#", more 
than four times that of experiment III.  

On the other hand, the effect of multiplying the emission flux with the intermittency factor 𝜂 is 1100 
less dramatic than the effect of using 𝑢∗$". 𝜂 tends to scale down small emissions (Fig. 5b), so fluxes from 
major sources are only moderately reduced. In contrast, fluxes from marginal source regions (e.g., high-
latitude boreal forests) are typically reduced by ~1–3 orders of magnitude (blue areas in Fig. S6e). 
However, Experiment V has a global total of ~11700 Tg yr-1, which is only 11 % smaller than experiment 
IV, because those remote regions as such already have small emissions. All in all, accounting for both the 1105 
impact threshold and the intermittency factor will increase the global total emission from ~2880 Tg yr-1 
in experiment III to ~11700 Tg yr-1 in experiment V, which is about a four-fold increase. Fig. 7h shows 
that C19 mainly increases marginal emissions; the overall effect of C19 is thus to move emissions from 
the hyperarid regions to semiarid regions. Summing up the absolute magnitude of changes in Fig. 7g, out 
of 5000 Tg yr-1 there are 3163 Tg yr-1 of dust redistributed within the source regions, indicating that the 1110 
intermittency scheme induces a similar magnitude of changes compared to employing 𝐹6## . Both the 
hybrid drag partition scheme and the intermittency scheme lead to > 60 % of dust emissions redistributed, 
showing that both effects modify the modeled emission behavior much more strongly compared to the 
effect of changing the value of 𝐷&% (experiment II). 

Figure 7b shows the final emission map of our new dust emission scheme with all new physics, 1115 
and Figs. 7i–j show the resulting emission changes and ratios from K14 (experiment I) to our scheme 
(experiment V). Figures 7i–j show that compared to K14, our scheme’s emission fluxes over densely 
vegetated regions (e.g., equatorial Africa and northern Australia) are reduced due to the drag partition 
effect, while there are increases in marginal sources like the Arctic and mid-latitude boreal forests due to 
the intermittency effect. The figures show essentially a combination of drag partition (Figs. 7e–f) and 1120 
intermittency (Figs. 7g–h) effects. Major sources are more affected by the drag partition effect (e.g., the 
Bodélé Depression and El Djouf), while marginal sources are more dominated by turbulence and 
intermittency (e.g., the Arctic). For regions where both effects take place, more vegetated semiarid regions 
are more affected by the drag partition (e.g., western U.S.) while less vegetated semiarid regions are more 
affected by the intermittency (e.g., Patagonia, the Great Plains of the U.S., and southern Australia). For 1125 
unnormalized emissions, our scheme’s global total of 11700 Tg yr-1 is ~60 % smaller than the K14 
emission. A notable feature is that the new mechanisms favor the emissions over the Horn of Africa (HOA) 
the most, with an emission increase of ~2 kg m-2 yr-1 (as seen in Fig. 7g and Fig. S7f). This is because in 
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C19 the HOA has low 𝑢∗$", high summertime 𝑢∗, low roughness element cover (and thus high 𝐹6##) and 
moderate soil moisture (and thus high dust emission coefficient 𝐶E). This issue could be problematic since 1130 
it could introduce too much dust in the GCM over the HOA, which is further discussed in Sect. 5. 

 
 
 

 1135 
Figure 7. The effects of the proposed improvements to the parameterization of dust emissions on the 
default Kok et al. (2014a, b) dust emission scheme. (a, b) Globally normalized dust emission fluxes 
simulated by (a) the default K14 scheme (expt. I) and (b) our new scheme (expt. V). (c-j) Maps of 
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normalized emission (c,e,g,i) differences and (d,f,h,j) ratios, with individual improvements added on top 
of the default K14 scheme. The individual improvements are respectively (c,d) changing the soil median 1140 
diameter to 127 μm (expt. II), (e,f) including the drag partition effect (expt. III), and (g,h) employing the 
Comola et al. (2019) intermittency scheme (expt. V). (i,j) Maps of (i) normalized emission differences 
and (j) emission ratios for our new scheme and the K14 scheme. The color bars of the maps of differences 
are drawn to log10 scale. 
 1145 
 
