Supplementary Information

Measurement report: Underestimated reactive organic gases from residential combustion: insights from a near-complete speciation

Yaqin Gao¹, Hongli Wang¹*, Lingling Yuan¹, Shengao Jing¹, Bin Yuan², Guofeng Shen³, Liang Zhu^{4,5}, Abigail Koss⁵, Yingjie Li¹, Qian Wang¹, Dan Dan Huang¹, Shuhui Zhu¹, Shikang Tao¹, Shengrong Lou¹, Cheng Huang¹*

¹ State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China

² Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China

³ Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China

⁴ Tofwerk China, Nanjing 210000, China

⁵ Tofwerk AG, Thun 3645, Switzerland

* Corresponding author: Hongli Wang, E-mail: <u>wanghl@saes.sh.cn;</u> Cheng Huang, E-mail: <u>Huangc@saes.sh.cn</u>

8 figures 5 tables 22 pages

Figure S1. Sampling diagram relates to six solid fuels types, household stoves, sampling port and equipment. n refers to the number of different samples.

Figure S2. (a) The transmission efficiency of the Vocus PTR-ToF-MS and (b) ccomparison of measured and calculated calibration factors for several ROGs. The black dash line means 1:1.

Figure S3. Intercomparisons between species measurement of samples by GC-FID/MS and by H_3O^+/NO^+ Vocus PTR-ToF-MS. C8ARO and C9ARO refer to aromatics containing 8 carbon and 9 carbon atoms, respectively.

Figure S4. Statistical evaluation on the loss fraction of ROGs in the canisters. (a) Species counts in different loss fraction bins on 2, 4, 7, 10, 14 days (x-axis) of storage in the canisters. (b) The loss fraction of each compound standards on 2, 4, 7, 10, 14 days of storage in the canisters. The measured species corresponding to the numbers of horizontal axis are listed in Table S1.

Figure S5. Profile composition of species for different samples measured by GC-MS/FID and Vocus PTR-ToF-MS and the measured total ROG concentration of each sample (black line).

Figure S6. Comparison of emission ratios between this study and the previous studies (Hatch et al., 2017; Mo et al., 2016; Stockwell et al., 2015; Wang et al., 2014; Cai et al., 2019; Stockwell et al., 2016). The black dashed lines indicate the 1:1 relationship, and the gray and light gray areas show agreements within a factor of 2 and 4, respectively. n is the number of compared species with the corresponding reference.

Figure S7. Correlation between ROGs source profile of different samples of the same fuel. The number represents the Spearman correlation coefficient (R).

Figure S8. Box plot of estimated emission factors (EFs) of newly identified ROGs based on reported EF of ROGs and the relative variation (blue line) of EFs based on benzene to the average of all tests. The red dot is the calculated EFs based on benzene. The box range is the calculated EFs based on other reported species. The green dot is the EFs from references(Cai et al., 2019; Stockwell et al., 2015) used in calculation.

Method	Fuel types	Reference	Numbers of species by GC-MS(/ FID)	Numbers of species by Vocus PTR-ToF-MS	Numbers of species (Other instruments)
	Residential coals, biomass	This study	71	84 (84-92% of the overall peak mass)	_
Combustion in stove	Anthracite, bituminous coal	(Cai et al., 2019)	_	79-89 (90-96% of the overall peak intensities)	_
	Corncob	(Wu et al., 2022)	_	13	_
	western US biomass fuels	(Akherati et al., 2020)		150	
	burned fuels characteristic of the western U.S.	(Koss et al., 2018)		172 (~95% of the overall peak intensities)	_
Combustion	four burns: ponderosa pine boughs, , Chinese rice straw, Indonesian peat, and black spruce boughs	(Hatch et al., 2017)	~27	~71	~13 (FTIR) ~418 (GC×GC)
simulation in Lab	Authentic globally significant fuels	(Stockwell et al., 2015)		46-92	_
	laboratory biomass burns of 18 fuel types from 3 geographic regions in the US	(Gilman et al., 2015)	187	Unpublished	Unpublished (OP-FTIR)
	Residential coal, rice, maize, and wheat straw	(Mo et al., 2016)	62	_	13 (DNPH- HPLC)
	biomass, residential coal	(Liu et al., 2008)	92	_	—

Table S1 Literature review on residential combustion emissions.

OP-FTIR: open-path Fourier transform infrared spectroscopy

DNPH-HPLC: 2, 4-Dinitrophenyl hydrazine followed by high performance liquid chromatography (HPLC)

Table S2.	Measurement method	od, loss fraction	n in canister	s, method	detection limit
(MDL) and	uncertainty for indiv	idual species in	this study.		

