Characteristics and Evolution of Brown Carbon in Western United States Wildfires Linghan Zeng¹, Jack Dibb², Eric Scheuer², Joseph M. Katich^{3,4}, Joshua P. Schwarz⁴, Ilann Bourgeois^{3,4}, Jeff Peischl^{3,4}, Tom Ryerson^{3,4,a}, Carsten Warneke⁴, Anne E. Perring⁵, Glenn S. Diskin⁶, Joshua P. DiGangi⁶, John B. Nowak⁶, Richard H. Moore⁶, Elizabeth B. Wiggins⁶, Demetrios Pagonis^{3,7,b}, Hongyu Guo^{3,7}, Pedro Campuzano-Jost^{3,7}, Jose L. Jimenez^{3,7}, Lu Xu^{8,c}, Rodney J. Weber¹ - ¹Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA - ²College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH, USA - ³Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA - ⁴Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA - ⁵Department of Chemistry, Colgate University, Hamilton, NY, USA - ⁶NASA Langley Research Center, Hampton, VA, USA - ⁷Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA - ⁸Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA - ^aNow at: Scientific Aviation, Boulder, CO, USA - ^bNow at: Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, USA - ^eNow at: Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA Correspondence to: Rodney J. Weber (rweber@eas.gatech.edu) ## **Supplementary Material** 25 Figure S1. Comparison of TS BrC ($Abs_{TS,365nm}^{LWCC}$) and WS BrC ($Abs_{WS,365nm}^{LWCC}$) at 365 nm (total soluble=water soluble + methanol soluble) for all FIREX-AQ identified smoke plumes. The line represents the orthogonal distance regression of the data forced through zero. 30 35 Figure S2. Comparison of BrC absorption in liquid (without applying the conversion factor K) at (a) 405 nm and at (b) 365 nm with BrC absorption inferred from the PAS at 405 nm. 40 Figure S3. Sensitivity analysis of the conversion factor from absorption in liquid to aerosol based on Mie theory. The red curve, which is the same as the one in Figure 4, with assumptions that n=1.55, and density is 1.4 g cm⁻³. Tuning the particle density by up (green) or down (blue) by 20% only results in less than 5% change. Altering the real component of the refractive index (n) by up (yellow) or down (purple) by 10% can lead to ~20% of variation. Figure S4. Closure analysis of aerosol absorption measurements for the Williams Flats fire airborne measurements starting on 7 Aug. 2019. Each plot is the average of a plume transect starting from near to further from the fire. This fire had high BC concentrations relative to BrC.