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Abstract. Stratosphere-to-troposphere transport (STT) is an important source of ozone for the troposphere,
particularly over western North America. STT in this region is predominantly controlled by a combination of the variability
and location of the Pacific jet stream and the amount of ozone in the lower stratosphere, two factors which are likely to change
if greenhouse gas concentrations continue to increase. Here we use Whole Atmosphere Community Climate Model

experiments with a tracer of stratospheric ozone (O3S) to study how end-of-the-century Representative Concentration Pathway

(RCP) 8.5 sea surface temperatures (SSTs) and greenhouses gases (GHGs), in isolation and in combination, influence STT of

ozone over western North America relative to a preindustrial control background state.

We find that O3S increases by up to 37% during late winter at 700 hPa over western North America in response to

RCP8.5 forcing with the jincreases fapering off somewhat during spring and summer. When this response to RCP8.5

greenhouse gas forcing js decomposed into the contributions made by future SSTs alone versus future GHGs alone, the latter L)

are found to be primarily responsible for these O3S changes. Both the future SSTs alone and the future GHGs alone accelerate

the Brewer Dobson Circulation, which modifies, extratropical lower stratospheric ozone mixing ratios. While the future GHGs i

along, promote a more zonally symmetric lower stratospheric ozone change due to enhanced ozone production and some

transport, the future SSTs alone, increase lower stratospheric ozone predominantly over the North Pacific via transport
associated with a stationary planetary-scale wave. Ozone accumulates in the trough of this anomalous wave and is reduced
over the wave’s ridges, illustrating that the composition of the lower stratospheric ozone reservoir in the future is dependent

on the phase and position of the stationary planetary-scale wave response to future SSTs alone, in addition to the poleward

mass transport provided by the accelerated Brewer-Dobson Circulation. Further, the future SSTs along account for most

changes to the large-scale circulation in the troposphere and stratosphere compared to the effect of future GHGs alone, These

changes include modifying the position and speed of the future North Pacific jet, lifting the tropopause, accelerating both the

Brewer-Dobson Circulation’s shallow and deep branches, and enhancing two-way isentropic mixing in the stratosphere.
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1 Introduction

Tropospheric ozone is a pollutant harmful to humans and vegetation, therefore understanding its response to climate change

has important implications for future air quality (Fleming et al. 2018; Zanis et al. 2022), Future tropospheric ozone amounts

are affected by multiple processes including anthropogenic emissions and changes to the large-scale circulation, which in turn
are dependent on the choice of model and climate change scenario (Young et al. 2018). For high-end emissions scenarios
(Representative Concentration Pathway (RCP) 8.5), recent chemistry-climate models project an increase in Northern
Hemisphere tropospheric ozone (Archibald et al. 2020), largely due to enhanced methane emissions (Winterstein et al. 2019),

but also due to stronger transport of stratospheric ozone into the troposphere (Griffiths et al. 2021).

Enhanced stratosphere-to-troposphere transport (STT) of ozone is expected in the future, due in part to more frequent
tropopause folding (Akritidis et al. 2019), but also due to higher ozone mixing ratios in the lower stratosphere. Since the

amount of ozone in the lower extratropical stratospheric “reservoir,” often measured on,the 350 Kelvin isentrope, is positively

correlated with the amount of ozone contained in intrusions of stratospheric air exchanged into the troposphere (Albers et al.
2018), larger lower stratospheric ozone mixing ratios should coincide with more STT of ozone. A diverse set of physical and
chemical processes is anticipated to have the net effect of increasing future lower stratospheric ozone mixing ratios in the
extratropics; these processes include enhanced downwelling associated with the acceleration of the Brewer-Dobson Circulation
(Abalos et al. 2020), two-way isentropic mixing (Eichinger et al. 2019; Ball et al. 2020; Dietmiiller et al. 2021), enhanced
ozone production associated with stratospheric cooling (Rind et al. 1990; Jonsson et al. 2004; Oman et al. 2010), chemical
impacts of increasing methane and nitrous oxide concentrations (Revell et al. 2012; Butler et al. 2016; Winterstein et al. 2019),
and expected emissions reductions of ozone depleting substances (ODSs) (Banerjee et al. 2016; Meul et al. 2018; Fang et al.
2019; Griffiths et al. 2020; Dietmiiller et al. 2021).