4.2 The grid scale-dependence of our new dust emission scheme 
 

The spatial resolution of a GCM strongly affects the budget and spatiotemporal variability of dust 
emissions because modeled emissions scale nonlinearly with input meteorological fields (Ridley et al., 1150 
2013; Meng et al., 2021). Many current GCMs have a horizontal resolution of  ~ 1°–2° (Zhao et al., 2022). 
Most of the datasets employed in this paper, such as the 0.5° MERRA-2 fields and the even finer aeolian 
roughness length 𝑧'&, are datasets of higher horizontal resolutions. Thus, GCMs need to regrid the datasets 
to the model native grid resolution as model input. Since dust emission has nonlinear dependences on 
multiple variables such as 𝑢∗ and 𝑤, using a simple, area-weighted spatial average of 𝑢∗ to calculate dust 1155 
emission would be inaccurate as it is different from an area-weighted average of high-resolution dust 
emissions per se, i.e., for any 𝑛 > 1 𝑢�∗7		P < 𝑢∗7		P���� leads to 𝐹E(𝑢�∗7		P) < 𝐹E(𝑢∗7		P)���������� (Ridley et al., 2013) (here we 
use the bar as a spatial average from a finer to a coarser grid). This inequality applies to our model and 
datasets as well: simply taking the area-weighted mean of high-resolution 𝑢∗7 or 𝑤 in a model grid box 
will omit the locally high 𝑢∗7  (or low 𝑤) values that can produce locally extremely high emissions, 1160 
resulting in an underestimation of emissions relative to direct area-weighted averaging of the emissions. 
Additionally, the presence of thresholds in dust emission parameterizations further intensifies the scale 
dependence, because spatially averaging 𝑢∗7 might cause 𝑢�∗7 < 𝑢�∗$" which leads to zero emission over a 
coarse gridbox, whereas fine emissions could be large than zero when 𝑢∗7 > 𝑢∗$" in any fine grid. Dust 
emission flux will thus be strongly dependent on model resolution more than other linear processes 1165 
(Zender et al., 2003a; Ridley et al., 2013; Meng et al., 2021), which is undesirable. There is a need to 
better upscale low-resolution dust emissions to match the variability of high-resolution emissions such 
that dust emissions tend to be less resolution-dependent. To address the problem of missing emissions due 
to the smoothing of the subgrid wind maxima, a common approach is to employ a grid-by-grid Weibull 
distribution to the GCM winds to represent the subgrid wind maxima and thus obtain the subgrid emission 1170 
peaks (Cakmur et al., 2004; Grini et al., 2005; Cowie et al., 2015; Zhang et al., 2016; Menut, 2018; Tai et 
al., 2021). However, the shape factor of the distribution needs to be empirically determined and thus might 
not capture the interannual variability and changes in climate. In this subsection, we examine the scale-
dependence of our dust emission scheme and then propose an alternative approach, which is to derive a 
simple spatial map and upscale the spatial variability of dust emissions from low resolution ones to high 1175 
resolution ones. A discussion about our proposed approach versus the more common Weibull distribution 
approach is detailed in Sect. S6.4. 

 
We first examine the scale dependence of our dust emission scheme. We achieve this by 

performing an area-weighted mean of all input meteorological and land-surface variables to various 1180 
coarser resolutions. Starting from the native 0.5° × 0.625° resolution of MERRA-2, we regrid fields to 
0.9° × 1.25°, 1.9° × 2.5°, and 4° × 5°. Then we use these input fields with our new scheme to compute 
hourly dust emissions for 2006 across these four resolutions. We then compare the emission outputs across 
these resolutions. 
 We examine the global, regional, and grid-level scale dependence of our dust emission scheme in 1185 
Fig. 8. At the regional level, Fig. 8a shows the unnormalized annual total emissions (in Tg yr-1) of nine 
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major dust source regions. The source regions are defined following Kok et al. (2021a) (see Fig. S9 and 
Figs. 8c-d). The regional dust abundance in Fig. 8a is mainly consistent with the regional dust emissions 
in Kok et al. (2021b; see their Fig. 2). The highest emissions occur over the Middle East/Central Asia, 
followed by the Sahel and northern Africa. Smaller emissions are over East Asia, North and South 1190 
America, Australia, and southern Africa. The dust emission scheme also shows scale dependence across 
different resolutions. Some regions may have a sharper decrease in emissions from 0.9° × 1.25° to 1.9° × 
2.5° (e.g., northeastern Africa), and some regions may have a sharper decrease from 1.9° × 2.5° to 4° × 5° 
(e.g., Sahel). This difference is contingent upon the degree of smoothing of the input fields such as 𝑢∗7 at 
a particular resolution. The emissions will drastically drop when the local extrema of 𝑢∗7 are smoothed 1195 
out and no longer can be represented at a particular resolution, and over different regions this cut off may 
occur at different resolutions depending on the spatial heterogeneity of the local-scale meteorological 
fields. Nevertheless, in general, the coarser the resolution, the worse the model can represent the local 
variability of 𝑢∗7 and other input fields and subsequently the emissions, and thus the magnitudes of the 
emissions decrease with resolution. Figure 8a shows that the relative differences in regional emissions can 1200 
be different in different resolutions (e.g., Sahel can have larger emission than the Middle East/Central 
Asia in the 4° × 5° simulation), which will subsequently affect the spatial variability of other major dust 
cycle variables (such as DAOD or deposition). Therefore, it is always preferential for GCMs to simulate 
the dust cycle in high resolutions. Figure 8b shows the scale dependence of the global emissions, which 
also shows the same decrease in emissions from fine to coarse grid resolutions. 1205 
 We also examine the scale dependence of dust emissions at the grid level. Figures 8c–d show the 
spatial distributions of 0.5° × 0.625° and 1.9° × 2.5° unnormalized emissions (with a global total of 11700 
Tg yr-1 and 5450 Tg yr-1, respectively). The 0.5° × 0.625° simulation shows a more detailed local spatial 
variability compared to the coarser 1.9° × 2.5° simulation. The 1.9° × 2.5° simulation fails to capture some 
of the high emission regimes in the 0.5° × 0.625° simulation such as over Taklamakan, and fails to simulate 1210 
the local emission peaks over marginal sources such as the Chihuahuan Desert and Patagonia. Coarse-
gridded simulations lose emissions in both major and marginal dust sources. We calculate in Fig. 8e the 
grid-by-grid ratio of unnormalized 0.5° × 0.625° emissions to 1.9° × 2.5° emissions to show the emissions 
missed by the 1.9° × 2.5° simulation in each grid. Both the coarse (y-axis) and fine (x-axis) emissions are 
plotted in the log10 scale to show the emission ratios in terms of the order of magnitude only. It can be 1215 
seen that most of the points are above the 1:1 line (black dashed line), meaning the coarse emissions are 
underestimating some local dust fluxes accounted by the fine emissions. The low-resolution simulation 
can capture the largest emissions well (top right hand corner), as predicted by the high-resolution 
simulation. However, the smaller the emission, the more significant the difference in emissions, and for 
minimal emissions (< 10-5 kg m-2 yr-1) the difference can be up to three orders of magnitude. There are 1220 
very few grids with low-resolution emissions higher than high-resolution emissions. Those are exceptional 
cases due to the spatial variability of moisture 𝑤 more heterogeneous than that of 𝑢∗7 , leading to the 
smoothing of local maxima of 𝑢∗#"  instead of 𝑢∗7  and thus the overestimation of 𝐹E  in the coarser 
simulation. In conclusion, the coarse resolution models omit many local input features and thus fail to 
represent the correct spatial variability of dust emissions. 1225 
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Figure 8. The dependence on horizontal resolution of dust emissions simulated with our new dust emission 
scheme. (a, b) Bar plots of dust emissions as a function of grid resolutions for (a) nine major dust emission 
regions and (b) the globe. (c) 0.5° × 0.625° unnormalized emissions and (d) 1.9° × 2.5° unnormalized 1230 
emissions. e) A scatterplot of 0.5° × 0.625° versus 1.9° × 2.5° unnormalized dust emissions. The 
rectangular boxes show the nine source regions in (a) defined as in Fig. S9. 
 