Num ber	Formula	Name (recommended species for Vocus PTR- ToF-MS)	GC-MS /FID ^a	Vocus PTR- ToF-MS ^b	Loss ratio on day 10th ^d	MDL (ppt)	Uncert ainty
		101-1115)	A1	kanes (27)	$(avg. \pm su., 70)$		(70)
1	C_2H_6	Ethane	Yes	No	-12.9 + 3.4	54.3	14
2	$C_{3}H_{8}$	Propane	Yes	No	89 + 138	45.9	10
3	C_4H_{10}	Isobutane	Yes	No	0.3 ± 3.8	54.3	4
4	C_4H_{10}	n-Butane	Yes	No	6.2 ± 10.3	56.1	8
5	C_5H_{10}	Cyclopentane	Yes	No	-9.5 ± 7.3	63.4	10
6	C5H12	Isopentane	Yes	No	-8.7 ± 6.7	55.5	9
7	C_5H_{12}	n-Pentane	Yes	No	-7.6 ± 5.4	67.5	8
8	C6H12	Methylcyclopentane	Yes	No	-8.6 ± 10.9	46.0	10
9	C_6H_{12}	Cyclohexane	Yes	No	-11.0 ± 11.3	36.4	12
10	$C_{6}H_{14}$	2.2-Dimethylbutane	Yes	No	-14.4 ± 8.2	36.7	15
11	C_6H_{14}	2.3-Dimethylbutane	Yes	No	-13.0 ± 9.6	46.7	16
12	$C_{6}H_{14}$	2-Methylpentane	Yes	No	-15.8 ± 8.1	26.6	16
13	C_6H_{14}	3-Methylpentane	Yes	No	-11.0 ± 10.2	34.6	11
14	C_6H_{14}	n-Hexane	Yes	No	-9.2 ± 10.2	36.4	10
15	C_7H_{14}	Methylcyclohexane	Yes	No	14.3 ± 14.8	33.0	15
16	C_7H_{16}	2.4-Dimethylpentane	Yes	No	-12.6 ± 10.9	36.6	14
17	C7H16	2-Methylhexane	Yes	No	-10.2 ± 11.5	38.7	12
18	C_7H_{16}	2.3-Dimethylpentane	Yes	No	-13.0 ± 11.5	36.5	13
19	C_7H_{16}	3-Methylhexane	Yes	No	-11.7 ± 11.8	40.8	14
20	C_7H_{16}	n-Heptane	Yes	No	-17.0 + 9.6	9.6	21
21	$C_{8}H_{18}$	2.2.4-Trimethylpentane	Yes	No	-10.5 + 12.0	23.8	11
22	C8H18	2.3.4-Trimethylpentane	Yes	No	-6.4 + 12.1	6.9	13
23	C8H18	2-Methylheptane	Yes	No	-9.1 ± 11.9	3.7	15
24	C8H18	3-Methylheptane	Yes	No	-7.8 ± 12.2	4.0	15
25	C ₈ H ₁₈	n-Octane	Yes	No	-8.7 ± 11.3	13.1	20
26	C_9H_{20}	n-Nonane	Yes	No	-4.7 ± 12.1	13.6	15
27	$C_{10}H_{22}$	n-Decane	Yes	No	-2.8 ± 12.1	26.9	20
	- 10 22		Alkene	s (9)/Alkvne (1)			-
28	C_2H_4	Ethylene	Yes	No	-4.1 ± 6.7	24.5	7
29	C_3H_6	Propylene	Yes	No	-7.7 ± 8.2	34.3	10
30	C_4H_8	Trans-2-butene	Yes	No	-9.8 ± 7.7	69.2	10
31	C_4H_8	1-Butene	Yes	No	-11.9 ± 13.4	50.6	12
32	C_4H_8	Cis-2-butene	Yes	No	-7.4 ± 7.4	27.6	8
33	C_5H_{10}	1-Pentene	Yes	No	-15.8 ± 9.6	33.3	16
34	$C_{5}H_{10}$	Trans-2-pentene	Yes	No	-12.7 ± 9.3	36.8	13
35	C_5H_{10}	Cis-2-pentene	Yes	No	-10.9 ± 13.0	37.1	11
36	$C_{6}H_{12}$	1-Hexene	Yes	No	-12.7 ± 9.7	36.4	14
37	C_2H_2	Acetylene	Yes	No	-11.2 ± 6.5	83.1	12
		2	Arc	matics (16)			
38	C_6H_6	Benzene*	Yes	Yes	-9.7 ± 11.8	17.6	11
39	C_7H_8	Toluene*	Yes	Yes	-0.3 ± 10.9	7.8	1
40	C_8H_8	Styrene*	Yes	Yes	-1.6 ± 12.3	45.9	6
41	C_8H_{10}	Ethylbenzene	Yes	Yes	2.9 ± 12.7	16.3	9
42	C_8H_{10}	m/p-Xylene*	Yes	Yes	-6.9 ± 11.2	28.5	16
43	C_8H_{10}	o-Xylene	Yes	Yes	5.8 ± 13.6	15.1	11
44	$C_{9}H_{12}$	iso-Propylbenzene	Yes	Yes	4.1 ± 13.5	16.4	6
45	$C_{9}H_{12}$	n-Propylbenzene	Yes	Yes	2.2 ± 13.2	21.0	7
46	$C_{9}H_{12}$	m-Ethyltoluene	Yes	Yes	$\textbf{-0.7} \pm 12.8$	28.1	4