While the mechanisms influencing future lower stratospheric ozone changes are fairly well established in a zonally-averaged
sense, it is less evident what role regional dynamical and chemical zonal asymmetries will play in future STT. Historically,
one of the key regions where stratospheric mass fluxes enter the lower free troposphere is over western North America
(Sprenger and Wernli 2003; Lefohn et al. 2011; Skerlak et al. 2014). Tropopause folding and STT maximize over this region
during spring, when the North Pacific jet transitions from a strong and latitudinally narrow band of westerlies to a weaker and
latitudinally broad jet (Newman and Sardeshmukh 1998; Breeden et al. 2021). Intrusions here have been observed to enhance
free tropospheric ozone concentrations beyond 30 parts per billion (Knowland et al. 2017; Langford et al. 2017; Zhang et al.
2020; Xiong et al. 2022; Langford et al. 2022). When combined with background ozone concentrations, which are also affected
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by regional precursor emissions, vegetation, and upwind transport (Cooper et al. 2010; Langford et al. 2017), ozone

concentrations may exceed the surface eight-hour National Ambient Air Quality Standard (EPA 2006).

It is established that the subtropical and eddy-driven jets’ response to climate change will vary by region and season (Akritidis
et al. 2019; Harvey et al. 2020). However, it is not yet known how regional jet changes, such as the spring transition of the
North Pacific jet, combined with changes to the lower stratospheric ozone reservoir, may affect STT regionally in the future.
In this study, we use a set of National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate
Model (WACCM) experiments described in Section 2, which include fully interactive chemistry and a tracer of stratospheric

ozone (03S), to evaluate how RCP8.5 sea surface temperatures (SSTs) alone and RCP8.5 greenhouse gases (GHGs) alone,

and also, in combination, influence STT of ozone over western North America. Strictly speaking, warming SSTs in high

emission scenarios such as RCP8.5 result from the increased GHG emissions. However, when considered jndependently of
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2 Methods

‘We compare output from three different 60-year integrations using NCAR WACCM (Table 1). The version of WACCM used
in this study uses a horizontal resolution of 1.9° latitude by 2.5° longitude with 70 vertical layers and a model top near 140 km
(Mills et al. 2017, Richter et al. 2017). These experiments do not include an internally generated or prescribed Quasi-Biennial
Oscillation; the climatological tropical stratospheric winds are weakly easterly. WACCM has fully interactive chemistry in the
middle atmosphere using the Model for Ozone And Related chemical Tracers (MOZART?3) and a limited representation of
tropospheric chemistry (Kinnison et al. 2007). The chemistry module in WACCM includes a stratospheric ozone tracer (O3S),
which is used to quantify STT of ozone. O3S is set equal to the fully interactive stratospheric ozone at each model timestep.

Once it crosses the tropopause, O3S decays at fhe, tropospheric chemistry rate and is lost due to dry deposition. O3S represents

an_upper bound on the contribution of the stratosphere to tropospheric ozone, in large part because it is missing some

tropospheric chemistry that would likely reduce its lifetime,
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To isolate the signal of atmospheric tracers to external forcings above the ‘noise’ of internal atmospheric variability, we have
run “time-slice” simulations forced by fixed SSTs, allowing us to both generate longer simulations than more computationally

expensive coupled atmosphere-ocean simulations, and to remove year to year fluctuations in ocean sea surface temperatures

that may arise internally, Fach time-slice simulation has been run for 60 years, with 10 years of spin-up (which is sufficient

for initialized atmosphere-only runs).
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KFigure 1: Spring transition of the North Pacific jet in the preindustrial control (EXP1) and the RCP 8.5 experiment (EXP2). (a-c) shows preindustrial 200 hPa

zonal winds subsampled for the jet’s winter phase (PC1 > 10), spring phase (PC1 < 0.56 and > -0.5c), and summer phase (PC1 < -10). (d) shows the temporal

evolution of PC1 in the preindustrial control (EXP1) with the mean PC1 shown in black, PC1 for each year shown in blue, and the 2.5% and 97.5% confidence

intervals d by boc pping with repl (10,000 times for each day) shown in gray. The average difference between the 2.5% and 97.5%

confidence intervals for each ~ two week period (referred to as “spread”) are shown above panel (d). Panel (e) is the same as panel (d), but for the RCP8.5,

experiment (EXP2),In addition, the percent change between the RCP8.5 and preindustrial “spread” is also printed above panel (e). Panel (f) and panel (g)

are kernel density plots estimating when the spring transition begins (PC1 = 0.5c) and when the spring transition ends (PC1 = -0.55), respectively.