 
 To mitigate the scale dependence of our dust emission simulations, here we propose a simple 1235 
approach to upscale the simulated low-resolution emissions to match the high-resolution emissions. This 
approach assumes that the fine emissions have a more adequate magnitude and spatiotemporal variability 
than the coarse emissions so that the coarse emissions are calibrated to match the fine emissions. Our 
approach is that, by dividing the normalized fine-resolution emission map 𝐹E,# by the coarse-resolution 
emission map 𝐹E,2, we obtain a map of scaling factors 𝐾�2 to account for the differences in the spatial 1240 
variability of dust emissions between high- and low-resolution simulations: 
𝐾�2(lon, lat) = 𝐹E,#(lon, lat)/𝐹E,2(lon, lat)        (24) 
We obtain a global map of correction factors 𝐾�2, and apply this map to all simulated coarse emissions 
from both historical and future simulations, correcting their spatial variability to match that of the high-
resolution emissions. We show the seasonal variability of 𝐾�2 in Fig. S10. This map of scaling factors 1245 
contains some temporal and seasonal variability, so it would be preferable to apply a seasonally varying 
dataset of 𝐾�2 . However, 𝐾�2  varies modestly across season because the subgrid variability of the 
meteorological and land-surface fields are partly determined by spatial structures such as orography or 
land use/land cover, which change across a relatively long enough time scale (decadal to multidecadal or 
longer). We note that theoretically this approach will fail to work if, over the remote regions, the low-1250 
resolution emission is zero throughout the entire simulation period while the high-resolution emission is 
a small positive definite, since 𝐾�2 will go to infinity. We also note that employing different input fields or 
different emission schemes will change the subgrid variability and thus the spatial representation of this 
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correction map. For instance, one will obtain a slightly different correction map if one uses ERA-Interim 
meteorology instead of MERRA-2, or a moderately different map if one employs the Z03 or any other 1255 
dust emission equations instead of K14 or our new scheme. Therefore, although here we present a standard 
correction map which is likely accurate and realistic, we suggest each model should make their own 
correction maps for their specific model configurations. We discuss more caveats of this approach in Sect. 
5.4. 
 Figure 9 shows the ratio maps normalized fine emissions to coarse emissions. Figure 9a shows the 1260 
ratio of normalized 0.5° × 0.625° emissions (𝐹E,'.+) to constrained 1.9° × 2.5° emissions (𝐹E,-), and Fig. 
9b shows the ratio of constrained 𝐹E,'.+ to constrained 0.9° × 1.25° emissions (𝐹E,/). Since all emissions 
are constrained to match the global dust budget, the correction maps display the relative changes in spatial 
variability between two resolutions. From Figs. 9a–b, it can be seen that 0.5° × 0.625° emissions tend to 
generate relatively fewer emissions (blue color) over the major sources, such as the Sahara, the Arabian 1265 
Desert, and the Taklamakan Desert. 0.5° × 0.625° emissions also tend to have relatively more emissions 
(red color) over the peripheries of the major sources, such as Algeria, Yemen, and the Taklamakan. This 
is in line with the above discussion, because the high-resolution simulations tend to be more capable of 
representing the local peaks of 𝑢∗7 and therefore can more likely pass the thresholds and produce 𝐹E; the 
low-resolution simulations would miss a lot of marginal emissions because the low-resolution wind will 1270 
be smaller than the low-resolution threshold and yield a zero 𝐹E. The ratios over the marginal sources can 
be up to 100 or even more because of the much smaller emissions in low-resolution simulations. The 
contrast is smaller (with ratios of 0.5–0.9) over major sources where coarser simulations are more capable 
of representing the large-scale emission fluxes. Due to the same reason, the correction values in Fig. 9a 
for 1.9° × 2.5° (𝐾�2,-) generally have bigger magnitudes than those in Fig. 9a for 0.9° × 1.25° (𝐾�2,/). These 1275 
maps indicate that in coarse-gridded simulations, dust emissions are overall underrepresented over 
marginal sources and overrepresented over major sources. Therefore, we propose implementing these 
maps into GCMs of ~1° or coarser resolution to correct the dust emission spatial variability accordingly. 
Scaling all simulations across different spatial resolutions to the finest spatial resolution will move our 
dust emission scheme toward a scale-aware and grid-independent formulation. 1280 
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Figure 9. Gridded maps of a 0.9° × 1.25°, 1.9° × 2.5°, and 4° × 5° scaling factor to rescale the coarse dust 
emission simulations to match the spatial variability of high-resolution dust emissions. This is achieved 
by calculating the ratios of (a) 0.5° × 0.625° to 1.9° × 2.5° emissions, (b) 0.5° × 0.625° to 0.9° × 1.25° 1285 
emissions, and (c) 0.5° × 0.625° to 4° × 5° emissions. Emissions of all resolutions are constrained and 
normalized to have a global total of 5000 Tg yr-1 before calculating the ratios. 
 