47	$C_{9}H_{12}$	p-Ethyltoluene	Yes	Yes	-3.5 ± 12.3	47.9	7
48	C_9H_{12}	1.3.5-Trimethylbenzene*	Yes	Yes	-4.5 ± 12.0	30.3	15
49	$C_{9}H_{12}$	o-Ethyltoluene	Yes	Yes	2.5 ± 13.2	25.6	7
50	C_0H_{12}	1 2 4-Trimethylbenzene	Yes	Yes	58 ± 13.2	617	10
51		1 2 3-Trimethylbenzene	Ves	Ves	10.8 ± 12.0	33.4	21
52		m Diathylbenzone	1 CS	T CS Vac	17.0 ± 12.4 26.4 ± 16.1	42.0	21
52	$C_{10}\Pi_{14}$	ni-Dieutyibenzene	I es	I es	30.4 ± 10.1	42.9	57
55	$C_{10}H_{14}$	p-Dietnyibenzene	r es	res	49.2 ± 17.0	20.8	50
5 4	C U	T y	BVOCs (6)	12.0 . 11.1	07.0	10
54	C_5H_8	Isoprene*	Yes	Yes	-13.8 ± 11.1	27.2	16
55	$C_{10}H_{16}$	alpha-Pinene*	Yes	Yes	26.2 ± 8.2	49.2	28
56	$C_{10}H_{16}$	beta-Pinene	Yes	Yes	33.5 ± 0.2	29.8	35
57	$C_{10}H_{16}$	Cinene (Limonene)	Yes	Yes	25.2 ± 2.6	60.9	30
58	C_4H_6O	Methacrolein	Yes	Yes	-4.2 ± 2.6	28.1	13
59	C_4H_6O	Methyl vinyl ketone*	Yes	Yes	-18.0 ± 14.6	20.2	19
		(Carbonyls (1	15)			
60	C ₃ H ₄ O	Acrolein*	Yes	Yes	-19.6 ± 5.1	44.1	20
61	C ₃ H ₆ O	Propanal	Yes	Yes	-1.1 ± 6.0	20.2	4
62	C ₂ H ₆ O	Acetone*	Yes	Yes	79 + 72	29.6	9
63	C_4H_6O	Crotonaldehyde	Yes	Yes	-180 + 40	32.5	24
64		n Butanal	Vec	Vas	10.0 ± 4.0 0.0 ± 2.5	30.2	5
65	$C_4\Pi_8O$	Mothyl othyl kotono*	Vas	T CS Vos	-0.7 ± 2.5	30.2	5
66		2 Dentenone*	1 es	T ES Ves	4.2 ± 1.0	36.7	10
00	$C_5H_{10}O$	2-Pentanone ^a	res	res	-1.0 ± 2.3	20.8	19
6/	$C_5H_{10}O$	n-Pentanal	Yes	Yes	-8.6 ± 4.0	29.7	10
68	$C_5H_{10}O$	3-Pentanone	Yes	Yes	-5.2 ± 3.6	37.1	6
69	C_2H_4O	Acetaldehyde*	Yes	Yes	-20.1 ± 11.9	6.5	21
70	CH_2O	Formaldehyde ^c		—		—	
71	$C_3H_4O_2$	Methylglyoxal, acrylic acid	No	Yes	_	1.5	12
72	C_5H_4O	Cyclopentadienone	No	Yes	—	0.7	4
73	CILO	EVK, Dihydromethylfuran,	N.	V		0.0	11
	C_5H_8O	cyclopentanone	No	Yes		0.8	11
74	C7H6O	Benzaldehvde	No	Yes		0.3	16
75	CaHeO	benzofuran	No	Yes	_	0.1	27
10	0.00	o chizof an an	Furans (10	105		0.1	_,
76	CIHIO	Furan*	No	Ves	-53 + 22	0.0	10
70		Tetrahydrofuran	No	Ves	-5.5 ± 2.2	45.5	10
78	$C_4\Pi_8O$	Mothyl furon	No	T CS Vos		45.5	10
/ 0 70	$C_5\Pi_6O$	Furge on a	INO No	I es Ves		0.9	19
/9	$C_4H_4O_2$	Furanone	INO N	res	_	1.1	27
80	$C_5H_4O_2$	Furtural	No	Yes		0.8	27
81	C_6H_8O	Dimethylfuran	No	Yes		0.7	27
82	C5H6O2	Furfuryl alcohol,	No	Yes		07	27
	0311002	PentynoicAcid	110	105		0.7	_,
83	$C_7H_{10}O$	TriMetfuran	No	Yes		0.2	27
84	$C_6H_8O_2$	DiMetfuranone	No	Yes	_	0.8	27
85	$C_8H_{12}O$	butylfuran	No	Yes	—	0.1	27
			Phenols (9)			
86	C_6H_6O	Phenol	No	Yes	_	1.1	20
87	C ₇ H ₈ O	Cresols	No	Yes	_	0.2	20
88	C ₆ H ₆ O ₂	Benzenediols, methylfurfural	No	Yes		0.9	29
89	$C_8H_{10}O$	C2 phenols	No	Yes	_	0.1	27
90	0.1100	Guaiacol methyl	110	105		0.1	
20	$C_7H_8O_2$	benzenediols	No	Yes	—	0.2	29
91	$C_9H_{12}O$	Trimethylphenol	No	Yes	—	0.1	27
92	$C_{10}H_8O$	Naphthalenol	No	Yes	_	0.0	19
93	$C_{10}H_{12}O$	methyl chavicol	No	Yes	_	0.0	27
94	$C_8H_{10}O_3$	Syringol	No	Yes	_	0.2	27
			PAHs (9)				
95	$C_{10}H_8$	naphthalene*	No	Yes	-35.2 ± 7.4	0.2	37
		<u> </u>					