The winter jet is present when PC1 > 1 standard deviation (o), during which the Pacific jet is strong and narrow (Fig. 1a). The
spring jet is present when PC1 < 0.5 ¢ and > -0.5 o, at which point the subtropical jet weakens and shifts north, and the

secondary subtropical jet maximum extends between Hawaii and yvestern North America (Fig. 1b). The summer jet is present

when PC1 < -1 o (Fig. 1c). The jet weakens substantially and remains shifted poleward, and the secondary jet maximum over
North America weakens. The structure of winter, spring, and summer jets (Figs. la-c) compares well with that from 1958-
2017 Japanese Reanalysis-55 data (cf. Fig. 2, Breeden et al. 2021) as does the timing of the phase changes (Figs 1d-g, cf. Figs.
1 and 3, Breeden et al. 2021).
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The RCP8.5 North Pacific jet exhibits jncreases in variability compared to the preindustrial control during much of spring and
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summer (Fig. le). Recomputing Figure le using EXP3, which includes RCP8.5 SSTs,along, confirms that the changing jet

variability is associated with the, SSTs (not shown). Despite these changes in variability, there is no statistically significant

CDeleted: the

change in when the spring transition begins (Fig. 1f) or ends (Fig. 1g, Fig. Al). The,start date for the preindustrial control ' 3

(EXP1) js March 31* with a 6 of +/-13 days and the end date is May 11" +/- 8 days. For the full RCP8.5 experiment (EXP2),

the,start date is April 1* with a o of +/- 12 days and theend date is May 13" +/- 13 days. Consistent with Fig. 1g, the enhanced *

jet variability due to RCP8.5 conditions manifests as a broader distribution of gnd dates. With no robust change in the timing

of the spring transition, the calendar dates corresponding to the late winter, spring, and summer jet phases are similar amongst
the experiments. Therefore, in all subsequent figures, anomalies are calculated by binning each individual experiment’s data
according to that experiment’s late winter, spring, and summer days, time averaging the data within each bin, and then
differencing between the jet phase (e.g., late winter) bins from two different experiments (e.g., EXP2 minus EXP1). This
approach would not be possible if, for instance, the annually averaged late winter end date from EXP2 was 10 days after that
from the EXP1. Similar results to those shown in figures 2-6 can be obtained by comparing like months (e.g., February-March,
April-May) from two different experiments (not shown). However, we choose to show our results according to jet phase so

that the STT inherently associated with each phase is accounted for.

Note that while no changes in the timing of the spring transition are found in these simulations, spring transition timing is

heavily influenced by the El Nifio Southern Oscillation (ENSO, Breeden et al. 2021). Interannual SST fluctuations (which ma

arise, for instance, due to ENSO), are excluded from our,experiments, hence, our results cannot comprehensively establishhow

RCP8.5 forcing modifies the timing of the spring transition, ,

2.3 Residual advection, two-way isentropic mixing, production and loss of O3S

To quantify the contributions of the residual advection, two-way isentropic mixing, and production and loss to the total O3S
response, we calculate the terms in the Transformed Eulerian Mean (TEM) continuity equation for zonal mean tracer transport
given by Andrews et al. (1987, equation 9.4.13) and discussed by Abalos et al. (2013). Daily data, time averaged from the 6-

hourly fields, is used to calculate each term. These terms are shown in Eq. (1):

x x %_ p_ ~z/Hy .
Zrvdiw T=P-L+e VM, 0

where overbars denote zonal averages, y denotes the ozone concentration in parts per billion, P denotes chemical production
and L chemical loss, H is the scale height equal to 7 kilometers, y and x are the meridional and zonal cartesian coordinates, z
is log-pressure height, V7 is the divergence operator, and M is the two-way isentropic mixing vector with meridional and vertical

components given by Eq. (2) and (3):
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where primes denote deviations from the zonal average, v and w are the meridional and vertical velocities, S equals (H -

N?2)/R in which N? is the Brunt-Viisili frequency and R is the gas constant equal to 287 m?/s*/K. The residual circulation

velocities (v*, w*) are given by Eq. (4) and (5):
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where p,is log-pressure density and 6 is potential temperature and a is Earth’s radius.