 
 1290 
4.3 Comparison of our dust emission scheme against other dust estimates 
 

To validate the emissions produced by our new scheme, this subsection focuses on comparing the 
resulting 0.5° × 0.625° emissions from our new scheme against other existing emission data. Since there 
are no globally gridded observations of dust emissions, GCMs and ESMs mostly evaluate their schemes 1295 
using observable atmospheric dust products such as satellite and ground-based DAOD data, as well as 
dust surface concentrations and dust deposition flux measurements (Ridley et al., 2012; Kok et al., 2014b; 
Pu and Ginoux, 2018; Parajuli et al., 2019; Klose et al., 2021). Since this study focuses on simulating dust 
emissions, not their subsequent transport and deposition, we compare our results against constraints on 
the fraction of annual dust emission contributed by nine major source regions (Table 1 in Kok et al., 1300 
2021b). These constraints on regional emission fluxes were obtained from the Dust Constraints from joint 
Observational-Modelling-Experimental analysis (DustCOMM) data set (Kok et al., 2021a, b), which used 
inverse modeling to combine an ensemble of model simulations of the global dust cycle with constraints 
on the regional DAOD near major dust source regions (Ridley et al., 2016), the dust size distribution 
(Adebiyi and Kok, 2020), and dust extinction efficiency (Kok et al., 2017). The DustCOMM constraints 1305 
on regional dust emissions include error estimates that account for the spread in model results and the 
uncertainties in the constraints on dust properties and abundance. Comparisons against independent 
measurements of dust surface concentrations and deposition fluxes indicated that the DustCOMM product 
is more accurate than GCM simulations and the MERRA-2 dust reanalysis, and that uncertainties are 
realistic (Kok et al., 2021a, b). The total emissions from all nine source regions obtained by the 1310 
DustCOMM dataset was 4.7 (3.4–9.1) × 103 Tg/year for dust PM20. The global total of ~4700 Tg yr-1 is 
close to the 5000 Tg yr-1 we adopted in this study for normalization, and we again normalized the 
DustCOMM global emissions to 5000 Tg yr-1. Note that Kok et al. (2021a, b) only constrained the 
emissions and other dust variables for each broad region, but its subregional spatial distribution of dust is 
a multimodel mean, and thus unconstrained. Therefore, in Fig. 10b, we sum up the emissions of 1315 
DustCOMM to regional total emissions, which are constrained by the regional DAOD from Ridley et al. 
(2016). We also sum up the emissions of all other schemes to regional levels to evaluate each scheme’s 
regional spatial variability against DustCOMM. Tables S3 and S4 summarize the global total emissions 
and regional emissions of DustCOMM and all other schemes. 

 1320 
We first compare the global emission maps between DustCOMM and different schemes. Figure 

10a shows the gridded global spatial distribution of DustCOMM dust emissions (Kok et al., 2021a). Here 
we compare the gridded simulations of K14 (Fig. 7a) and our scheme (Fig. 7b) against the gridded K21 
DustCOMM emissions. Our new scheme’s simulation successfully captures most of the major peaks in 
DustCOMM emissions, except that there are more northern U.S. and high-latitude emissions in our new 1325 
scheme which was not represented and constrained in DustCOMM’s inverse analysis. Our scheme and 
DustCOMM emissions have a gridded spatial correlation coefficient of r = 0.71, showing the resemblance 
of the two emission maps and our scheme’s ability in physically capturing the emission peaks. On the 
other hand, K14 emissions also share a similar spatial distribution with DustCOMM emissions but show 
more emissions over central Africa, central India, and northern Australia. Its gridded spatial correlation 1330 
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coefficient with DustCOMM is r = 0.61, indicating it does not match DustCOMM emissions in spatial 
variability as well as our scheme does. 