96	$C_{10}H_{10}$	dihydroNaphth	No	Yes		0.1	40
97	$C_{11}H_{10}$	Methylnaphthalene	No	Yes	_	0.1	40
98	$C_{12}H_8$	Acenaphthalene	No	Yes	_	0.0	40
99	$C_{12}H_{10}$	acenaphthene	No	Yes	—	0.0	40
100	$C_{12}H_{12}$	diMetNap	No	Yes	_	0.0	40
101	$C_{13}H_{10}$	Fluorene	No	Yes	_	0.0	40
102	$C_{14}H_{10}$	Phenanthrene, Anthracene	No	Yes	—	0.0	41
103	$C_{16}H_{10}$	Pyrene, Fluoranthene	No	Yes	—	0.0	41
		Hig	her alkanes	: (14)			
104	C_8H_{18}	C8 Alkanes*	No	Yes	-34.0 ± 3.2	12.2	39
105	C9H20	C9 Alkanes*	No	Yes	-28.4 ± 1.3	7.3	31
106	$C_{10}H_{22}$	C10 Alkanes*	No	Yes	-21.9 ± 1.4	4.2	25
107	$C_{11}H_{24}$	C11 Alkanes*	No	Yes	-18.6 ± 1.3	3.2	23
108	$C_{12}H_{26}$	C12 Alkanes*	No	Yes	-16.4 ± 3.4	3.3	22
109	$C_{13}H_{28}$	C13 Alkanes*	No	Yes	-10.8 ± 15.9	2.4	22
110	$C_{14}H_{30}$	C14 Alkanes*	No	Yes	-0.5 ± 30.8	2.6	17
111	$C_{15}H_{32}$	C15 Alkanes*	No	Yes	-19.0 ± 26.7	2.1	23
112	$C_{16}H_{34}$	C16 Alkanes	No	Yes	—	3.4	27
113	$C_{17}H_{36}$	C17 Alkanes	No	Yes	—	2.3	27
114	$C_{18}H_{38}$	C18 Alkanes	No	Yes	—	2.3	27
115	$C_{19}H_{40}$	C19 Alkanes	No	Yes	—	2.8	27
116	$C_{20}H_{42}$	C20 Alkanes	No	Yes	—	3.5	27
117	$C_{21}H_{44}$	C21 Alkanes	No	Yes	—	4.0	27
		Ν	-containing	(8)			
118	C_2H_3N	Acetonitrile*	No	Yes	-17.0 ± 10.5	43.5	23
119	C_2H_5N	Ethenamine	No	Yes	—	1.6	25
120	C_2H_7N	C2 amines	No	Yes	—	1.3	25
121	C_3H_3N	Acrylonitrile	No	Yes	-13.9 ± 1.4	0.7	16
122	C_3H_5N	Propanenitrile	No	Yes	—	0.8	24
123	C ₃ H ₉ N	C3 amines	No	Yes	—	0.2	24
124	C_4H_5N	Pyrrole	No	Yes	—	0.4	23
125	C ₄ H ₇ N	Dihydropyrrole, butane nitrile, pyrroline	No	Yes	_	0.5	25

^a GC-FID/MS measured concentrations for overlapped ROG species by both two instruments were used in this study.

^bThe species with star mark was the standard species for Vocus PTR-ToF-MS calibration.

^cFormaldehyde discussed in this study was estimated from previous studies(Cai et al., 2019; Stockwell et al., 2015).

^dIn total, loss fraction of 81 species were determined.

				Emissi	ion ratio (µg mg ⁻¹)			
Number	Formula	Name	Anthracites	Briquettes	Wood	Corncob	Corn	Bean
			1 11111 1011005	Dirquettes		00111000	straw	straw
1	C_2H_6	Ethane	2713.8 ± 1519.3	1708.6 ± 695.7	1049.9 ± 1125.1	1047.5	2168.9	5022.1
2	C_3H_8	Propane	829.2 ± 389.7	356.6 ± 222.4	336.3 ± 390.0	392.9	453.1	1277.8
3	$C_{4}H_{10}$	Isobutane	139.3 ± 84.7	65.5 ± 61.4	28.5 ± 26.3	27.4	37.4	61.8
4	C_4H_{10}	n-Butane	265.4 ± 93.6	122.2 ± 77.3	92.4 ± 92.6	117.6	106.7	263.6
5	C_5H_{12}	Cyclopentane	8.7 ± 2.0	8.5 ± 6.7	2.3 ± 2.7	2.6	2.2	9.7
6	C_5H_{12}	Isopentane	79.1 ± 73.4	53.3 ± 64.3	16.1 ± 16.3	22.4	20.3	40.3
7	C_5H_{12}	n-Pentane	94.9 ± 55.0	52.5 ± 37.2	44.4 ± 45.3	63.9	32.7	94.3
8	$C_{6}H_{12}$	Methylcyclopentane	19.4 ± 15.7	10.3 ± 4.7	9.4 ± 6.5	12.9	14.6	18.0
9	$C_{6}H_{12}$	Cyclohexane	7.1 ± 3.9	6.1 ± 2.5	1.8 ± 1.9	1.5	1.2	2.6
10	C_6H_{14}	2,2-Dimethylbutane	0.9 ± 0.7	0.9 ± 0.3	0.2 ± 0.2	0.2	0.2	0.4
11	$C_{6}H_{14}$	2,3-Dimethylbutane	1.3 ± 0.7	1.8 ± 1.5	1.4 ± 2.7	0.8	5.9	1.3
12	$C_{6}H_{14}$	2-Methylpentane	15.1 ± 11.1	10.4 ± 6.0	5.1 ± 4.7	7.2	4.9	10.7
13	$C_{6}H_{14}$	3-Methylpentane	6.1 ± 3.5	4.8 ± 3.6	1.8 ± 2.1	1.9	0.2	4.6
14	$C_{6}H_{14}$	n-Hexane	34.2 ± 24.5	22.0 ± 12.4	17.3 ± 21.6	18.5	14.4	30.7
15	$C_{7}H_{14}$	Methylcyclohexane	7.8 ± 3.7	7.0 ± 3.0	2.4 ± 2.3	3.5	1.7	2.7
16	$C_{7}H_{16}$	2,4-Dimethylpentane	14.1 ± 14.4	11.7 ± 17.1	46.5 ± 119.1	0.6	16.5	856.5
17	$C_{7}H_{16}$	2-Methylhexane	6.1 ± 4.5	4.3 ± 3.4	1.2 ± 0.8	2.4	2.3	5.4
18	$C_{7}H_{16}$	2,3-Dimethylpentane	5.0 ± 4.9	3.3 ± 3.2	1.3 ± 1.4	2.5	1.3	3.4
19	$C_{7}H_{16}$	3-Methylhexane	3.7 ± 1.9	3.8 ± 3.7	1.7 ± 1.1	4.8	13.0	1.6
20	$C_{7}H_{16}$	n-Heptane	27.6 ± 26.0	12.9 ± 12.6	16.5 ± 13.4	22.0	8.3	15.3
21	C_8H_{18}	2,2,4-Trimethylpentane	0.9 ± 0.9	1.5 ± 2.9	0.5 ± 0.8	0.1	9.1	0.2

 Table S3. Emission ratio relative to benzene of individual species in different fuels.