3 Results

3.1 Lower tr heric O3S r

POSE

To better understand how climate change may influence the amount of stratospheric ozone making it into the lower free

troposphere over western North America, Figure 2 shows the 700 hPa O3S responses to full RCP8.5 forcing, fhe change due

preindustrial control climatology, lower tropospheric O3S increases from low to high latitudes regardless of season, and mixing .

ratios are largest over western North Pacific during the jet’s spring phase, mimicking the observed seasonal maximum in deep

STT over this region (Fig 2 black lines; Skerlak et al. 2014; Breeden et al. 2021).
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forcing (c.f. Fig. 2a). Over the low latitude eastern North Pacific, close to Baja California/Mexico, the SSTs alone promote i

large increases in O3S during the jet’s winter and spring phases relative to preindustrial climate (Fig. 2d-e). Conversely at high

latitudes, O3S does not change during the late winter phase in response to SSTs alone, and it decreases during both the jet’s

spring and summer phases. In summary, the SSTs along can explain a portion of the full RCP8.5 response, but clearly not the
bulk of it.
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The response to, GHGs alone accounts for the majority of the full RCP8.5 700 hPa O3S response (Fig. 2g-i). Larger O3S

increases develop during the jet’s late winter and spring phases compared to summer. Both SSTs alone and GHGs alone

Jincrease O3S over the gastern, North Pacific and western North America during the jet’s late winter phase, but have competing “ }

effects on O3S during the jet’s spring and summer phases. To better understand the future changes in free tropospheric O3S

and the relative roles of SST and GHG changes, the next sections consider in more detail how the North Pacific jet and the

lower stratospheric ozone reservoir respond to climate change.

3.1 Changes in the upper troposphere and lower stratosphere

RCP8.5 conditions accelerate, narrow, and elongate the late winter North Pacific jet towards western North America at 200
hPa (Fig. 3a). This change is robust to varying severities of climate change (RCP4.5, Harvey et al. 2020; RCP6.0, Akritidis et
al. 2019; and RCP8.5, Matsumura et al. 2021). Contrary to what takes place during the late winter period, the subtropical jet
shifts equatorward during the jet’s spring and summer phases (Fig. 3b-c). At lower latitudes, westerly anomalies form over the
subtropical eastern Pacific/central America, where there is a climatological minima in the 200 hPa zonal wind (Fig. 3a-c). This

response is present during all three jet phasesand strengthens from late winter through summer (Fig. 3a-c).
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Figure 4 shows how RCP8.5 conditions modify 200 hPa O3S, allowing us to see both tropospheric and stratospheric ozone
changes; at 200 hPa, the stratosphere is poleward of the anomalous thermal tropopause (cyan lines), which can be compared

with the preindustrial thermal tropopause (blue lines) in each season. The 200 hPa O3S equatorward of the tropopause has

already been transported into the troposphere and can be lost due to dry deposition and photolysis, and chemical loss or

transported back to the stratosphere by reversible mixing processes.

In the preindustrial control,(EXP1),03S maxima and minima are co-located with the troughs and ridges of the climatological

stationary wave (Figs. 4a-c). This is particularly clear in late winter, during which O3S mixing ratios exceed 600 ppb over the
wave-1 scale trough of the climatological stationary wave, the Aleutian Low (Fig. 4a). O3S mixing ratios are, on the other
hand, reduced over the climatological Alaskan Ridge. Slightly out of view in Fig 4a is a climatological wave-2 scale trough
that resides over the Baftin Bay and Greenland; an O3S maxima is found over this region as well (Fig. 4a). As suggested by
Reed (1950; see also Schoeberl and Kreuger 1983 and Salby and Callaghan 1993), horizontal advection and vertical motion
associated with waves act to concentrate ozone in troughs and reduce it over ridges. The climatological stationary wave

influences the 200 hPa composition of O3S in this way.