We also conducted simulations using the Z03 scheme (Eq. 10) for comparison with our scheme’s 
simulation. The Z03 scheme requires a source function S, and in this study we adopted two popular source 
functions: one is the Zender et al. (2003b) geomorphological source function (e.g., used in CESM; Oleson 1335 
et al., 2013) and the other one is the Ginoux et al. (2001) source function (e.g., used in GEOS-Chem; 
Fairlie et al., 2007). Both source functions are plotted in Fig. 2 in Kok et al. (2014b). Figure S11a shows 
the simulations of the Z03 scheme with Ginoux et al. (2001) S (Z03–G), which shows almost an identical 
pattern with the Z03–G scheme in the GEOS-Chem simulations (e.g., top panel of Fig. 1 in Meng et al., 
2021). The Z03–G scheme is mostly consistent with the DustCOMM multimodel emissions (r = 0.57), 1340 
but captures more African emissions in the northwest Africa such as Algeria, Morocco, and Western 
Sahara. On the other hand, the Z03–Z scheme employs a geomorphic S that possesses a spatial distribution 
of the upstream area where surface runoff is collected, from Zender et al. (2003b). Figure S11b shows the 
simulations of the Z03–Z scheme, which shows a highly similar pattern with the Z03–Z scheme in the 
CESM simulations (e.g., Fig. 2a in Li et al., 2022). It captures the emission peaks across the globe but is 1345 
quite spatially heterogenous, yielding a relatively low r = 0.35 with DustCOMM. 

We further obtained MERRA-2 simulated dust emissions for comparison. MERRA-2 simulates 
the dust cycle using the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, 
which employs the Ginoux et al. (2001) scheme (hereafter G01). We thus use MERRA-2 simulated dust 
emissions here for a comparison between G01, Z03, K14, our scheme, and DustCOMM. However, since 1350 
DustCOMM employs GOCART dust as one of the six models for inverse analysis and assimilation (see 
Table 1 of Kok et al., 2021a), and because both DustCOMM and MERRA-2 use remotely sensed aerosol 
optical depth, DustCOMM and MERRA-2 emissions show relatively similar spatial distributions. Figure 
S12a shows MERRA-2 annual mean emissions, which show very similar features of grid-by-grid 
variability especially over Australia, East Asia, and the Middle East. For the same reason, MERRA-2 1355 
emissions have a high correlation of r = 0.86 with DustCOMM.  

 
 Next, we aggregate the emission maps to regional total emissions to examine their regional 
variability. In Fig. 10b, we compare the simulated dust emissions summed over each of nine source regions 
against the regional DustCOMM emissions. We also summed the emissions outside all rectangular boxes 1360 
as the high-latitude emissions, to yield the ten data points in Fig. 10b. High-latitude emissions from our 
scheme (Fig. 7b) mainly includes emissions from Alaska, Canada, Greenland, and Iceland, and there are 
no emissions from Antarctica because of the lack of necessary input data there (e.g., soil texture and 
roughness due to rocks). However, since K21 does not provide emission estimates outside of the nine 
defined source regions, we compare against the estimate of high-latitude dust emissions from Bullard et 1365 
al. (2016) (hereafter B16) obtained from GCM results. Their definition of high-latitude emission not only 
includes emissions from the abovementioned regions but also from Patagonia, so we add Patagonia (39°–
56°S of S. America) emissions as part of the high-latitude emissions in Fig. 10b. B16 estimated that high-
latitude emissions (without error estimates) accounted for 4–5 % of their assumed 2000 Tg yr-1 of global 
total emissions. We normalized their estimate to match our global total of 5000 Tg yr-1, yielding a high-1370 
latitude emission range of 200–250 Tg yr-1. We take the average, which is 225 Tg yr-1. For all schemes 
and datasets discussed here, Table S4 provides a list of regional emission contributions to the global total 
emission. 

Figure 10b shows that our scheme’s emissions are in overall better agreement with DustCOMM 
emissions than the K14 scheme. Some of the most significant differences in emissions between our scheme 1375 
and K14 are over regions including Australia, North America, and South Africa, where the vegetation 
drag partitioning causes strong reductions in winds and emission fluxes (Fig. 7f) from K14 to our scheme. 
Our scheme’s East Asian emission is significantly higher than K14’s (also shown in Fig. 7j), primarily 
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due to the switch from using 𝑢∗#" to 𝑢∗$" in the dust emission equation (Fig. 7h and Fig. S8d). Emissions 
over South America, the Middle East, and the three regions of North Africa have relatively small and 1380 
negligible differences between K14 and our scheme. This occurs because both the drag partitioning and 
intermittency effects create only minimal changes to the emissions over these regions (Fig. 7j). The results 
with our scheme (blue color) better match the DustCOMM regional emissions than results with the K14 
scheme, lying substantially closer to the 1:1 (black) line over most regions including Africa, Asia, and 
Australia. There are two notable exceptions where our scheme has less agreement than K14 with 1385 
DustCOMM, namely North America and the high-latitude emissions. Our scheme generates fewer dust 
emissions over the Mojave–Sonoran–Chihuahuan deserts over the U.S.–Mexico border compared to the 
K14 emissions (Fig. 7a), because of the high LAI (annual mean > 0.4) over the western U.S. that leads to 
the strong wind drag partitioning. Meanwhile, our scheme generates a significant amount of high-latitude 
emissions over the Arctic, which were not captured by K14 emissions due to the very high 𝑢∗#". Using 1390 
the emission intermittency parameterization, our scheme represents one of the earliest attempts to 
successfully capture a significant amount of high-latitude emissions. Our high-latitude emissions account 
for 262 Tg yr-1 (without Patagonia) and 308 Tg yr-1 (with Patagonia), in total accounting for 5–6 % of a 
global sum of 5000 Tg yr-1, which is very close to the percentage B16 suggested. Our scheme has an R2 
of 89 % and a root-mean-squared error (RMSE) of 141 Tg yr-1. We note in Fig. 10b the normalized RMSE 1395 
(NRMSE) of 28 %, which is the RMSE divided by the mean of the DustCOMM emissions (5000 Tg yr-1 
/ 10 data points = 500 Tg yr-1). Our scheme’s performance is substantially better than K14’s performance 
with an R2 of 65 % and an RMSE = 259 Tg yr-1 (NRMSE = 52 %).  