22	C_8H_{18}	2,3,4-Trimethylpentane	1.9 ± 1.8	2.2 ± 2.8	0.3 ± 0.3	0.1	0.1	0.6
23	C_8H_{18}	2-Methylheptane	12.3 ± 11.0	8.2 ± 6.9	4.9 ± 3.9	6.6	3.1	4.0
24	C_8H_{18}	3-Methylheptane	9.4 ± 7.8	4.6 ± 3.7	3.2 ± 2.1	3.1	2.1	2.5
25	C_8H_{18}	n-Octane	34.7 ± 23.2	25.2 ± 14.6	15.2 ± 11.6	18.2	9.6	10.2
26	$C_{9}H_{20}$	n-Nonane	26.8 ± 18.7	21.7 ± 15.4	9.0 ± 8.1	11.4	4.3	2.4
27	$C_{10}H_{22}$	n-Decane	34.0 ± 21.9	35.4 ± 28.3	7.6 ± 6.2	7.5	3.9	4.4
28	C_2H_4	Ethylene	1944.1 ± 957.8	2019.3 ± 1089.0	3019.6 ± 1283.7	2429.3	20434.6	5954.7
29	C_3H_6	Propylene	845.8 ± 567.7	465.8 ± 338.0	993.0 ± 670.6	1052.1	3463.9	3077.6
30	C_4H_8	Trans-2-butene	86.6 ± 68.6	33.3 ± 36.9	72.7 ± 82.1	79.1	126.2	303.6
31	C_4H_8	1-Butene	170.3 ± 131.3	85.6 ± 75.4	221.8 ± 162.6	277.3	513.5	627.0
32	C_4H_8	Cis-2-butene	61.3 ± 46.2	24.2 ± 26.8	52.4 ± 58.0	56.9	93.4	218.9
33	$C_{5}H_{10}$	1-Pentene	43.1 ± 35.9	26.0 ± 20.1	60.4 ± 57.0	73.8	76.9	109.5
34	$C_{5}H_{10}$	Trans-2-pentene	30.2 ± 25.3	15.3 ± 12.7	25.9 ± 28.8	25.6	42.2	92.1
35	$C_{5}H_{10}$	Cis-2-pentene	26.2 ± 19.3	9.7 ± 6.6	14.8 ± 16.4	15.9	20.7	52.8
36	$C_{6}H_{12}$	1-Hexene	65.6 ± 71.6	41.0 ± 30.4	92.4 ± 73.3	157.8	149.1	110.2
37	C_2H_2	Acetylene	259.2 ± 181.4	631.5 ± 422.2	1259.7 ± 598.9	590.4	1751.7	1026.2
38	C_6H_6	Benzene	1000.0 ± 0.0	1000.0 ± 0.0	1000.0 ± 0.0	1000.0	1000.0	1000.0
39	C_7H_8	Toluene	567.3 ± 233.2	356.9 ± 146.8	362.3 ± 183.2	267.8	786.0	317.7
40	C_8H_8	Styrene	129.0 ± 123.4	83.8 ± 39.0	80.9 ± 50.7	74.5	355.4	16.7
41	C_8H_{10}	Ethylbenzene	79.3 ± 51.2	58.0 ± 24.5	53.1 ± 26.3	37.3	123.3	16.3
42	C_8H_{10}	m/p-Xylene	238.5 ± 136.0	144.3 ± 72.4	76.8 ± 54.2	68.1	97.0	49.2
43	C_8H_{10}	o-Xylene	82.2 ± 47.5	53.9 ± 26.9	28.9 ± 21.4	21.0	40.7	16.0
44	$C_{9}H_{12}$	iso-Propylbenzene (Cumene)	7.1 ± 4.6	9.0 ± 9.1	2.5 ± 1.2	1.7	7.1	1.1
45	$C_{9}H_{12}$	n-Propylbenzene	18.9 ± 12.7	19.5 ± 15.4	6.2 ± 4.2	4.8	7.8	2.2
46	$C_{9}H_{12}$	m-Ethyltoluene	42.6 ± 31.4	32.8 ± 20.4	11.1 ± 7.6	9.1	12.6	5.3
47	$C_{9}H_{12}$	p-Ethyltoluene	30.5 ± 22.5	26.5 ± 20.0	7.4 ± 4.9	6.6	7.1	4.1
48	$C_{9}H_{12}$	1,3,5-Trimethylbenzene	23.7 ± 16.6	21.9 ± 16.8	5.3 ± 4.3	4.3	3.0	2.7
49	$C_{9}H_{12}$	o-Ethyltoluene	28.1 ± 19.9	25.7 ± 19.7	7.8 ± 5.6	5.0	7.8	3.2
50	$C_{9}H_{12}$	1,2,4-Trimethylbenzene	70.0 ± 56.8	48.1 ± 31.8	14.5 ± 11.8	9.9	10.0	7.3