Full RCP8.5 conditions increase lower stratospheric O3S over much of the hemisphere during all seasons (Fig. 4d-f). The

largest regional increase is a doubling of O3S over the North Pacific during the jet’s late winter phase (Fig. 4a, 4d). This
regional O3S increase is co-located with the trough of an anomalous tropical-extratropical planetary-scale wave, whose
signature is apparent in the zonal wind response (Fig. 3) and the stationary wave response (Fig 4, black contours). As the
amplitude of this wave diminishes during the spring and summer phases, so does the lower stratospheric O3S maxima (Fig.
4e-f). The RCP8.5 O3S response is mostly contained in the lower stratospheric (i.e., poleward of the tropopause) trough during
the jet’s late winter phase, but in the absence of strong meridional potential vorticity gradients such as the high-latitude polar
stratospheric westerlies (Manney et al. 1994; Salby and Callaghan 2007) or the subtropical jet stream (Bonisch et al. 2009),
which serve as transport barriers, the O3S response “smears out” during spring and summer, becoming more evenly distributed

around the 200 hPa thermal tropopause (Fig. 4e-f).

The SSTs along, are almost solely responsible for the development of the anomalous planetary wave and are therefore a key

reason why there are zonal asymmetries in the lower stratospheric ozone reservoir (Fig.4g-i). Similar effects of large-scale
planetary wave trains on lower stratospheric ozone have been noted in relation to ENSO (Zhang et al. 2015; Albers et al. 2022).

The, SST forcing considered in this study displays SST warming globally, but contains some zonal asymmetries, one of them

being an El Nifio-like eastern tropical Pacific warming (Fig. S2). This zonal asymmetry may explain why the planetary wave

response to the, SSTs alone during late winter (Fig. 4g) resembles the PNA wave train known to develop with El Nifio (albeit

the Canadian ridge in Fig. 4g is displaced east relative to PNA Canadian ridge). Note though that there is large inter-model
and inter-generational (CMIP5 vs. CMIP6) spread in how ENSO responds to climate change (Beobide-Arsuga et al. 2021; Cai
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the El Niflo-like warming superimposed on the global SST increase (Fig. S2).

Lontrary to the SSTs alone, the GHGs along, have little effect on the planetary-scale eddies and elicit more zonally symmetric
O3S responses (Fig. 4j-1). The lower stratospheric O3S response to the GHGs alone develops Jargely, due to net chemical

production of stratospheric ozone, likely associated with the large methane increase in RCP8.5, which enhances O3 mixing
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response to RCP8.5 forcing in shading, with preindustrial isentropes shown in black, and the anomalous isentropes in magenta, (g-i) show the same, but for

SSTs along, and (j-1) same, but for GHGs along, Non-stippled grid points are statistically significant O3S responses at a 5% significance threshold using a

bootstrapping hypothesis test. The phases of the jet are shown in successive columns.

To further clarify how the lower stratospheric reservoir responds to RCP8.5 conditions, Figure 5 shows latitude-pressure
transects of O3S anomalies and isentropes averaged between 235°E and 260°E (over western North America, same

longitudinal bounds used for box in Fig. 2a), Climatologically, extratropical lower stratospheric O3S mixing ratios are larger

during winter and spring (Fig. 5b), following from transport by the BDC’s deep branch (Ray et al. 1999; Hegglin and Shepherd
2007; Bonisch et al. 2009; Butchart 2014; Konopka et al. 2015, Ploeger and Birner 2016; Albers et al. 2018). During summer
in climatology, enhanced isentropic mixing between the tropical and extratropical lowermost stratosphere (Hegglin and
Shepherd 2007; Abalos et al. 2013) and rising tropopause heights (Schoeberl et al. 2004) act to flush ozone out of the lowermost

stratosphere.

During every jet phase, RCP8.5 conditions reduce O3S in the low latitude stratosphere while promoting accumulation of O3S
at high latitudes (Fig. 5d-f). Some of this O3S accumulating in the extratropical lower stratosphere may enter the troposphere

along the subtropical upper tropospheric/lower stratospheric isentropes (e.g., 360 K). Both the GHGs alone and SSTs alone

play arole in making this happen. The upper tropospheric warming induced by the SSTs along, depresses the isentropes (e.g.,

360 K) to lower altitudes, enhancing the access of the troposphere to lower stratospheric air (Fig. 5g-i), where wave breaking
is able to transport the ozone into the subtropical and tropical upper troposphere (e.g., Waugh and Polvani 2000, Albers et al.

2016 and references therein). The GHGs alone,on the other hand mainly contribute by more broadly enhancing the extratropical
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lower stratospheric O3S concentrations (Fig. 5j-1).