On the other hand, the Z03–Z scheme (Fig. 10c in green) has a similar level of performance 
compared with K14, with a higher RMSE of 317 Tg yr-1 (NRMSE = 63 %) and an R2 of 64 %. The Z03–1400 
G simulation (Fig. 10c in violet) has a higher R2 of 83 % and also a smaller RMSE of 237 Tg yr-1 (NRMSE 
= 43 %) against DustCOMM compared with K14 and Z03–Z. Meanwhile, MERRA-2 (Fig. 10d) has a 
high regional correlation of R2 of 88 % and RMSE of 187 Tg yr-1 (NRMSE = 37 %) against DustCOMM 
regional variability. In conclusion, our scheme outperforms all the aforementioned simulations in 
matching against the DustCOMM estimates of regional dust emissions. 1405 

To evaluate our simulations of the dust emission thresholds, we also compare our simulations of 
dust emission thresholds against observationally based threshold estimates from Pu et al. (2020). They 
compared reanalyzed wind speed distributions against observationally derived DAOD distributions to 
obtain a threshold wind speed for each gridbox that corresponds to a threshold DAOD value (e.g., 0.5 over 
arid regions and 0.05 over semiarid regions), above which is defined as a dust emission event. We show 1410 
that our simulations of dust emission threshold overall match their derived threshold wind speed in 
magnitude and spatial variability (see Sect. S5 and Fig. S13). 
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Figure 10. Dust emissions simulated using different schemes compared against DustCOMM (K21) and 1415 
Bullard et al. (2016) constraints on regional dust emissions. (a) Globally gridded DustCOMM emissions 
(kg m-2 yr-1) based on emissions from six different models that were adjusted using inverse modeling to 
match constraints on particle size distribution, extinction efficiency, and regional dust aerosol optical 
depth. The black rectangular regions specify the nine source regions defined by Kok et al. (2021a) as also 
shown in Fig. 8c–d. (b) DustCOMM regional emissions (based on fractional emissions reported in the 1420 
fifth column of Table 1 in K21b scaled to a global total of 5000 Tg yr-1) versus the regional emissions 
computed by the K14 scheme and our new scheme. (c, d) Comparison of the DustCOMM regional 
emissions with the regional emissions computed by the (c) Z03–Z and Z03–G schemes and with (d) 
MERRA-2 dust emissions. The regional emissions of all simulations are obtained from DustCOMM 
following the nine source regions in panel (a), with one extra data point representing the “high-latitude” 1425 
emissions estimated by Bullard et al. (2016). The error bars show one standard error, except that the B16 
high-latitude emission does not include an error estimate. The black line shows the 1:1 line.  
 
 
 1430 
5. Discussion of the caveats and limitations of the new parameterization 
 

Because of the complexities of simulating the fine-scale process of dust emission in a large-scale 
gridded model, the parameterizations of dust emission processes presented in Sect. 4 and the dust schemes 
employed from all past studies necessarily made a number of assumptions. Below, we highlight one 1435 
important caveat or limitation for each modification made in this paper. We provide discussions on further 
limitations for each modification in Sect. S6. 
 For the new dry soil median diameter 𝐷&% representation, we used a globally constant 𝐷&%' = 127 ± 
47 μm for calculating dust emission thresholds. In theory, 𝐷&% should be a function of soil properties (Hillel, 
1980) and therefore implicitly a function of space and time, but we obtained a simple relationship for 1440 
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𝐷&%	over arid regions because 1) there were no statistically significant correlations between 𝐷&%  and 
standard soil properties like soil texture (Fig. S2), 2) data are insufficient for a detailed statistical analysis 
against a wider range of soil properties, 3) the uncertainties of soil data are moderately large, and 4) most 
𝐷&% measurements over arid regions found 𝐷&% within 40–250 μm (Fig. 1c), which limited 𝑢∗#"' to vary 
within the relatively small range of ~0.204–0.268 m s-1 (from Eq. 2 assuming 𝜌& = 1.225	kg	m).). Our 1445 
analysis of a compilation of 𝐷&% measurements also suggests that the spatial variability of 𝐷&% over deserts 
is relatively small compared to 𝐷&% over nonarid regions. Our results thus surprisingly suggest that the 𝐷&% 
parameterization can reasonably be much simplified by using a constant value over arid regions. We also 
compared our approach in deriving 𝐷&% against some other derived 𝐷&% maps (e.g., Fig. S14) from previous 
dust modeling studies in Sect. S6.1. 1450 