51	C_9H_{12}	1,2,3-Trimethylbenzene	48.4 ± 39.4	41.9 ± 33.2	8.3 ± 6.2	5.9	4.5	4.6
52	$C_{10}H_{114}$	m-Diethylbenzene	12.2 ± 8.5	20.2 ± 26.7	1.5 ± 0.9	0.8	1.0	1.9
53	$C_{10}H_{14}$	p-Diethylbenzene	29.2 ± 23.4	30.6 ± 29.6	4.1 ± 2.9	2.6	2.4	3.7
54	$C_{10}H_{16}$	alpha-Pinene	3.7 ± 4.4	1.0 ± 0.7	1.0 ± 1.3	0.5	0.7	0.3
55	$C_{10}H_{16}$	beta-Pinene	2.8 ± 4.3	0.5 ± 0.5	0.5 ± 0.5	0.3	0.2	0.3
56	$C_{10}H_{16}$	Cinene(Limonene)	193.6 ± 264.8	69.3 ± 58.5	86.2 ± 115.7	119.1	6.9	13.5
57	C_5H_8	Isoprene	24.7 ± 21.0	11.7 ± 17.4	24.5 ± 42.5	7.7	11.5	291.9
58	C_4H_6O	Methacrolein	189.6 ± 162.7	122.8 ± 86.7	220.5 ± 156.1	266.3	525.3	414.1
59	C_4H_6O	Methyl vinyl ketone	933.7 ± 1094.1	377.8 ± 315.3	592.0 ± 304.9	785.5	1469.5	1072.1
60	C_3H_4O	Acrolein	2653.4 ± 2492.5	1664.7 ± 1313.5	2492.8 ± 1229.3	2683.4	7437.6	6116.1
61	C_3H_6O	Propanal	838.9 ± 646.7	464.9 ± 420.5	969.7 ± 502.8	1151.0	1792.8	2980.5
62	C_3H_6O	Acetone	8404.5 ± 8112.2	2526.9 ± 1872.0	3826.5 ± 3651.0	3681.0	4654.4	12189.5
63	C_4H_6O	Crotonaldehyde	676.5 ± 755.0	327.2 ± 324.3	233.7 ± 131.9	61.1	531.1	274.7
64	C_4H_8O	n-Butanal	165.6 ± 121.6	131.8 ± 159.0	136.0 ± 94.9	177.5	229.6	301.0
65	C_4H_8O	Methyl ethyl ketone	1746.3 ± 1795.9	502.6 ± 467.5	762.5 ± 729.0	1086.5	1093.7	1858.9
66	$C_5H_{10}O$	2-Pentanone	164.7 ± 162.1	47.4 ± 44.2	58.5 ± 51.5	53.8	47.9	100.9
67	$C_5H_{10}O$	n-Pentanal	197.1 ± 186.5	170.2 ± 208.4	108.2 ± 53.2	156.3	109.7	74.0
68	$C_5H_{10}O$	3-Pentanone	55.8 ± 53.2	15.7 ± 14.7	22.5 ± 19.0	26.2	21.9	35.7
69	C_2H_4O	Acetaldehyde	942.7 ± 748.7	605.1 ± 389.0	1054.3 ± 569.9	1432.2	1825.6	3554.3
70	CH ₂ O	Formaldehyde	2125 ± 581.1	2125 ± 581.1	$2856{\pm}~532.9$	$\begin{array}{r} 2848 \pm \\ 555.3 \end{array}$	$\begin{array}{r} 2848 \pm \\ 555.3 \end{array}$	$\begin{array}{r} 2848 \pm \\ 555.3 \end{array}$
71	$C_3H_4O_2$	Methylglyoxal, acrylic acid (AcryAcid_Mgly)	78.9 ± 85.1	70.5 ± 66.7	13.9 ± 8.8	12.3	18.0	62.2
72	C_5H_4O	Cyclopentadienone	1336.1 ± 2106.0	112.3 ± 138.7	66.8 ± 96.9	65.3	121.2	33.0
73	C_5H_8O	EVK, Dihydromethylfuran, cyclopentanone	1839.1 ± 2062.5	330.1 ± 408.8	414.2 ± 357.3	457.6	409.2	550.7
74	C_7H_6O	Benzaldehyde	337.9 ± 380.3	103.4 ± 51.1	71.2 ± 36.1	65.3	113.1	8.8
75	C_8H_6O	benzofuran	231.3 ± 246.8	67.5 ± 54.5	59.1 ± 44.3	41.6	87.8	4.7
76	C_4H_4O	Furan	1489.0 ± 1726.1	451.8 ± 780.5	741.1 ± 835.3	713.8	920.7	1872.7
77	C_4H_8O	Tetrahydrofuran	527.4 ± 640.1	110.4 ± 122.5	124.3 ± 150.8	88.0	77.9	100.2