038 is reduced near the extratropical tropopause in all seasons in response to RCP8.5 forcing (Figs. 5d-f). This is associated

with the increased height of the tropopause (Abalos et al. 2017) resulting from the ,SSTs alone, Due to steep vertical gradients _

in tracers near the tropopause (e.g., Pan et al. 2004), taking the difference between an experiment with a lifted tropopause
(EXP2 or EXP3) and an experiment without this feature (preindustrial control, EXP1) amounts to taking the difference between
relatively O3S depleted tropospheric air and O3S rich stratospheric air, hence the negative O3S anomalies develop near the
tropopause (Figs. 5d-i). This negative O3S response can largely be removed by remapping the vertical axis of each data field

used to make, for instance, Figs. 5d-f (zonally averaged RCP8.5 (EXP2) O3S and preindustrial (EXP1), O3S) to tropopause-

relative coordinates (meters above or below the thermal tropopause), then taking the difference between these two modified
data fields, and remapping this set of anomalies (axes: tropopause-relative x latitude) to a log-pressure coordinate system (axes:
pressure x latitude) (Abalos et al. 2017). Using annual cycles of thermal tropopause and O3S data, which should help to smooth
out the large hourly/daily fluctuations in these fields near the tropopause, the aforementioned procedure was applied to a

zonally averaged transect over the North Pacific (Fig S3) and applied at all grid points at 200 hPa (Fig. S4) and 300 hPa (Fig.

14

(F ormatted: Font color:

Text 1

AN NN

(Deleted:

( Deleted: RCPS.5

~ (F ormatted: Font color:

Text 1

CF ormatted: Font color:

Text 1

(F ormatted: Font color:

Text 1

(F ormatted: Font color:

Text 1

(F ormatted: Font color:

Text 1

A A AN




76
77
78
79
80
81
82
83
84
85

86

87
88
89

S5). While this tropopause-relative analysis does remove the majority of the negative O3S response associated with the
tropopause lift, the strong O3S zonal asymmetries associated with the planetary wave response to the SSTs alone, persist,
namely the negative O3S response corresponding to the planetary wave’s ridge near Alaska (cf. Fig. 4k, Fig. S5e¢). This analysis ‘
corroborates that the higher tropopause in RCP8.5 is largely responsible for the presence of the negative O3S response in the
extratropical upper troposphere/lower stratosphere, however not entirely, as we find that a portion of this negative O3S is

associated the anomalous planetary wave’s zonally asymmetric effects on the upper tropospheric/lower stratospheric O3S

distribution.

3.3 Zonally symmetric changes
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JFigure 6: Residual advective O3S tendencies (shading) and residual mass streamfunction (contours). (a-c) show preindustrial residual advective O3S

tendencies in shading with the climatological residual mass streamfunction overlaid in black contours. The color scale is the same for the climatology and
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anomalies. The contour intervals for the residual mass streamfunction in all panels are 0.025, 0.05, 0.1, 0.25, 0.5, 1, 5, 10, 15, 20, 25 ... (109 kg/s). (d-f)

show the O3S tendency and streamfunction anomalies to RCP8.5, (g-i) show the same, but for 8STs along, and (j-I) same, but for, GHGs along, Non-gray

shaded grid points show statistically significant O3S tendency,anomalies at a 5% significance threshold using a bootstrapping hypothesis test. The phases of _Y

the jet are shown in successive columns. For each phase of the jet, the preindustrial control thermal tropopause is black and the anomalous tropopause is gray.

Note that an anomalous tropopause is hardly visible in response to,GHGs alone as the SSTs alongare the forcing that modifies the tropopause.