For our hybrid drag partition scheme (Sect. 3.2), we have proposed to combine the rock and 
vegetation drag partition effects using a weighted mean approach (Eq. 21). This approach assumed that 
there is a rock regime and a vegetated regime of certain fractions for every gridbox, which has the 
advantage of smoothing the transitions of roughness from very exposed regions (e.g., the Sahara) to 
semiarid regions with more vegetation (e.g., the Sahel). By using the weighted mean approach, we separate 1455 
the treatments of rock and vegetation drag partition effects and avoid dealing with the need of adding 𝑧'& 
of rocks and 𝑧'& of plants, which is challenging because roughness length is not an additive quantity. For 
simplicity, Eq. 21 neglects regimes where the roughness of rocks and plants both contribute substantially 
to the total aeolian roughness. We also note that ESA CCI vegetation cover fractions are annual values 
and do not exhibit seasonality. The seasonal variability of the simulated 𝐹6## in this study is caused by the 1460 
temporal variability of the LAI input. 

For the intermittency scheme (C19 in Sect. 3.3), we note that it has exponential dependences on 
𝑢∗7, 𝜎Li$, 𝑢∗$", and 𝑢∗#" (see Sect. S2) and is thus very sensitive to the accuracy of the GCM simulations 
of these four variables. For instance, if the thresholds are overestimated by the employed threshold 
schemes, not only will emissions be underestimated but 𝜂 from C19 will also be close to zero and further 1465 
worsen the low bias of the simulated dust emissions. Therefore, a prerequisite of employing the C19 
scheme is that the wind friction velocity 𝑢∗7  and the thresholds 𝑢∗$"  and 𝑢∗#"	should be adequately 
simulated and have reasonable ranges of variability throughout the year. We also note that C19 was 
designed to be used in climate models that run in the Reynolds-averaged Navier–Stokes (RANS) mode. 
If climate models are resolving turbulence (i.e., in the LES mode), there is minimal need to use C19 to 1470 
account for intermittent emissions. 

For the dust emission scaling method (Sect. 4.3), we note that the scaling factors neglect seasonal 
variability, which Fig. S10 indicates is moderate. However, employing an annual scaling map like Fig. 9 
will already address a large part of the scale-dependence problem. Although we suggested the use of an 
annual scaling map, ESMs and CTMs that focus on present-day simulations can also perform multiyear 1475 
simulations in both high and native (coarser) grid resolutions to obtain their own monthly climatological 
maps of scaling factors. Afterwards, ESMs only need to read in the climatological monthly scaling maps 
to rescale the native grid dust emissions every month before passing the dust emissions to the atmospheric 
model component. We further discussed our scaling approach versus some other existent approaches (e.g., 
using a Weibull distribution for the winds) in Sect. S6.4. 1480 

Finally, all emission maps produced in this paper depend on the accuracy of the representations of 
the input meteorological fields and land-surface variables in various datasets. Our results are particularly 
sensitive to the soil moisture simulated by MERRA-2, mainly because dust schemes are very sensitive to 
soil moisture. As a result, although the final simulation of our scheme outperforms other dust emission 
schemes employed in this paper (Fig. 10), some features in the dust emissions map are unrealistic. First, 1485 
for instance, the Australian dust emissions are of a comparable order of magnitude to the East Asian 
emissions (and even larger than East Asian dust emissions in coarser resolutions, per Fig. 8a), which might 
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be because the soil moisture over Australia is slightly underestimated by MERRA-2. Second, northeastern 
China has larger emissions than northwestern Chinese deserts (Fig. 7b), and similar spatial variability is 
also seen in other past studies (e.g, Kok et al., 2014b), which might be due to the stronger friction velocity 1490 
over northeastern China (annual mean > 0.3 m s-1 in MERRA-2) than over northwestern China (annual 
mean ~0.2 m s-1 in MERRA-2) in the GCMs or input MERRA-2 fields (see Fig. S15 for the spatial 
distribution of MERRA-2 𝑢∗ over northeastern vs. northwestern China). Third, our scheme generates very 
high summertime emissions over Sudan and the Horn of Africa because of the very high MERRA-2 𝑢∗ (~ 
1 m s-1 in the summer), low soil moisture, and aeolian roughness (see Fig. 7i). However, this emission 1495 
peak is not consistent with dust aerosol optical depth (DAOD) observations. There might be several 
reasons for the HOA emissions peak, including i) the input fields are biased over the HOA; ii) some 
unknown mechanisms are responsible for suppressing the HOA dust; iii) normalized emissions outside of 
the HOA are overly suppressed relative to the HOA by the drag partitioning and the intermittency effect. 

 1500 
6. Conclusions and significance of our new parameterization 
 
 This study presented a new desert dust emission scheme for GCMs and CTMs. The major advances 
of our scheme compared with existing schemes are the following: 1) we obtained improved 
parameterizations for several key aspects of dust emission, 2) these improved parameterizations were 1505 
informed by multiple observations that constrained critical parameters, and 3) we proposed a method to 
reduce the grid resolution-dependence of the emission scheme that is a common problem to many other 
existing schemes.  