78	C_5H_6O	Methyl furan	5654.4 ± 7399.9	954.4 ± 1275.5	987.4 ± 1258.0	883.3	763.2	2035.8
79	$C_4H_4O_2$	Furanone	744.7 ± 873.2	176.1 ± 115.8	58.1 ± 50.8	87.4	66.1	17.9
80	$C_5H_4O_2$	Furfural	14120.4 ± 18694.4	1457.6 ± 1830.3	920.7 ± 987.8	662.8	495.6	187.6
81	C_6H_8O	Dimethylfuran	3903.1 ± 5098.9	569.7 ± 513.1	373.3 ± 428.7	312.8	229.0	345.1
82	$C_5H_6O_2$	Furfuryl alcohol, PentynoicAcid	1188.0 ± 1534.8	197.4 ± 133.5	86.8 ± 91.8	90.8	99.9	30.8
83	$C_7H_{10}O$	TriMetfuran	2317.1 ± 3058.2	347.4 ± 284.7	165.2 ± 188.9	134.2	69.8	55.2
84	$C_6H_8O_2$	DiMetfuranone	944.6 ± 1281.7	187.2 ± 132.9	67.7 ± 62.9	65.2	93.2	22.2
85	$C_8H_{12}O$	butylfuran	1083.4 ± 1458.3	167.0 ± 139.4	67.2 ± 74.8	51.7	22.5	13.2
86	C_6H_6O	Phenol	3762.9 ± 5889.4	574.3 ± 526.1	443.5 ± 451.8	258.1	908.1	281.9
87	C_7H_8O	Cresols	2017.8 ± 3924.1	166.0 ± 277.1	76.9 ± 150.0	41.5	24.5	25.3
88	$C_6H_6O_2$	Benzenediols, methylfurfural	3372.0 ± 4703.2	407.2 ± 292.3	175.9 ± 196.4	114.2	118.2	38.5
89	$C_8H_{10}O$	C2 phenols (Dimethylphenol)	1248.1 ± 2563.9	94.9 ± 151.4	35.1 ± 54.5	24.3	12.6	8.5
90	$C_7H_8O_2$	Guaiacol, methyl benzenediols	1995.4 ± 4089.5	128.8 ± 143.4	41.2 ± 43.9	26.3	26.8	8.7
91	$C_9H_{12}O$	Trimethylphenol	432.0 ± 795.3	36.5 ± 42.0	14.6 ± 19.3	10.0	4.8	3.0
92	$C_{10}H_8O$	Naphthalenol	132.5 ± 185.6	32.5 ± 22.6	5.9 ± 7.2	3.5	2.8	7.2
93	$C_{10}H_{12}O$	methyl chavicol	173.9 ± 230.0	40.3 ± 29.1	10.4 ± 11.9	6.7	2.7	4.3
94	$C_8H_{10}O_3$	Syringol	40.7 ± 50.8	21.2 ± 18.8	2.6 ± 2.8	1.1	1.3	0.5
95	$C_{10}H_8$	naphthalene	2325.2 ± 1892.3	1790.4 ± 1896.7	176.4 ± 105.6	107.0	126.8	540.0
96	$C_{10}H_{10}$	dihydroNaphth	94.6 ± 92.4	40.3 ± 39.3	18.0 ± 20.5	12.8	9.0	2.5
97	$C_{11}H_{10}$	Methylnaphthalene	560.8 ± 625.0	188.8 ± 271.0	42.6 ± 49.9	28.8	9.2	14.0
98	$C_{12}H_8$	Acenaphthalene	109.4 ± 217.4	13.2 ± 15.9	2.7 ± 5.2	0.9	0.6	1.3
99	$C_{12}H_{10}$	acenaphthene	250.6 ± 313.4	95.7 ± 74.7	18.9 ± 20.5	9.7	8.4	5.8
100	$C_{12}H_{12}$	diMetNap	308.7 ± 370.9	115.3 ± 178.4	29.5 ± 37.8	15.9	4.1	9.5
101	$C_{13}H_{10}$	Fluorene	20.5 ± 30.7	9.7 ± 13.2	1.6 ± 1.4	0.6	0.6	4.7
102	$C_{14}H_{10}$	Phenanthrene, anthracene (PA_Ant)	6.4 ± 6.6	3.6 ± 3.1	0.6 ± 0.5	0.1	0.3	0.7
103	$C_{16}H_{10}$	Pyrene, Fluoranthene	0.6 ± 0.7	0.2 ± 0.1	0.1 ± 0.1	0.0	0.1	0.0
104	C_8H_{18}	C8 Alkanes	161.2 ± 109.4	169.3 ± 151.2	58.1 ± 39.3	72.0	35.0	48.7
105	C_9H_{20}	C9 Alkanes	134.1 ± 97.6	141.0 ± 128.4	49.4 ± 32.2	70.8	23.0	22.5

106	$C_{10}H_{22}$	C10 Alkanes	106.5 ± 73.9	111.6 ± 101.2	36.3 ± 28.2	45.4	16.2	12.6
107	$C_{11}H_{24}$	C11 Alkanes	84.3 ± 65.3	93.9 ± 91.0	28.2 ± 21.4	31.3	9.6	10.5
108	$C_{12}H_{26}$	C12 Alkanes	96.5 ± 86.3	107.4 ± 95.3	23.0 ± 17.5	16.9	3.4	9.6
109	$C_{13}H_{28}$	C13 Alkanes	164.5 ± 151.8	176.6 ± 153.1	29.0 ± 24.5	18.3	1.3	11.4
110	$C_{14}H_{30}$	C14 Alkanes	298.0 ± 300.5	306.3 ± 288.7	43.0 ± 45.3	26.0	4.6	21.3
111	$C_{15}H_{32}$	C15 Alkanes	497.7 ± 515.5	723.1 ± 933.1	73.1 ± 78.4	46.3	6.7	42.3
112	$C_{16}H_{34}$	C16 Alkanes	354.9 ± 370.6	562.7 ± 783.3	46.3 ± 47.1	28.6	2.9	32.7
113	$C_{17}H_{36}$	C17 Alkanes	216.9 ± 210.3	265.8 ± 327.3	24.1 ± 20.0	10.8	1.5	29.5
114	$C_{18}H_{38}$	C18 Alkanes	161.7 ± 156.8	153.5 ± 147.5	17.9 ± 14.2	7.9	0.9	27.4
115	$C_{19}H_{40}$	C19 Alkanes	96.7 ± 91.4	72.4 ± 55.9	10.8 ± 8.5	4.9	0.5	15.4
116	$C_{20}H_{42}$	C20 Alkanes	57.0 ± 49.4	44.1 ± 44.2	6.4 ± 4.9	2.7	0.2	13.3
117	$C_{21}H_{44}$	C21 Alkanes	41.0 ± 34.3	33.6 ± 38.6	4.2 ± 3.0	2.8	0.1	9.9
118	C_2H_3N	Acetonitrile	3273.2 ± 2921.0	2628.6 ± 1550.5	1879.6 ± 1117.9	2003.1	5377.2	3826.7
119	C_2H_5N	Ethenamine	4.8 ± 5.5	2.3 ± 1.5	1.1 ± 0.6	1.6	2.0	3.3
120	C_2H_7N	Dimethylamine, Ethylamine	2.2 ± 2.2	1.2 ± 0.8	1.5 ± 3.5	0.1	0.4	0.3
121	C_3H_3N	Acrylonitrile	163.7 ± 153.7	315.3 ± 301.7	386.6 ± 344.1	301.1	3491.1	146.9
122	C_3H_5N	Propanenitrile	170.5 ± 232.1	69.9 ± 54.8	144.3 ± 141.0	188.6	685.1	144.0
123	C ₃ H ₉ N	Trimethylamine, 1-Propanamine, 2-Propanamine, Methylethylamine	1.0 ± 1.2	0.6 ± 0.6	0.1 ± 0.1	0.0	0.2	0.2
124	C_4H_5N	Pyrrole	326.8 ± 425.7	70.4 ± 135.3	104.9 ± 96.0	163.5	474.6	38.7
125	C ₄ H ₇ N	Dihydropyrrole, butane nitrile, pyrroline	47.7 ± 62.8	21.2 ± 17.7	47.4 ± 49.6	68.7	168.4	31.8