The seasonal variability of both tropical (Abalos et al. 2013) and extratropical (Albers et al. 2018) lower stratospheric ozone
tendencies is heavily influenced by upwelling and downwelling associated with BDC’s residual mean meridional circulation
component. This circulation is made up of a shallow and a deep branch. Transport associated with the shallow branch proceeds
more horizontally and the air masses enter the stratosphere closer to the subtropics whereas transport associated with the deep
branch is more vertical and the air masses enter the stratosphere through the deep tropics and descend at high-latitudes (Birner

and Bonisch 2011). To quantify the influence of RCP8.5 forcing on these physical processes, Figure 6 shows the residual mass
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(cf. Rosenlof 1995), in the preindustrial control, the tropical upward mass flux peaks in amplitude during boreal winter when
the residual mass streamfunction is strongest (Fig. 6a). As the zonal momentum budget changes in each hemisphere during
spring and summer, the tropical upward mass flux shifts into the northern hemisphere and the residual mass streamfunction
weakens and shifts downward towards the troposphere (Fig 6b, c). The negative O3S tendencies in the tropical lower
stratosphere track the latitudinal shifting of the tropical upward mass flux over time. The positive O3S tendencies in the
extratropical lower stratosphere associated with poleward transport of stratospheric ozone from its tropical source region peak

in amplitude during winter when the BDC’s deep branch is strongest and weaken thereafter.

RCP8.5 forcing strengthens the shallow branch of the BDC during all three seasons, reducing tropical stratospheric O3S

tendencies (Fig. 6d-f). The SSTs alone (Fig. 6g-i) are primarily responsible for the acceleration of the residual mass .

streamfunction in the subtropical lower stratosphere (50 hPa/30°N) when compared against the GHGs alone (Figs. 6j-),
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consistent with Oberlénder et al. (2013) and Chrysanthou et al. (2020). The upper component of the Hadley Circulation near
150 hPa and 15°N accelerates, as previously reported by Abalos et al. (2020). All models they studied included this response.
This feature acts cooperatively with the reinforced BDC shallow branch to increase O3S transport through the subtropical

tropopause into the upper troposphere (200 hPa and 30°N), with the largest increase occurring during summer in response to

the SSTs alone (Fig. 6i). The GHGs alone accelerate, the deep branch well above 30 hPa during winter (Fig. 6j), its high- .~

latitude downwelling increases lower stratospheric O3S during spring (Fig. 6k), and then disappears by summer (Fig. 6i).
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Figure 7: Two-way isentropic mixing O3S tendencies (shading) and zonal-mean zonal wind (contours). (a-c) show preindustrial O3S tendencies in shading

with the climatological zonal wind overlaid in black (+/-5 m/s) and the components of the two-way isentropic mixing (-My,-Mz) shown as vectors. The color
scale is the same for the climatology and anomalies. (d-f) show the O3S tendency and zonal-wind anomalies to RCP8.5, (g-i) show the same, but for SSTs

along, and (j-1) same, but for GHGs along, Non-gray shaded grid points show statistically significant O3S anomalies at a 5% significance threshold using a ‘

bootstrapping hypothesis test.. The phases of the jet are shown in successive columns. For each phase of the jet, the preindustrial control thermal tropopause

is black and the anomalous tropopause is gray.

Another aspect of the BDC is two-way isentropic mixing, which climatologically increases subtropical O3S tendencies above
and south of the subtropical jet while reducing extratropical O3S tendencies throughout the stratosphere (Fig. 7a-c). In the
tropical lower stratosphere (~80 hPa), tendencies peak during summer in present day analyses (Abalos et al. 2013) and in the
preindustrial control climatology (Fig. 7c). RCP8.5 forcing generally reinforces the climatological two-way isentropic mixing
in the stratosphere during each season, increasing subtropical tendencies and reducing extratropical tendencies (Fig. 7d-f).
Additionally, enhanced cross tropopause mixing by eddies increases upper tropospheric O3S tendencies from 30-60N, with

stronger signals during summer than winter. These anomalies are primarily associated with the SSTs alone (Fig. 7g-i). Hardly '

any part of the two-way isentropic mixing responses to GHGs along, are statistically significant (Fig. 7j-1).
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4 Conclusions

We use three interactive chemistry WACCM experiments to analyze how stratosphere-to-troposphere transport of ozone over
western North America during late winter, spring, and summer responds to worst case scenario RCP8.5 climate change during

the end of the century. Lower tropospheric O3S concentrations increase up to 37% during late winter over western North
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(Deleted: particularly during late winter

America in response to RCP8.5 forcing, with progressively weaker increases during spring and summer. Between the GHGs _ e

alone and SSTs alone, the GHGs along, are found to be primarily responsible for increase in lower tropospheric O3S over S

western North America and across the northern hemisphere.