To achieve these advances, we have implemented the following modifications to the existing dust 
emission scheme of Kok et al. (2014a, b): Our first improvement involved the use of soil particle size 1510 
distributions from multiple past studies to estimate and constrain the soil median diameter 𝐷&% as a critical 
parameter that determines the dust emission thresholds 𝑢∗$" (impact) and 𝑢∗#" (fluid). We found that over 
the arid desert regions (LAI < 1), 𝐷&% can be approximated as a global constant of 127 ± 47 μm, and over 
non-arid regions 𝐷&%  increases linearly with silt and clay content. This finding indicates that past dust 
modeling approaches which parameterized 𝐷&% as a function of soil types can be simplified.  1515 

Second, we presented a parameterization of the effects of surface rocks and vegetation on the wind 
drag partition effects, which is not included by many of the current GCMs and CTMs. In particular, a 
major advance of our drag partition scheme is that we propose a novel method to combine the effects of 
rocks and vegetation by getting a weighted mean of both effects according to the globally gridded rock 
and vegetation land-cover area fractions from land-cover datasets (e.g., Klein Goldewijk et al., 2016; ESA, 1520 
2017; Kobayashi et al., 2017). Many dust modeling studies only attempted to include the drag partition 
effect of either one of these roughness elements, and this study represents one of the earliest attempts 
along with a few other papers (e.g., Darmenova et al., 2009; Foroutan et al., 2017; Klose et al., 2021) to 
combine and unify the effects on the wind partition of both kinds of roughness elements. Future work 
should also account for the time-varying vegetation drag partition effect to further enhance the realistic 1525 
coupling of dust emissions to vegetation dynamics and variability.  

Third, we incorporated the boundary-layer turbulence effects on dust emission intermittency by 
coupling the intermittency scheme formulated by Comola et al. (2019b) to our Kok et al. (2014b) dust 
emission schemes. The C19 scheme is formulated based on field measurements of simultaneous high-
frequency measurements of sand transport and the turbulent wind. This is one of the first studies to have 1530 
included the turbulence effects on dust emissions, amongst others which focused more on the turbulence 
effects on convective dust emissions (e.g., Klose et al., 2014; Li et al., 2014). Including the turbulence-
driven intermittency effect is important for marginal dust emission sources where the wind speed is 
normally below the fluid threshold, e.g., dust emissions from high-latitude regions. The C19 scheme also 
allows dust emission physics to couple better with boundary-layer dynamics and variability, such that 1535 
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simulated dust will have a day-to-day and seasonal variability that is physically linked to the 
characteristics of the turbulent boundary-layer.  

Fourth, we proposed a simple scaling method to reduce the inconsistencies in the spatial 
distributions of the high-resolution and low-resolution dust emission simulations within a LSM. We 
propose to rescale the low-resolution dust emissions to match the spatial variability of the high-resolution 1540 
emissions by comparing the spatial distributions of the high- and low-resolution dust emission maps, 
thereby obtaining a climatological map of scaling factors. The correction maps can thus be applied to other 
simulations of similar settings, e.g., experiments with the same meteorological and land-surface inputs but 
different sea/land ice, ocean, stratospheric, or plant physiological forcings. This approach can alleviate the 
long-standing problem of grid-resolution dependence and spatial distribution inconsistencies of dust 1545 
emissions across grid sizes among a GCM (e.g., Ridley et al., 2013). Although grid-scale dependence 
exists in most physical variables in the GCMs, dust emission is exceptionally vulnerable to the grid-
resolution dependence problem because of the very strong nonlinearity (a power of 3–5 or more) of dust 
emissions to the meteorological fields. 

These new approaches act synergistically to improve dust emission modeling. Our new scheme’s 1550 
dust emission simulation, driven by the MERRA-2 meteorological and land-surface fields, shows higher 
consistency with the Kok et al. (2021a, b) DustCOMM multimodel mean emissions (Fig. 10), which were 
observationally constrained by an inverse modeling approach and thus contain a realistic regional 
distribution of dust emissions. Our scheme shows the best agreement against the multimodel mean dust 
emissions in terms of regional characteristics with R2 = 89 %, meanwhile other schemes, such as Kok et 1555 
al. (2014a, b) and Zender et al. (2003a, b), respectively yielded R2 = 65 % and the R2 = 64 %. This indicates 
that adding the missing aeolian physics into the existing emission schemes is critical to correctly capturing 
the dust emission spatial variability, and that our scheme displayed almost identical regional 
characteristics as the inverted multimodel emissions. Our emission map also show more distinctively the 
major dust sources including the Bodélé Depression, El Djouf, the Arabian Desert, the Australian Desert, 1560 
and Patagonia. In our companion paper (Leung et al., in prep.), we will examine the dust cycle simulations 
of this newly proposed dust emission scheme in CESM and evaluate its performance with other dust cycle 
variables such as dust PM concentration, dust AOD, lifetime, and deposition flux.  

Finally, we note that although our scheme employs a specific emission threshold scheme (i.e., 
Shao and Lu, 2000) and a specific dust emission equation of Kok et al. (2014b), the modifications we 1565 
proposed could be applied to different dust emission schemes. For instance, one could use Iversen and 
White (1982) as a threshold scheme with our newly proposed soil median diameter 𝐷&%. One could also 
use Ginoux et al. (2001), Tegen et al. (2002), or any other dust emission equation to combine with the 
Comola et al. (2019b) intermittency scheme and our hybrid drag partition scheme. Therefore, our 
formulation in this paper is highly versatile and adaptable to most of the existing GCMs and CTMs. As 1570 
such, the new dust emission parameterization presented here can improve the global dust cycle in most 
GCMs, ESMs, RCMs, and CTMs.  

 
 
  1575 
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