Year	Residential coal consumption $(10^4 t)$	Biomass combustion $(10^8 t)$
2010	9159	3.1
2011	9212	3.1
2012	9253	3.0
2013	9290	2.9
2014	9303	2.8
2015	9627	2.7
2016	9492	2.6
2017	9283	2.2
2018	7714	2.3
2019	6547	2.2

Table S4. Annual consumption of residential coal and biomass combustion in China

 mainland.

NO.	Region	Residential coal consumption	Biomass combustion
	8	$(10^4 t)$	$(10^4 t)$
1	Beijing	48.7	5.1
2	Tianjin	38.2	60.1
3	Hebei ^a	1313.3	178.8
4	Shanxi	422.7	288.2
5	Inner Mongolia	333.7	60.1
6	Liaoning ^a	413.6	244.4
7	Jilin	188.5	1242.9
8	Heilongjiang	273.2	2845.7
9	Shanghai	4.1	20.2
10	Jiangsu	-	1470.1
11	Zhejiang	28.2	163.9
12	Anhui	35.0	1480.3
13	Fujian	21.4	104.1
14	Jiangxi	250.1	894.1
15	Shandong	478.7	1600.0
16	Henan	331.6	1700.0
17	Hubei	501.5	1138.1
18	Hunan	408.4	1488.5
19	Guangdong	65.9	862.7
20	Guangxi	0.9	970.0
21	Hainan	-	101.4
22	Chongqing	48.1	208.8
23	Sichuan	72.1	800.0
24	Guizhou	494.0	144.0
25	Yunnan	327.7	500.0
26	Tibet	-	-
27	Shaanxi	284.7	244.1
28	Gansu	327.5	210.2
29	Qinghai	65.0	23.3
30	Ningxia	40.3	78.6
31	Xinjiang	465.9	642.0
32	National	6547.0	22000.0

Table S5. Annual consumption of residential coal and biomass combustion by provincein 2019 and 2017, respectively.

^a Consumption from biomass combustion in Hebei and Liaoning are from 2020 statistic data.

Reference

Akherati, A., He, Y., Coggon, M. M., Koss, A. R., Hodshire, A. L., Sekimoto, K., Warneke, C., de Gouw, J., Yee, L., Seinfeld, J. H., Onasch, T. B., Herndon, S. C., Knighton, W. B., Cappa, C. D., Kleeman, M. J., Lim, C. Y., Kroll, J. H., Pierce, J. R., and Jathar, S. H.: Oxygenated aromatic compounds are important precursors of secondary organic aerosol in biomass-burning emissions, Environ Sci Technol, doi.10.1021/acs.est.1020c01345, 10.1021/acs.est.0c01345, 2020.

Cai, S., Zhu, L., Wang, S., Wisthaler, A., Li, Q., Jiang, J., and Hao, J.: Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China, Environ. Sci. Technol., 53, 9269-9278, 10.1021/acs.est.9b00734, 2019.

Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15, 13915-13938, 10.5194/acp-15-13915-2015, 2015.

Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J., and Barsanti, K. C.: Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors, Atmos. Chem. Phys., 17, 1471-1489, 10.5194/acp-17-1471-2017, 2017.

Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18, 3299-3319, 10.5194/acp-18-3299-2018, 2018.

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247-6260, 10.1016/j.atmosenv.2008.01.070, 2008.

Mo, Z., Shao, M., and Lu, S.: Compilation of a source profile database for hydrocarbon and OVOC emissions in China, Atmos. Environ., 143, 209-217, 10.1016/j.atmosenv.2016.08.025, 2016.

Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845-865, 10.5194/acp-15-845-2015, 2015.

Stockwell, C. E., Christian, T. J., Goetz, J. D., Jayarathne, T., Bhave, P. V., Praveen, P. S., Adhikari, S., Maharjan, R., DeCarlo, P. F., Stone, E. A., Saikawa, E., Blake, D. R., Simpson, I. J., Yokelson, R. J., and Panday, A. K.: Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources, Atmos. Chem. Phys., 16, 11043-11081, 10.5194/acp-16-11043-2016, 2016.

Wang, H., Lou, S., Huang, C., Qiao, L., Tang, X., Chen, C., Zeng, L., Wang, Q., Zhou, M., Lu, S., and Yu, X.: Source Profiles of Volatile Organic Compounds from Biomass Burning in Yangtze River Delta, China, Aerosol Air Qual. Res., 14, 818-828, 10.4209/aaqr.2013.05.0174, 2014.

Wu, J., Kong, S., Yan, Y., Yao, L., Yan, Q., Liu, D., Shen, G., Zhang, X., and Qi, S.: Neglected biomass burning emissions of air pollutants in China-views from the corncob burning test, emission estimation, and simulations, Atmos. Environ., 10.1016/j.atmosenv.2022.119082, 2022.