Because lower stratospheric ozone mixing ratios are positively correlated with the amount of ozone contained in intrusions
that transport mass into the troposphere (Ordéfiez et al. 2007; Hess and Zbinden 2013; Neu et al. 2014; Albers et al. 2016;

2018), we document the processes modifying future lower stratospheric ozone. JThe portion of the full RCP8.5 response driven

by the GHGs alone (no changes to the SSTs) promotes higher ozone mixing ratios throughout the extratropical lower

stratosphere. It is unlikely that these increases are associated with dynamical changes due to GHGs alone. In agreement with

Oberlénder et al. (2013) and Chrysanthou et al. (2020), we find that the GHGs alone modify residual advective transport

promoting some increases in extratropical lower stratospheric ozone. However, this response, in combination with the weak

eddy transport response to the GHGs alone, cannot wholly explain the changes in extratropical lower stratospheric O3S that

occur during winter, spring, and summer due to GHGs, thus we conclude that production of ozone must be an important

component of the response to GHGs. Note that different GHGs have unique chemical influences on ozone (e.g., Fleming et al.

2011), which we do not attempt to separate in this study (see Morgenstern et al. 2018). We hypothesize that the higher

tropospheric O3S driven by GHGs alone is associated with enhanced production of ozone throughout the extratropical lower

stratosphere, likely due to 4.6x higher methane concentrations in the RCPS8.5 experiment compared to preindustrial control

(Portmann and Solomon 2007; Revell et al. 2012; Morgenstern et al. 2018; Winterstein et al. 2019). The ozone increases

evidently outweigh any ozone reductions forced by the 1.5x and 3x increases in N:O and Cl., respectively, culminating in a net

ozone increase throughout the extratropical lower stratosphere (Fig. 5j-k).,

The SSTs alone promote, scattered regional increases and decreases in lower tropospheric 03S. Over the North Pacific, the ;-
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higher ozone mixing ratios throughout the extratropical
stratosphere can be attributed primarily to enhanced
production associated with stratospheric cooling and higher
methane concentrations (Morgenstern et al. 2018;
Winterstein et al. 2019), with additional effects also from
reduced ODSs (Dietmiiller et al. 2021) and higher nitrous
oxide concentrations (Revell et al. 2012; Butler et al. 2016).
In agreement with Oberlédnder et al. (2013) and Chrysanthou
et al. (2020), we find that the effect of the RCP8.5 GHGs on
the residual mean mass streamfunction is concentrated in the
upper stratosphere, manifesting as an acceleration of the
BDC’s deep branch, which promotes ozone transport
downward primarily at high latitudes poleward of 60°N

during boreal winter and spring (Fig. 6j-k). A limitati(_"776]
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lower tropospheric O3S increases are co-located with the low pressure center of, the largest anomalous, trough of a tropics-

extratropics planetary scale wave that forms over the North Pacific, similar to the PNA wavetrain, in response to the SSTs

alone, When the amplitude of this wave is largest (during late winter), O3S increases by nearly 400 ppb within the wave’s

largest trough at 200 hPa, a doubling of O3S relative to the preindustrial control climatology. A large part of this trough is

located in the lower stratosphere at 200 hPa, illustrating that planetary waves can introduce high amplitude zonal asymmetries
into the lower stratospheric ozone “reservoir” that then coincide with regionally enhanced STT. In agreement with Reed (1950),

we attribute the co-location between lower stratospheric troughs (ridges) and enhanced (reduced) ozone to horizontal advection
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et al. 2012) and therefore reduced STT of ozone over western North America. Indeed, tropospheric column ozone decreases

by the end of the century under RCP2.6 and RCP4.5, but increases due to RCP8.5 conditions (Archibald et al. 2020), although

to be clear, many factors (e.g., ozone precursors, Young et al. 2013) and not just STT, will influence future tropospheric ozone.

A different climate change scenario would also produce a different dynamical response to climate change. For instance, the

strength of the BDC shallow branch response to climate change scales with the change in future tropical surface temperature

warming (Abalos et al. 2021) and the change in future global SSTs (Chrysanthou et al. 2020). This suggests that a different

climate change scenario would beget a different planetary wave response over the North Pacific and hence, different regional

STT responses. For climate change scenarios with weaker radiative forcing change and presumably less production of

extratropical lower stratospheric ozone, the dynamical response to the SSTs alone under these scenarios may play a more

important role in influencing STT of ozone than we find herein with the RCP8.5 scenario.
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